用户名: 密码: 验证码:
双壳油船碰撞结构损伤数值研究及液货泄漏量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶碰撞是指船舶在可航水域发生接触而造成损害的事故,它所造成的后果往往是灾难性的。现阶段许多国家的研究员都在试图寻找研究避免船舶发生碰撞事故的方法。近年来,致使船舶碰撞事故不断发生的主要原因为人为因素的不可避免性。从船舶结构的角度而言,基于船舶碰撞安全性的考虑,船舶结构存在着许多改进和革新的余地,然而改变船舶结构需要通过大量的模拟实验及实船验证,不仅所需时间长且需要耗费大量的人力物力财力。因此,为避免船舶碰撞,本文考虑从控制船舶航速来探寻避免或降低船舶碰撞事故后果的方法。
     在确定参与碰撞的船舶类型后,首先应用数值仿真方法对撞击参数(碰撞角度、位置、初速度等)的影响进行了比较研究,并对构件的损伤模式和吸能特性进行了细致的分析,并获得了舷侧结构碰撞力、结构吸能、损伤变形随位移变化的曲线,从而给出具有指导意义的一般性结论:球鼻突出型船艏对被撞击船所造成的危害甚为严重;相撞船舶吨位、撞击初速速度、初始动能越大则对被撞击船的损害越大;垂直对中碰撞对被撞击船造成的损害是其它碰撞角度无法比拟的;除上述之外,撞击位置微小的改变将导致被撞击船整个舷侧结构破裂失效的时机发生明显的改变。
     基于撞击参数对船舶碰撞性能的影响,本文从定量化的角度考虑,对不同吨位双壳油船和散杂货船之间的碰撞进行了大量的数值实验,经研究表明:撞击角及相撞船舶吨位越大,导致被撞击船内外壳破裂所需的撞击船临界速度越小,通过对仿真结果的分析研究最终提出了撞击船致被撞击双壳油船内外壳破裂的撞击船临界速度计算公式。
     一旦对船舶航速控制失效,导致被撞击双壳油船内壳破裂造成液货泄漏时,本文采用Fluent中的VOF模型以及压力速度耦合的PISO算法来模拟三维条件下的具有自由液面、互不相溶、油-水-气三相不可压缩的非定常流动。
     为更好地对双壳油船液货泄漏过程进行描述,本文首先通过物理实验,根据油面、水面及距离裂口高度等因素对液货泄漏过程进行观察研究,随后针对物理实验设计三组数值实验,并将二者所得过程及结果进行比对,通过对比可知,数值计算所得液货泄漏过程、泄漏时间及进入货油舱中水的高度与实验结果基本吻合,这说明采用Fluent软件进行双壳油船在平静海面上的泄漏过程的数值计算是可行、可信的,能够用其做进一步的研究。随后采用Fluent对双壳油船在平静海面上的泄漏过程进行数值研究,并进行细致的描述,在对结果观察中得知,当油面高于水面时,双壳油船的泄漏量可由内壳裂口高度及货油舱的几何尺寸所决定,即泄漏量=舱长×舱宽×内壳裂口上边缘至舱底垂直距离×液货密度。基于上述分析,本文对物理参数(油品密度、裂口高度、液位差等)对液货泄漏影响的数值实验进行了分析研究,经研究表明,除裂口形状及其面积的变化主要影响泄漏时间外,其它物理参数的改变对泄漏时间及泄漏量的影响均较大。
Ship-ship collision is refered to the damaging accidents caused by ships contacting each other at navigable waters adjacent thereto, and its consequences are often disastrous. At present, researchers in many countries are trying to find methods which can avoid ship-ship collision accidents occurred. In recent years, the main reason of causing ship-ship collision happening continuously is the inevitability of human factors. From the point of the ship's structure, based on the safety consideration of ship-ship collision, there are much leeway of improvement and innovation in ship structures, but changing the ship structures needs a lot of simulation experiments and prototype verifications, which not only requires a long time but also costs a lot of manpower, material resources and money. Therefore, in order to avoid ship-ship collision, this paper considers exploring methods of avoiding or reducing consequences in ship-ship collision by controlling the ship speed.
     Therefore, this paper demonstrates a comparative study on the influences of collision parameters (collision angle, position, initial velocity, etc) by applying numerical simulation methods, and the damage model and energy absorption characteristics of components are analyzed in detail, what's more, curves with displacement change of side structure collision force, structure energy absorption and damage deformation, which give the general conclusion having a guiding significance: the damage on the struck ship caused by bulb outstanding ship stem is very serious; the bigger of the collided ships'tonnage, initial velocity and kinetic energy of collision, the neavier of the damage of the struck ship; Angles of collision cannot compete with vertical collision in damaging to the stuck ship; In addition to the above, tiny change of collision position will lead to the obvious change of broken failure time of the struck ships'whole side structure.
     After the ship's type of collisions are determined, based on the effect of collision parameters to ship-ship collision, this paper talks about lots of numerical experiments between double shell oil tanker and bulk cargo ship with different tonnage from angle of quantitative consideration, the research shows that:the greater of the collision angle and the collided ship's tonnage, the smaller of the needed struck ship's critical velocity which leads to broken of inner shell and outer shell, moreover, the critical velocity calculation formula of the striking ship which makes the inner shell and outer shell of struck double shell oil tanker broken is put forward through the analysis of the test results research finally.
     Once the ship's speed lose control, the inner shell of double shell oil tanker will rupture, which can cause liquid leakage. The VOF model from Fluent and PISO algorithm of pressure speed coupled are adopted in this paper to simulate the unsteady flow dynamic with free surface, no miscibility, oil-water-gas three-phase incompressible in the conditions of three dimensional.
     For the better description of liquid leakage process in the double hull oil tanker, firstly, based on the factors of the oil surface, water surface and height to the split, etc, through the physical experiment, the liquid leakage process is observed and studies in this paper, then putting the physical design of experiment into three groups of numerical experiments, and contrasting the processes and results in two experiments, by the contrast, the liquid leakage process, leakage time, height of water which goes into the cargo oil tank and the experimental results are consistent with the results obtained in numerical calculation, it shows that the numerical calculation of leakage process in double shell oil tanker at clam sea by Fluent is feasible and credible, which could be used in further research. After that, by applying the numerical calculation of leakage process in double shell oil tanker at clam sea by Fluent, and doing detail description, the amount of leakage in double shell oil tanker can be decided by split height of inner and outer shell and the geometry size of cargo oil tank, that is the amount of leakage=length of tank carbinxwidth of tankxvertical distance from inner split bottom of tankxdensity of liquid, which can be found in the contrast of results. Based on the analysis above, the numerical experiment of liquid leakage influenced by the physical parameters (oil density, split height, level difference) are conducted and researched in this paper, the research shows that the changes of other physical parameter have influence on both leakage time and the amount of leakage, besides of the split shape and area change which influence the time of leakage mainly.
引文
[1]张丽英.海商法.北京:清华大学出版社,2006.
    [2]McDermott J F, Kline R G, Jones E, etc. Tanker structural analysis for minor collisions. SNAME Transactions,1974,82:382-414.
    [3]庄科挺,刘敬喜,刘元丹,颜丰.船舶加筋板结构耐撞性能分析.中国舰船研究,2011,6(3):16-20.
    [4]Seiichiro Yagi, Hideki Kumamoto, Osamu Muragishi, etc. A Study on collision buffer characteristic of sharp entrance angle bow structure. Marine Structures,2009, (22):12-23.
    [5]江华涛,顾永宁.油轮首部结构碰撞特性.上海交通大学学报,2003,37(7):985-989.
    [6]唐风文,肖英杰,等.仿真技术在船舶碰撞事故再现中的应用.水运工程.2011,10:42-45.
    [7]刘宏斌.关于船船碰撞事故中人为因素的思考.航海技术,2008,(4):8-10.
    [8]付玉慧.海事事故中人为夫误的作用机理.大连海事大学学报.2004,30(3):106-108.
    [9]Han S M, Ito H, Suh Y S. Collision analysis using analytical approach. Proceedings of the fifteenth international offshore and polar engineering conference. Seoul, Korea,2005:618-630.
    [10]刘峰.基于耐撞性的新型船舶结构形式研究:(博士论文).上海:上海交通大学,2007年4月.
    [11]刘敬喜,叶文兵,胡紫剑.单壳船舷侧结构的碰撞分析.中国造船.2008,49(183):124-133.
    [12]Minorsky V U. An analysis of ship collision to protection of nuclear powered plant. Journal of Ship Research,1959,3(2):1-4.
    [13]Wierzbicki T. Crushing behavior of plate intersections. Proceedings of the first international symposium on structural crashworthiness. University of Liberpool,1979:66-95.
    [14]Woisin G. Design against collision. Proceedings of the first international symposium on advances in marine technology, Norway,1979.
    [15]Vaughan H. Bending and tearing of plate with application to ship bottom damage. Naval Architects,1978,3:97-99.
    [16]Petersen M J. Dynamics of ship collisions. Ocean Eng,1982,9(4):295-329.
    [17]梁文娟.船舶碰撞的三维分析.交通部上海船舶运输科学研究所学报,1986,17:(1):80-93.
    [18]Woisin G. Instantaneous loss of energy with unsymmetric ship collisions. In:Proceedings of third international symposium on practical design of ships and mobile units (PRADS 1987). Trondheim,1987.
    [19]Pawlowski M. Energy loss in ship's collisions. Poland:Centrum Techniki Okretoewj, 1995:40.
    [20]Hanhirova K. External collision model, safety of passenger/Ro-Ro vessels. Helsinki University of Technology, Ship Laboratory, Finland,1995.
    [21]Pedersen P T, Shengming Zhang. On impact mechanics in ship collision. Marine structures, 1998, 11(10):429-449.
    [22]Recking K A. Mechanics of minor ship collisions, Int. J. Impact Engineering,1983, 1(3):281-299.
    [23]Wang G, Ohtsubo H. Deformation of ship plate subjected to very large load.1997, OMAE.
    [24]张惠元,吴水云等.双层侧壁船舶碰撞强度分析.中国造船,1990,(1):51-60.
    [25]朱厚勤,郑际嘉,刘士光.单层与双层舷侧结构承载能力研究.华中理工大学学报,1996,24(1):75-78.
    [26]Yang Y Q, Michaylov B N. Ship structure safety problems at collision. Journal of Wuhan Transportation University,1996,20(1):30-33.
    [27]Paik J.K., Chung J Y., Choe I H, etc. On the rational design of double hull tanker structures against collision. SNAME Annual Meeting, Baltimore, MD,199.
    [28]Kitamura O. Comparative study on collision resistance of side structure. Nagasaki R&D Center, Mitsubishi Heavy Industries,1993.
    [29]Suzuki K, Ohtsubo H, Sajit KS. Evaluation method of absorbed energy in collision of ship with collision resistant structure. Ship Structure Symposium on Ship Structures for the New Milennium:Supporting Quality in Shipbuilding, Arlington, VA,13-14 June,2000.
    [30]Glykas A, Das P K. Energy conservation during a tanker collision. Ocean Engineering,2001, 28:361-374.
    [31]Pedersen, P T, Yujie Li. On the global ship hull bending energy in ship collisions. Marine Structures,2009,22:2-11.
    [32]Kristjan Tabri, Joep Broekhuijsen, etc. Analytical modeling of ship collision based on full-scale experiments. Marine Structures,2009,22:42-61.
    [33]陈练,王自力,李良碧.基于三维解析法的船舶碰撞外部动力学研究.中国造船,2007,48(2):80-88.
    [34]Paik J K and Pedersent P T. Modeling of the internal mechanics in ship collisions. Ocean Engine,1996,23(2):107-142.
    [35]Simensen BC. Theory and validation for the damage collision module, Joint Mit-Industry Program on Tanker Safety, Report N 67.
    [36]Lu-tezen, M. Ship collision damage:(Phd). Thesis, Department of Mechanical University of Denmark,2001.
    [37]Sourne. A ship collision analysis program based on super-element method couple with large rotational ship movement analysis tool.4th International Conference on Collision and Grounding of Ships,ICCGS 2007.
    [38]Lenselink H, Thung K G, etc. Numerical simulation of ship collisions. Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, usa,1992,79-88.
    [39]Lenselink H, Thung K G. Numerical simulations of the Dutch Japanese full scale ship collision tests. Proceedings of Conference on Prediction Methodology of Tanker Structural Failure (ASIS). Tokyo, Japan,1992.
    [40]Sajdak J A W, Brown A J. Modeling longitudinal damage in ship collisions. Ship Structure Committee. Virginia Polytechnic Institute and State University Blacksburg,2004.
    [41]蒋致禹.船舶护舷结构的碰撞研究:(硕十论文).上海,上海交通大学,2010年1月.
    [42]王自力,顾永宁.双层舷侧结构碰撞损伤过程研究.船舶工程,2000,(1):17-20.
    [43]王自力,顾永宁.撞击参数对双层舷侧结构碰撞响应的影响.船舶工程,2000,(6):13-16.
    [44]王自力,顾永宁.船舶碰撞动力学过程的数值仿真研究.爆炸与冲击,2001,21(1):29-34.
    [45]王自力,张延昌.基于夹层板的单壳船体结构耐撞性设计.中国造船,2008,49(1):60-65.
    [46]王自力,顾永宁,朱安庆.集装箱船双层舷侧结构的碰撞摸.华东船舶工程学院学报,2000,14(4):29-34.
    [47]王自力,顾永宁.超大型油轮舷侧双壳结构的碰撞性能研究.中国造船,2002,43(1):58-63.
    [48]张延昌,杨代玉,王自力.舱内液体对VLCC舷侧结构碰撞性能的影响.爆炸与冲击,2010,30(5):479-486.
    [49]陶亮.船舶舷侧结构碰撞性能研究:(硕士论文).大连,大连理工大学,2005年12月.
    [50]马骏,陶亮.初速度对被撞船舷侧结构影响.大连理工大学学报,48(1):90-94.
    [51]朱新阳,吴梵.加筋板在横向撞击下的吸能特性研究.海军工程大学学报,2008,20(3):25-30.
    [52]Minorsky, Yang C C. Bow loading values for ice breaker. U.S. Maritime Administration Contract. No.7-38028,1979.
    [53]Chang P Y, Seibold F, etc. Rational methodology for the prediction of structural response due to collisions of ships. Transations SNAME,1980,88:173-193.
    [54]Kuroiwa T. Numerical simulation of actual collision & grounding accidents. Proc. Int. Conf. Designs and Methodologies for Collision and Grounding Protection of Ships. San Francisco, USA, 1996.
    [55]Kuroiwa T. Research on structural failure of tankers due to collisions and grounding. Proceedings of Conference on Prediction Methodology of Tanker Structural Failure (ASIS). Tokyo, Japan,1995.
    [56]Joao G, De Oliveria. The behavior of steel offshore structures under accidental collision. Proceedings of 13th Annual Offshore Technology Conference. Huston, Texas, USA,1981:187-198.
    [57]李润培,陈伟刚,顾永宁.近海固定平台碰撞的准静态分析.海洋工程,1995,13(2):14-21.
    [58]李润培,陈伟刚,顾永宁.船舶与海洋平台碰撞的动力响应分析.上海交通大学学报,1996,30(3):40-47.
    [59]杨亮,马骏.对冰介质下的船舶与海洋平台碰撞的数值仿真分析.中国海洋平台.2008,23(2):29-33.
    [60]胡志强,崔维成,杨建民.基于模型试验和数值模拟方法的深吃水立柱式平台碰撞特性.上海交通大学学报,2008,42(6):939-944.
    [61]Zhiqiang Hu, Weicheng Cui, etc. Research on collision mechanism for a ship colliding with a spar platform. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2007:69-77.
    [62]江华涛,顾永宁.船舶碰撞缓冲型球鼻艏概念探讨——球鼻曲率对碰撞的影响.中国造船,2003,44(2):25-31.
    [63]王自力,顾永宁.应变率敏感性对船体结构碰撞性能的影响.上海交通大学学报,2000,34(12):1704-1707.
    [64]Servis D P, Samuelides M. Ship collision analysis using finite elements. Proceedings of SAFER EURORO Spring Meeting. Nantes,1999.
    [65]顾永宁,胡志强,高震.船舶碰撞与触底事故的数值仿真.上海交通大学学报,2003,37(8):1176-1180.
    [66]Fuqing Wu, Robert Spong, Ge Wang. Using numerical simulation to analyze ship collision. ICCGS. Hamburg University of Technology.2004.
    [67]李雅宁,高震,顾永宁.试样极限塑性和船舶触礁模型试验校准计算.船舶工程,2002,(6):13-16.
    [68]Kitamura O. FEM approach to the simulation of collision and grounding damage. Marine Structures,2002,15(5):403-428.
    [69]Glykas A, Das P K, Barltrop N. Application of failure and fracture criteria during a tanker head-on collision. Ocean Engineering,2001,28:375-395.
    [70]Petersen E. Analysis and design of cellular structure. Report No. UR-79-02. Department of Marine Technology, The Norwegian Institute of Technology,1979.
    [71]Udea Y, Rashed S M H. An ultimate transverse strength analysis of ship structure. Society of Naval Architects of Japan,1975,13:87-104.
    [72]赵如箱.浅谈溢油模型的发展及其应用设想.交通环保,2000,21(4):15-17.
    [73]刘彦呈,林建国.基于GIS的海上溢油扩散和漂移的预测研究.大连海事大学.2002,28(3):41-44.
    [74]Espdal H A, Wahl T. Satellite SAR oil spill detection using wind history information. International journal of remote sensing,1999,20(1):49-65.
    [75]郭为军.基于POM的溢油数值模拟研究:(硕士论文).大连:大连理工大学,2007年11月.
    [76]李志军,布鲁斯·霍丽本,莫夫·菲格斯.本·菲德豪斯.波浪作用下油脂冰内溢油行为物理模拟实验技术.大连海事大学学报,2007,33(4):91-95.
    [77]Beegle-Krause CJ, Ph.D. Time and length scales in spill response. NOAA's national ocean service/office of response & restoration.2005.
    [78]Daidola JC, Reyling CJ, Ameer PG. Oil outflow estimates for tankers and barges spill science & technology bulletin. Spill Sci. Techno. Bull,1997,4(2):89-98.
    [79]Samuelides, Manolis. Prediction of oil outflow in the case of a ship-ship collision based on energy considerations. Journal of ship research,1999,43(3):194-200.
    [80]Fthenakis V M, Rohatgi U S. A model of liquid releases from a submerged vessel. Journal of loss prevention in the process industries,1999,12:437-449.
    [81]Tetsuo SAGA, Hui HU, Toshio KOBAYASHI. Research on the self-induced sloshing phenomena in a rectangular tank.9th International symposium on flow visualization,2000.
    [82]Fay J A. Model of spills and fires from LNG and oil tankers. Journal of hazardous materials, 2003,96(2-3):171-188.
    [83]许颖.船舶溢油过程及溢油量的精细计算的方法研究:(硕士论文).大连:大连海事大学.2007年.
    [84]丁刚.基于FLUENT的破舱船舶溢油的数值模拟:(硕士论文).武汉:武汉理工大学,2010年.
    [85]Chen Z & Zhan C S, Lee K & Li Z, Boufadel M. Modeling of oil droplet kinetics under breaking waves. Oil spill respone:A global perspective.2008:221-236.
    [86]Giel F, Van De Wiel J. A probabilistic model for oil spill volume in tanker collisions and grounding. Master of science. Delft university of technology,2008.
    [87]Giel F, Van De Wiel J, Rene van drop. An oil outflow model for tanker collisions and groundings. Annals of operations research,2009.
    [88]Ayla Ogus. Estimating the size of oil tanker spills.1999.
    [89]IMO. International Convention for the Prevention of Pollution from Ships,1973.2006.
    [90]赵谱.我国船舶溢油污染事故溢油量评估方法及其应用.海洋环境科学,2009,28(4):469-472.
    [91]李栖筠,傅玉慧,黄凤荣,等.美国气象卫星监测海洋溢油.海洋环境科学,1997,16(1):6-10.
    [92]杨建刚,李铭辉,邱春霞.船舶溢油量的计算方法概述.2007年船舶防污染学术年会论文集.北京:中国航海学会船舶防污染专业委员会,2007,23-29.
    [93]薛量.薄壁管柱和整车结构碰撞特性数值仿真与实验研究:(博士论文).上海:上海交通大学,1999年.
    [94]王自力.船舶碰撞损伤机理与结构耐撞性研究:(博士论文).上海:上海交通大学.2000年.
    [95]John O, Hallquist. LS-DYNA3D Theoretical Manual, Livermore Software Technology Corporation Livermore, July,1994.
    [96]张圣坤,韩继文,汪痒宝.计算船舶结构力学.上海:上海交通大学出版社.1994.
    [97]张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析.中国海洋大学学报(自然科学版).2005,(5):823-826.
    [98]Maenchen G, Sack S. The TENSOR' code in methods in computational. Academic Press,1964, 3:191-210.
    [99]Petschek A, Hason M. Difference equations for two-dimensional elastic folw. J.Comp.Phys., 1986.3:307-321.
    [100]Belystchko T. Finite element approach to hydronamics and mesh stabilization. Computation Methods in Nonlinear Mechanics, Ed. Oden J.T., The Texas Institute for the Computation Mechanics,1974.
    [101]Kosolff D, Frazier FG A. Treatment of hourglass patterns in low order finite element code sv. Int. I. Num. Anal. Meth. Geomech.,1978,2:57-72.
    [102]陈诚.桥梁设计船撞力及损伤状态仿真研究:(硕士论文).上海:上海同济大学,2006年3月.
    [103]张日红.考虑晃荡影响的船舶结构碰撞性能研究:(硕士论文).大连:大连理工大学.2010年12月.
    [104]邹亮FDPSO耐撞特性研究:(硕士论文).大连:大连理工大学,2008年12月.
    [105]何栋梁,范彬.船桥碰撞及防撞结构研究.石河子大学学报(自然科学版),2005,23(6):742-745.
    [106]王勖成.有限单元法.北京:清华大学出版社,2003.
    [107]王仁,黄克智,朱兆祥.塑性力学进展.北京:中国铁道出版社,1988.
    [108]廖其红,黄宏成,薛量.薄壁钢结构碰撞性能仿真中的材料模型研究.机械设计与研究.2001,17(4):64-66.
    [109]徐秉业,刘信声.考虑应变率敏感性的塑性动力学.机械强度,(3).
    [110]Jones N. Structural Impact. Cambridge, Cambridge University Press,1989.
    [111]Kulzep A, Peschmann. Side collision of double hull tankers. Final Report of Life Cycle Design. Hamburg University of Technology,1999.
    [112]Alsos HS, Odd S, etc. Analytical and numerical analysis of sheet metal instability using a stress based criterion. International Journal of Solids and Structures.2008,45:2042-2055.
    [113]Hill R. On discontinuous plastic states with special reference to localized necking in thin sheets. Journal of the Mechanics and Physics of Solids.1952, 1(1):19-30.
    [114]Bressan J D., Williams J A. The use of a shear instability criterion to predict local necking in sheet metal deformation. International Journal of Mechanical Sciences.1983,25(3):155-168.
    [115]Cockcorft M G., Latham D J. Ductility and the workability of metals. Journal of the Institute of metals.1938,96(1):33-39.
    [116]Chen C C., Oh S I, Kobayashi S. Ductile failure in axisymmetric extrusion and drawing, part 2, workability in extrusion and drawing. Journal of Industrial Engineering.1979,101(1):36-44.
    [117]Rice J R, Tracey D M. On the ductile enlargement of voids in Triaxial Stress Fields. Journal of the Mechanics and Physics of Solids.1969,17:201-217.
    [118]ISSC (2006) Committee V.1:Collision and Grounding.16th International Ship and Offshore Structures Congress (ISSC), Southampton, UK,20-25 August 2006.
    [119]Narr H, Kujala P, Simonsen B C, Ludolphy H. Comparison of the crashworthiness of various bottom and side structure. Journal of Marine Structures,2002,15:443-460.
    [120]Lehmann E, Peschmann J. Energy absorption by the steel structure of ships in the event of collisions. Second International Conference on Collision and Grounding of Ships.2001. Denmark.
    [121]Reckling K A. Mechanics of minor ship collision. International Journal of Impact Engineering.1983,1(3):281-299.
    [122]Paik J K and Pedersen P T. Modeling of internal mechanics in ship collisions. Ocean Engineering.1996,23(2):107-142.
    [123]Ohtsubo H and Suzuki K, etc. Prediction of collision strength of side structure. J Soc Naval Architects of Japan,1995,178:421-427.
    [124]Suzuki K, Ohsubo H and Sajit C. Evaluation of absorbed energy in collision of ships-The effectiveness of Minosky's formular in anti-collision structure. J Soc Naval Architects of Japan, 1999,186:311-317.
    [125]Wisniewski K, Kolakowski P, Rozmarynowski B, etc. Dynamic FE simulation of damage in ships collision.2nd International Conference on Collision and Grounding of ships.2001. Denmark.
    [126]Simonsen, Lauridsen. Energy absorption and ductile failure in metal sheets under lateral indentation by a sphere.2003.
    [127]Kitamura O. Comparative study on collision resistance of side structure. Marine Technology, 1997,34(4):293-308.
    [128]Kitamura O. FEM approach to the simulation of collision and grounding damage.2nd International Conference on Collision and Grounding of ships. Copenhagen, Denmark, July.
    [129]Francis P H, Cook T S, Nagy A. Ship structure committee report number 276.1978.
    [130]杨飞,尤小健,等.船舶碰撞研究中的若干问题.舰船科学技术.2011,33(8):182-187.
    [131]交通部海事局.水上交通事故统计月报.1999-2011.
    [132]张延昌,刘昆,王自力.基于不同形式和刚度撞击船艏的舷侧结构碰撞性能研究.江苏科技大学学报:自然科学版,2010,24(5):423-427.
    [133]浦宝康.1999年国际溢油会议要文简介.交通环保,2001,22(1):38-41.
    [134]浦宝康.2001年国际溢油会议要文简介.交通环保,2002,23(4):42-45.
    [135]浦宝康.2003年国际溢油会议要文简介.交通环保,2004,25(1):51-53.
    [136]杨建刚,耿红,等.2008年国际溢油会议论文简介.2008年船舶防污染国际公约实施学术交流研讨会论文集,2008年.
    [137]肖景坤,殷佩海,林建国,严志宇.我国海域内船舶溢油发生次数概率的特点.海洋环境科学,2002,21(1):21-25.
    [138]杨树涛.碰撞载荷作用下船舶舷侧结构抗冲击性能研究:(硕士论文).哈尔滨:哈尔滨工程大学,2010年3月.
    [139]Zhu Y Y, Cescotto S. Unified and mixed formulation of the 8-node hexahedral element by assumed strain method. Computer Methods in Applied Mechanics and Engineering,1996. 129(1-2):177-209.
    [140]王自力,蒋志勇,顾永宁,船艏碰撞数值仿真的附加质量.爆炸与冲击,2002,22(4):321-326.
    [141]王自力,顾永宁.船舶碰撞数值仿真的一种组合模型.华东船舶工业学院学报(自然科学 版),2001,15(6):1-6.
    [142]刘建成,顾永宁,胡志强.桥墩在船桥碰撞中的响应及损伤分析.公路,2002,(10):33-41.
    [143]Motora S. Equivalent added mass of ships in collision. Soci.Nav,1971,7:128-138.
    [144]谭正东,王振涛,何超.基于碰撞机理的船舶碰撞分析方法研究.海洋技术,2009,28(2):90-94.
    [145]徐文辉,姚熊亮,等.传统双层舷侧结构的碰撞数值仿真研究.船舶,2010,(5):18-22.
    [146]陶亮,马骏.积极船体梁载荷影响的船舶舷侧结构碰撞性能.中国造船,2007,48(3):80-85.
    [147]刘敬喜,胡紫剑,叶文兵.柔性、刚性球艏对双壳舷侧耐撞性能影响的研究.中国舰船研究,2008,3(5):32-36.
    [148]Hiayoshi Endo, Yasuhira Yamada, Ou Kitamura, etc. Model test on the collapse strength of the buffer bow structures [J]. Marine structure,2002,22:365-381.
    [149]江华涛.船舶碰撞与缓冲船艏结构研究:(博士论文).上海:上海交通大学,2002年.
    [150]金海明.宁波港油船溢油风险评估应用研究:(硕士论文).上海:上海海事大学,2006年.
    [151]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.
    [152]傅德薰,马延文.计算流体动力学.北京:高等教育出版社.2002.
    [153]S.V.Patanker. Numerical Heat Transfer and Fluid Flow. Hernispherer,Washington,1980.
    [154]刁明君.高坝大流量泄漏消能数值模拟及实验研究:(博士论文).成都:四川大学,,2008.
    [155]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社.2004.
    [156]王志东.三维自由面湍流流场数值模拟及其在水利工程中的应用:(博士论文).南京:河海大学,2003.
    [157]李南南,吴清,曹辉林MATLAB7基础教程.北京:清华大学出版社,2006.
    [158]尤学一,刘伟.两相流相界面迁移的数值模拟.水动力学研究与进展.2006,21(6):724-728.
    [159]宁成浩.拦油栅夫效的数值模拟研究:(硕士论文).北京:北京化工大学,2002.
    [160]Harlow F H., Welch J E. Numerical calculating of time-dependent viscous incompressible flow, Phys. Fluids,1965,8:2182-2195.
    [161]Hirt C W, Cook J L, Butler T D. A Lagrangian method for calculating the dynamics fan incompressible fluid with free surface.J.Cmp.Phys.1970,5:103-112.
    [162]Hirt C W., Amsden A A, Cook J L. An arbitrary lagrangian-eulerian computing method for all flow speeds. J.Cmp.Phys.1974,14:227-239.
    [163]董壮.三维水流数值模拟研究进展.水利水运工程学报,2002,9(3):66-73.
    [164]刘超,任福安.工程流体力学.大连:大连海事大学出版社,,2004.
    [165]李万平.计算流体力学.武汉:华中科技大学出版社,2004.
    [166]王彤,谷传纲,杨波,等.废丁醇流动计算PISO算法.水动力学研究与进展,2003,18(2): 233-239.
    [167]许文海,党彦,李国栋.双洞式溢洪洞三维流动的数值模拟,水力发电学报,2007,(1):56-60.
    [168]陈庆光,徐忠.两种查分格式和两种湍流模型在轴对称冲击射流数值中的比较.空气动力学学报,2003,21(1):82-89.
    [169]Wanik A, Schnell D. Some remarks on the PISO and SIMPLE algorithms for stead turbulent flow problems. Computers and fluid,1989,17(4):555-570.
    [170]Issa R I. Solution of the implicitly discredited fluid flow equations by operator-splitting. J of computational physics,1985,62(1):40-65.
    [171]Amiroudine S, Ouazzani J, Carles P, Zappolib. Numerical solutions of 1-D unsteady near critical fluid flows using finite volume methods. European Journal of Mechanics, B/Fluids.1997, 16(5):665-680.
    [172]Barton I E. Comparison of SIMPLE and PISO type algorithms for transient flows. International journal for numerical methods in fluids.1998,26(4):459-483.
    [173]Fluent Inc. Fluent User's Guide. Fluent Inc,2003.
    [174]徐秦,方照琪.船舶对海洋环境的污染及对策.中国水运,2003.11:30-31.
    [175]王祥.三峡库区溢油模拟及应急对策研究:(硕士论文).武汉:武汉理工大学.2010年.
    [176]封星.围油栏拦油数值实验平台及拦油夫效研究:(博士论文).大连:大连海事大学,2011年.
    [177]李玲,陈永灿.李永红.三维VOF模型及其在溢洪道水流计算中的应急.水力发电学报.2007,(2):83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700