用户名: 密码: 验证码:
啁啾脉冲在光纤通信系统中的传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于实验条件等因素的限制,以往的脉冲传输与测量实验大多采用自相关技术等测量脉冲时域特性,不能准确得到脉冲的时域波形等特性。又考虑到脉冲通常具有较大的频率啁啾且可以通过预啁啾技术等调节啁啾,利用能够准确测量脉冲时域波形等特性的二次谐波频率分辨光学门(SHG-FROG)技术实验研究了啁啾脉冲在光纤通信系统中的线性和非线性传输特性,并对脉冲传输作了深入系统的理论研究,为光纤通信系统及其关键光电子器件设计和优化提供了重要的理论和实验依据。
     利用SHG-FROG技术对10 GHz短脉冲线性传输进行了实验研究。结果表明,激光器输出的短脉冲是具有负线性啁啾的近变换极限高斯脉冲,经过12.7 km色散平坦光纤线性传输后仍然为具有负线性啁啾的高斯脉冲,其谱宽在传输过程中基本保持不变,脉宽展宽了3.1倍,啁啾增大了4倍。实验结果、数值计算结果和理论预期一致。
     在此基础上,采用分步傅里叶方法数值研究了初始啁啾双曲正割脉冲和啁啾双边指数脉冲的线性传输特性,给出了双曲正割脉冲和指数脉冲频谱宽度和时间带宽积随频率啁啾变化的表达式,提供了判断脉冲时域波形的一种有效方法。结果表明,负线性啁啾对两种脉冲时域展宽的影响比正啁啾要大得多。非线性啁啾对双曲正割脉冲和指数脉冲线性传输时域波形变化的影响比线性啁啾更大,非线性啁啾时两脉冲在线性传输过程中都出现时域波形分裂现象,比具有相同啁啾的高斯脉冲时域波形分裂都严重。
     利用SHG-FROG技术实验研究了10 GHz脉冲演化形成光孤子的规律和特点,并采用分步傅里叶方法数值研究了啁啾孤子脉冲的形成和传输,数值结果与实验数据一致。在此基础上,采用分步傅里叶方法,数值研究了啁啾双边指数脉冲的非线性传输特性。结果表明,脉冲振幅A越大,啁啾参量|C|越小,指数脉冲演化成光孤子所需的的距离越短。在相同传输距离情况下,指数脉冲演化成光孤子所需的最小振幅A比啁啾双曲正割脉冲的大。
     采用分步傅里叶方法数值研究了线性频率啁啾对高斯光脉冲在凸形色散分布平坦光纤中产生超连续谱的影响,并与啁啾双曲正割脉冲产生超连续谱的情况进行了比较。结果表明,无啁啾高斯光脉冲的超连续谱达到200 nm以上,其特性优于双曲正割脉冲超连续谱特性。获得最佳超连续谱所需光纤长度随啁啾参量C增加而缩短。负啁啾时的超连续谱特性劣于正啁啾时的特性,两种情况下的超连续谱特性均劣于无啁啾时的超连续谱特性,超连续谱特性的劣化程度随啁啾参量|C|的增加而增大。
     采用分步傅里叶方法数值研究了初始线性频率啁啾对双折射光纤中正交偏振孤子间碰撞特性的影响。研究表明,初始啁啾改变了光孤子在双折射光纤中形成束缚态的阈值δth,正啁啾对光孤子束缚态阈值δth的影响比负啁啾明显。
     修正了拉曼放大作用下的孤子脉冲传输方程,利用SHG-FROG技术实验研究了拉曼放大对光孤子传输特性的影响,实验数据与采用分步傅里叶方法数值研究结果一致。拉曼放大能够压缩孤子脉冲、补偿光纤损耗,但不改变孤子脉冲的时域波形。在传输光纤长度小于拉曼放大有效光纤长度情况下,拉曼放大能够完全补偿光纤损耗;在传输光纤长度大于拉曼放大有效光纤长度情况下,拉曼放大能够部分补偿光纤损耗。拉曼放大对孤子脉冲的压缩和对光纤损耗的补偿能力与泵浦激光器特性有关,随实验中泵浦功率的增加而增大。光孤子脉冲对拉曼放大泵浦光偏振特性不敏感,与光孤子在光纤中保持均一偏振态的理论一致。
     由SHG-FROG技术原理导出了超高斯脉冲的自相关特性公式,数值研究了超高斯脉冲的自相关特性及其受锐度参量m、啁啾参量C、脉冲噪声和随机噪声影响的变化规律,并与原脉冲相应参量作了比较,给出了一个有效滤除随机噪声的方法并作了实验验证。
Due to limits of experimental conditions, the experiments of pulse propagation and measurement are normally performed by employing the autocorrelation technology so that the temporal waveforms and other characteristics of the pulses can not be exactly determined. The pulses generally have frequency chirp which can be controlled by pre-chirped technology, etc. The second-harmonic generation frequency-resolved optical gating (SHG-FROG) analyzer can be used to exactly measure the pulses characteristics. In this thesis, the linear and nonlinear propagation characteristics of chirped pulses in the optical fiber communication systems are experimentally and theoretically studied by using the SHG-FROG analyzer and the numerical method. As a result, the theoretical and experimental bases are established for design and optimization of optical communication systems and their photoelectric devices.
     The linear propagation characteristics of 10 GHz short pulse are experimentally studied by employing SHG-FROG analyzer. The pulse from the laser is near transform-limited Gaussian pulse with negative linear chirp. After the pulse propagates over 12.7 km of DFF, the spectral width is almost unchanged, the temporal width is about three times as wide as that of input pulse, the chirp is about four times as large as that of the pulse. The experimental data are consistent with the numerical results and the predictions of the theory.
     The linear propagation characteristics of the hyperbolic secant pulse and the double-side exponential pulse with initial linear and nonlinear frequency chirp are numerically studied by using the split-step Fourier method (SSFM). It is found that the effect of the negative linear chirp on the two pulses broadening is greater than that of the positive chirp. The effect of the nonlinear chirp on the temporal waveform is greater than that of the linear chirp. The temporal waveform splitting of the two pulses with nonlinear chirp is respectively more obvious than that of Gaussian pulse during linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the two pulses with the linear chirp C are given.
     The evolution of 10 GHz pulse with frequency chirp into the soliton is experimentally investigated by employing the SHG-FROG analyzer. Formation and propagation of chirped soliton are numerically studied according to the nonlinear propagation theory by using the SSFM. The numerical results are consistent with the experimental data. The nonlinear propagation characteristics of the double-side exponential pulse with initial linear frequency chirp are numerically studied by use of the SSFM. The greater the pulse amplitude A is, the less chirp parameter |C| is, the shorter the propagation distance evolving into a soliton is. The amplitude A of exponential pulse which evolves into a soliton is greater than that of hyperbolic secant pulse at the same propagation distance.
     The effect of the linear frequency chirp on the supercontinuum spectrum generation of Gaussian pulse is numerically investigated in the dispersion-flatted fiber with convex dispersion profile by using the SSFM. The relevant parameters of the supercontinuum spectrum of Gaussian pulse are compared with those of the hyperbolic secant pulse. The supercontinuum spectrum of the unchirped Gaussian pulse is wider than 200 nm, its characteristics are better than those of the hyperbolic secant pulse. The fiber length corresponding best supercontinuum spectrum decreases with the increase of chirp parameter C. The characteristics of supercontinuum spectrum for negative chirp are worse than those for positive chirp. The characteristics for chirp case are worse than those for unchirped case, gradually become severe with the increase of C.
     The collision characteristics of the orthogonally polarized solitons with initial linear frequency chirp are numerically studied in a linear birefringent fiber. It is found that initial chirp changes the threshold value of solitons forming into bound state in the birefringent fiber. The effect of initial positive chirp on the threshold value is more obvious than that of negative chirp.
     The equation of soliton propagation is modified with the Raman amplification. The effects of Raman amplification on propagation characteristics of soliton are experimentally investigated by employing SHG-FROG analyzer. The experimental data are consistent with the numerical results by using the SSFM. Raman amplification can compress the soliton, compensate the fiber loss, while not change the temporal waveform of the soliton. Raman amplification can completely compensate the fiber loss when the propagation distance is less than the effective fiber length of Raman amplification, can partially compensate the fiber loss when the propagation distance is more than the effective fiber length.
     Compression of the soliton and compensation of the fiber loss increase with the increase of the Raman pumping power. Experimental results show that soliton is not sensitive to the polarization of Raman pumping source. It is consistent with the theory that soliton maintains a high degree polarization in the fiber.
     The expressions of autocorrelation characteristics of the super-Gaussian pulse are derived form the principle of the SHG-FROG analyzer. The autocorrelation characteristics of the super-Gaussian pulse and their variations affected by the edge sharpness parameter m, linear chirp parameter C, pulse noise and random noise which are compared with the relevant parameter of the pulse, are investigated by using the numerical method. A useful method of filtering the random noise which is validated by the experiment is given.
引文
[1] Maiman T H. Stimulated optical radiation in ruby. Nature, 1960, 187 (4736): 493~494
    [2] Zhang Fan, Yao Jianquan, Hou Ning et al. The method research of used laser to processes the slot pipe applied to petroleum exploitation. Proc. of SPIE, 2002, 4915: 296~297
    [3] Hallada M R, Walter R F, Seiffert S L. High power laser rock cutting and drilling in mining operations: initial feasibility tests. Proc. of SPIE, 2001, 4184: 590~593
    [4] Robert W Lambert, Rodolpho Corte′s-Mart?′nez, Andrew J Waddie, et al. Compact optical system for pulse-to-pulse laser beam quality measurement and applications in laser machining. Applied Optics, 2004, 43(26): 5037~5046
    [5] Kazumichi Imai, Satoshi Takahashi, Masao Kamahori, et al. Multi-capillary DNA Sequencer. Hitachi Review, 1999, 48(3): 107~109
    [6] Reyah M Abdula and Bahaa E A Saleh. Dynamic Spectra of Pulsed Laser Diodes and Propagation in Single-Mode Fibers. IEEE J Quantum Electronics, 1986, QE-22 (11): 2123~2130
    [7] Iwatsuki K, Takada A and Saruwatari M. Optical soliton propagation using 3GHz gain-switched 1.3μm laser diodes. Electronics Letters, 1988, 24(25): 1572~1574
    [8] Dudley J M, Harvey J D and Leonhardt R. Coherent pulse propagation in a mode-locked argon laser. J. Opt. Soc. Am. B, 1993, 10(5): 840~851
    [9] Nail Akhmediev and Soto-Crespo J M. Propagation dynamics of ultrashort pulses in nonlinear fiber couplers. Physical Review E, 1994, 49(5): 4519~4529
    [10] Michael Peeters, Guy Verschaffelt, Johan Speybrouck, et al. Propagation of spatially partially coherent emission from a vertical-cavity surface-emitting laser. Optics Letters, 2006, 31(9): 1178~1180
    [11] Fermann M E, Yang L M, Stock M L, et al. Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360 fs pulses. Optics Letters, 1994, 19(l) :43~45.
    [12] Galvanauskas, Fermann M E, Harter D, et al. All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings. Applied Physics Letters, 1995, 66(9): 1053~1055
    [13] Yang L M, Sosnowski T, Stock M L, et al. Chirped-pulse amplification of ultrashort pulses with a multimode Tm3+∶ZBLAN fiber upconversion amplifier. Optics Letters, 1995, 20(9):1044~1046
    [14] Walton D T, Nees J, Mourou G. Broad-bandwidth pulses amplification to the 10μJ level in an Yb3+-doped germanosilicate fiber. Optics Letters, 1996, 21(14): 1061~1063
    [15] Lefort L, Price J H V, Richardson D J, et al. Practical low-noise stretched-pulse Yb3+ -doped fiber laser. Optics Letters, 2002, 27(5): 291~293.
    [16] Randy A Bartels, Ariel Paul, Hans Green et al. Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths. Science, 2002, 297 (5580): 376~378
    [17] Shiraishi T, Mori M, and Kondo K. Estimation of the pulse width of x-ray emission from Xe clusters excited by a subpicosecond intense Ti:sapphire laser pulse. Phys. Rev. A, 2002, 65 (4): 045201~4
    [18] William D Metz. A New Approach to Thermonuclear Power. Science, 1972, 177(4055): 1180~1182
    [19] Moshe J Lubin. Laser Fusion Research. Science, 1975, 187(1478): 701~702
    [20] Speck D, Bliss E and Glaze J et al. The Shiva laser-fusion facility. IEEE J. Quant. Electron., 1981, QE-17(9): 1599~1619
    [21] Dennis Normile. National Laboratories: Laser Fusion with a Fast Twist. Science, 1997, 275(5304): 1254~1254
    [22] Robert F Service. Physics: Laser Labs Race for the Petawatt. Science, 2003, 301 (5630): 154~156
    [23] Miya T, Terunuma Y, Hosaka T, et al. Ultimata low-loss single mode fiber at 1.55 mm. Electronics Letters, 1979, 15(4): 106~108
    [24] Emmanuel Desurvire. Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm. Applied Optics, 1990, 29 (21): 3118~3125
    [25] Richard S Quimby. Output saturation in a 980-nm pumped erbium-doped fiberamplifier. Applied Optics, 1991, 30(18): 2546~2552
    [26] Georges T and Delevaque E. Analytic modeling of high-gain erbium-doped fiber amplifiers. Optics Letters, 1992, 17(16): 1113~1115
    [27] Senfar Wen. Distributed erbium-doped fiber amplifier for soliton transmission. Optics Letters, 1994, 19(1): 22~24
    [28] Bertilsson K, Andrekson P A and Olsson B E Noise figure of erbium doped fiber amplifiers in the saturated regime. IEEE Photonics Technology Letters, 1994, 6(2): 199~201
    [29] Martin Achtenhagen, Mark McElhinney and Steve Nolan. High-Power 980-nm Pump Laser Modules for Erbium-Doped Fiber Amplifiers. Applied Optics, 1999, 38(27): 5765~5767
    [30] Sohn Ik-Bu and Song Jae-Won. Gain flattened and improved double-pass two-stage EDFA using microbending long-period fiber gratings. Optics Communications, 2004, 236: 141~144
    [31]原荣.光纤通信.北京:电子工业出版社, 2002. 1~443
    [32]高建平.光纤通信.西安:西北工业大学出版社, 2005.1~290
    [33]阿戈沃.非线性光纤光学原理及应用.贾东方,余震虹,谈斌译.北京:电子工业出版社, 2002. 1~552
    [34]刘颂豪,赫光生.强光光学及其应用.广州:广东科技出版社, 1995. 1~379
    [35]庞小峰.孤子物理学.北京:科学出版社, 1987. 1~858
    [36]杨祥林,温扬敬.光纤孤子通信理论基础.北京:国防工业出版社, 2000.1~280
    [37]黄景宁,徐济仲,熊吟涛.孤子概念、原理和应用.北京:高等教育出版社, 2004.1~222
    [38] Hideyuki Sotobayashi, Wataru Chujo, Nukui-Kita, et al. Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel×40-Gbit/s) carrier -suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization. J. Opt. Soc. Am. B, 2002, 19(11): 2803~2809
    [39] Takuya ohara, hidehiko takara, takashi yamamoto, et al. Over-1000-channel ultradense wdm transmission with supercontinuum multicarrier source. Journal of lightwave technology, 2006, 24(6):2311~2317
    [40] Hasegawa A, Tappert F Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.Ⅰ. Anomalous dispersion. Appl. Phys. Lett., 1973, 23(3): 142~144
    [41] Mark J Ablowitz, David J Kaup, Alan C Newell, et al. The inverse scattering transform-fourier analysis for nonlinear problems. Studies in Applied Mathematics, 1974, 53(4): 249-315
    [42] Mollenauer L F, Stolen R H, and Gordon J P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fiber. Phys. Rev. Lett. 1980, 45(13): 1095~1098
    [43] Mollenauer L F, Lichtman E, Harvey G T et al. Demonstration of error-free soliton transmission over more than 15000km at 5Gbit/s single-channel, and over 11000km at l0Gbit/s in two-channel WDM. Electronics Letters, 1992, 28(8): 792~794
    [44] Favre F, Guen D Le and Devaux F. 4×20Gbit/s soliton WDM transmission over 2000 km with 100 km dispersion compensated spans of standard fibre. Electronics Letters, 1997, 33 (14): 1234~1235
    [45] Favre F, Guen D Le, Moulinard M L, et al. 16×20Gbit/s soliton WDM transmission over 1300 km with 100 km dispersion compensated spans of standard fibre. Electronics Letters, 1997, 33 (25): 2135~2136
    [46] Akio Sahara, Hirokazu Kubota, and Masataka Nakazawa. Experiment and analyses of 20-Gbit/s soliton transmission systems using installed optical fiber cable. Electronics and Communications in Japan, Part 2, 1998, 81(1): 74~83
    [47] Nakazawa M, Suzuki K and Kubota H. 160Gbit/s (80Gb/s×2channels) WDM soliton transmission over 10000km using in-line synchronous modulation. Electronics Letters, 1999, 35(16): 1358~1359
    [48] Yuichi takushima, tomohiro douke, xiaomin wang, et al. Dispersion tolerance and transmission distance 1000km of a 40-Gb/s dispersion management soliton Transmission system. Journal of lightwave technology, 2002, 20(3):360~367
    [49] Gouveia-Neto A S, Wigley P G J and Taylor J R. Soliton generation through Raman amplification of noise bursts. Optics Letters, 1989, 14(20): 1122~1124
    [50] Katsumi Iwatsuki, Ken-ichi Suzuki, and Shigendo Nishi. Adiabatic Soliton Compression of Gain-Switched DFB-LD Pulse by Distributed Fiber RamanAmplification. IEEE Transactions Photonics Technology Letters, 1991, 3(12): 1074~1076
    [51] Murphy T E. 10-GHz 1.3-ps Pulse Generation Using Chirped Soliton Compression in a Raman Gain Medium. IEEE Photonics Technology Letters, 2002, 14(10): 1424~1426
    [52] Mollenauer L F, Stolen R H and Islam M N. Experimental demonstration of soliton propagation in long fibers: loss compensated by Raman gain. Optics Letters, 1985, 10(5): 229~231
    [53] Katsumi Iwatsuki, Shigendo Nishi, Masatoshi Saruwatari et al. 5Gb/s optical soliton transmission experiment using Raman amplification for fiber-loss compensation. IEEE Photonics Technology Letters, 1990, 2(7): 507~509
    [54] Okhrimchuk A G, Onishchukov G and Lederer F. Long-Haul Soliton Transmission at 1.3μm Using Distributed Raman Amplification. Journal of Lightwave Technology, 2001, 19(6): 837~841
    [55] Ereifej H N, Grigoryan V and Carter G M. 40 Gbit/s long-haul transmission in dispersion-managed soliton system using Raman amplification. Electronics Letters, 2001, 37(25): 1538~1539
    [56] Erwan Pincemin, Dominique Hamoir, Olivier Audouin, and Stefan Wabnitz. Distributed-Raman-amplification effect on pulse interactions and collisions in long-haul dispersion -managed soliton transmissions. J. Opt. Soc. Am. B, 2002, 19(5): 973~980
    [57] Andrew A B Tio, Shum P. Propagation of Optical Soliton in a Fiber Raman Amplifier. Proceedings of SPIE, 2004, 5280: 676~681
    [58] Mollenauer L F and Smith K, Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Optics Letters, 1988, 13(8): 675~677
    [59] Sien Chi and Senfar Wen. Interaction of optical solitons with a forward Raman pump wave. Optics Letters, 1989, 14(1): 84~86
    [60] Senfar Wen, Tsun-Yee Wang, and Sien Chi. The Optical Soliton Transmission Amplified by Bidirectional Raman Pumps with Nonconstant Depletion. IEEEJournal of Quantum Electronics, 1991, 21(8): 2066~2073
    [61] George Francis Levy. Raman amplification of solitons in a fiber optic ring. Journal of Lightwave Technology, 1996, 14(1): 72~76
    [62] Liu Shanliang, Wang Wenzheng, and Xu Jingzhi. Exact N-soliton solutions of the modified nonlinear Schr?dinger equation. Phys. Rev. E. 1994, 49 (6): 5726~5730
    [63] Liu Shanliang, Wang Wenzheng. Complete compensation for the soliton self-frequency shift and third-order dispersion of a fiber. Opt. Lett., 1993,18(22): 1911~1912
    [64] Liu Shanliang, Liu Xiqiang, Mutual compensation of the higher-order nonlinearity and the third-order dispersion, Phys. Lett. A, 1997, 225(1-3), 67~72
    [65]高以智,姚敏玉,许宝西等. 2.5GHz光孤子传输.高技术通讯, 1994, 7: 4~6
    [66]许宝西,李京辉,姜新等. 2.5GHz光孤子传输.电子学报, 1995, 23(11): 38~54
    [67]杨祥林毛庆和温扬敬等. 30km 2.5GHz光孤子波传输与压缩实验研究.高技术通讯, 1996,10:26~28
    [68]余建军,杨伯君,余建国等.光孤子传输实验研究.光电子·激光, l996, 7(5): 267~272
    [69]余建军,杨伯君,管克俭. 5GHz的16.2ps超短光脉冲的产生.光学学报, 1998, 18(1) :14~17
    [70]余建军,杨伯君,管克俭.基于不同色散光纤的光纤链的孤子传输研究.光学学报, 1998, 18(4): 446~450
    [71]张晓光,林宁,张涛等.预啁啾10GHz, 38km色散管理孤子的传输实验.光子学报, 2001, 30(7): 813~817
    [72]曹文华,刘颂豪,廖常俊等.色散缓变光纤中的孤子效应拉曼脉冲产生.中国激光, 1994, 21(6): 489~494
    [73]李宏,杨祥林,刘堂坤.暗孤子传输系统中调制拉曼泵浦的控制作用.中国激光, 1997, 24(7): 654~658
    [74]沈廷根,郑浩,李正华等.掺杂光子晶体光纤的缺陷模增益谱与光孤子拉曼放大研究.人工晶体学报, 2005, 34(6): 1065~1073
    [75] Matos C J S and Talor J R. Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation. Applied Physics Letters, 2003, 83(26): 5356~5358
    [76]王安斌,伍剑,拱伟等.高消光比超短脉冲产生的实验研究.中国激光, 2004, 31(3): 265~268
    [77]王兴涛,印定军,帅斌等.应用全反射二阶自相关仪测量超短脉冲脉宽.中国激光, 2004, 31(8): 1018~1020
    [78] Lin Q, Wright K, Agrawal G P, et al. Spectral responsitivity and efficiency of metal–based femtosecond autocorrelation technique. Optics Communications, 2004, 242: 279~283
    [79] Dai Jianming, Teng H and Guo Chunlei. Second- and third-order interferometric autocorrelations based on harmonic generations from metal surfaces, Optics Communications, 2005, 252: 173~178
    [80] David N Fittinghoff, Jürg Aus der Au, Jeff Squier. Spatial and temporal characterizations of femtosecond pulses at high-numerical aperture using collinear, background-free, third-harmonic autocorrelation. Optics Communications, 2005, 247: 405~426
    [81] Schelev M Y, Richardson M C, Alcock A J. Image-converter streak camera with picosecond resolution. Appl. Phys. Lett., 1971, 18(8): 354-357
    [82] Kane D J, Trebino R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron., 1993, 29(2): 571~579
    [83] DeLong K W, Trebino R, Hunter J, et al. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B,1994, 11(11): 2206~2215
    [84] Gallmann L, Steinmeyer G, Sutter D H, et al. Collinear type II second-harmonic -generation frequency-resolved optical gating for the characterization of sub-10-fs optical pulses. Optics Letters, 2000, 25(4): 269~271
    [85]王兆华,魏志义,滕浩等.飞秒激光脉冲的谐波频率分辨光学开关法测量研究.物理学报. 2003, 52(2): 362~366
    [86]龙井华,高继华,巨养锋等.用SHG-FROG方法测量超短光脉冲的振幅和相位.光子学报. 2002, 31(10): 1292~1296
    [87] DeLong K W, Fittinghoff D N, Trebino R, et al. Pulse retrieval in frequency -resolved optical gating based on the method of generalized projections. Optics Letters, 1994, 19(24): 2152~2154
    [88] Hu Jing, Zhang Gui-zhong, Zhang Bai-gang, et al. Using Frequency-resolved Optical Gating to Retrieve Amplitude and Phase of Ultrashort Laser Pulse. Journal of Optoeletronics·Laser, 2002, 13(3): 232~236
    [89] Pierre-Ambroise Lacourt, John M Dudley, Jean-Marc Merolla, et al. Milliwatt -peak-power pulse characterization at 1.55 um by wavelength-conversion frequency -resolved optical gating. Optics Letters, 2002, 27(10): 863~865
    [90] Barry L P, Delburgo S, Thomsen B C, et al. Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequecy resolved optical gating. photon. Tech. lett., 2002, 14(7): 971~973
    [91] Marcuse D. Pulse distortion in single-mode fibers. 3: Chirped pulses. Applied Optics, 1981, 20(20): 3573~3579
    [92] Lassen H E, Mengel F, Tromborg B, et al. Evolution of chirped pulses in nonlinear single-mode fibers. Optics Letters,1985, 10, (1):34~36
    [93] Planas S A, Pires Mansur N L, Brito Cruz C H, et al. Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Optics Letters, 1993, 18(9): 699~701
    [94] Cundiff S T, Collings B C, Boivin L, et al. Propagation of Highly Chirped Pulses in Fiber-Optic Communications Systems. Journal of Lightwave Technology, 1999,17(5): 811~816
    [95] Wu Hui-Chun, Sheng Zheng-Ming and Zhang Jie. Chirped pulse compression in nonuniform plasma Bragg gratings. Applied Physics Letters, 2005, 87(20), 201502~3
    [96] Rao Min, Sun Xiao-Han and Zhang Ming-De. A modified split-step Fourier method for optical pulse propagation with polarization mode dispersion. Chinese Physics, 2003, 12(5): 502~506
    [97] Pan Liu-Zhan and LüBai-Da. Anomalous spectral behaviour of diffracted chirped Gaussian pulses in the near field. Chinese Physics, 2004, 13(5): 637~645
    [98] Wang Jing and Wang Zhen-Li. Evolution of sum-chirp in polarization multiplexed communication system. Chinese Physics, 2004, 13(6): 0877~881
    [99]舒学文,黄德修,阮玉.啁啾高斯脉冲经啁啾光纤光栅反射后的传输特性.光学学报, 1999, 19(10): 1305~1309
    [100] Klaus M and Shaw J K. Influence of pulse shape and frequency chirp on stability of optical solitons. Optics Communications, 2001, 197(4-6): 491~500
    [101] Desaix M, Helczynski L, Anderson D, et al. Propagation properties of chirped soliton pulses in optical nonlinear Kerr media. Phys. Rev. E , 2002, 65(5), 056602~6
    [102] Li Zhonghao, Li Lu, Tian Huiping, et al. Chirped Femtosecond Solitonlike Laser Pulse Form with Self-Frequency Shift. Physical Review Letters, 2002, 89(26): 263901~4
    [103] MacLeod A M, Yan X, Gillespie W A, et al. Formation of low time-bandwidth product, single-sided exponential optical pulses in free-electron laser oscillators. Physical Review E, 2000, 62(3): 4216~4220
    [104] Shapiro S L. Ultrafast Laser Pulses- Picosecond techinqes and Applications(超短光脉冲-皮秒技术及其应用, 1977).朱世清译,北京:科学出版社, 1987. 1~488
    [105]朱京平.光电子技术基础.成都:四川科学技术出版社, 2003. 1~313
    [106] Mori K, Takara H, Kawanishi S, et al. Flatly broadened supercontinuum generation in a dispersion decreasing fiber with convex dispersion profile. Electronics letters, 1997, 33(21): 1806~1807
    [107] Nan Yinbo, Lou Caiyun, Wang Jianping, et al. Improving the performance of a multiwavelength continuous-wave optical source based on supercontinuum by suppressing degenerate four-wave mixing. Optics Communications, 2005, 256: 428~434
    [108] Yang Jing Wen, Chae Chang-Joon. WDM-PON upstream transmission using Fabry–Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses. Optics Communications, 2006, 260: 691~695
    [109] Smirnov S V, Ania-Castanon J D, Ellingham T J, et al. Optical spectral broadening and supercontinuum generation in telecom applications. optical Fiber Technology, 12:122–147
    [110]娄采云,李玉华,伍剑等.利用10GHz主动锁模光纤激光器在DSF中产生超连续谱.中国激光,2000, 27(9): 814~818
    [111]伍剑,李玉华,娄采云等.利用超连续谱光源产生超短光脉冲.光学学报, 2000, 20(3): 325~329
    [112]王肇颖,贾东方,葛春风等. 10 GHz再生锁模光纤激光器获得光纤超连续谱的研究.光电子·激光, 2006, 17(3): 9~13
    [113] Szkulmowski M, Wojtkowski M, Bajraszewski T, et al. Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Optics Communications, 2005, 246 569~578
    [114] Kano H and Hamaguchi H. Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber. Applied Physics Letters, 2004, 85(19): 4298~4300
    [115] Lindfors K, Kalkbrenner T, Stoller P, et al. Detection and Spectroscopy of Gold Nanoparticles Using SupercontinuumWhite Light Confocal Microscopy. Physical Review Letters, 2004, 93(3): 037401~4
    [116] Mori K, Takara H, and Kawanishi S. Analysis and design of supercontinuum pulse generation in a single-mode optical fiber. J. Opt. Soc. Am. B, 2001, 18(12) 1780~1792
    [117]娄采云,高以智,王建萍等.光纤中超连续谱产生的理论与实验研究.清华大学学报(自然科学版), 2003, 43(4): 441~445
    [118]贾东方,丁永奎,胡志勇等.光纤中超连续谱产生机理研究.光电子·激光, 2004, 15(5): 612~620
    [119]王肇颖,王永强,李智勇等.皮秒脉冲在色散位移光纤中产生的超连续谱.光电子·激光, 2004, 15(5): 528~533
    [120]李智勇,王肇颖,王永强等.基于100m色散位移光纤的超连续谱实验研究.光子学报, 2004, 33(9): 1064~1066
    [121]成纯富,王晓方,鲁波.飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生.物理学报, 2004, 53(6): 1826~05
    [122]陈泳竹,李玉忠,屈圭等.反常色散平坦光纤产生平坦宽带超连续谱的数值研究.物理学报, 2006, 55(2): 0717~06
    [123] Stolen R H and Ashikin A. Optical Kerr effect in glass waveguide. Appl. Phys. Lett., 1973, 22(6): 294~296
    [124] Ken-ichi Kitayama, Yasuo Kimura, Katsunari Okamoto, et al. Optical sampling using an all-fiber optical Kerr shutter. Appl. Phys. Lett., 1985, 46(7): 623~625
    [125] Islam M N, Soccolich C E, Chen C J, et al. All-optical inverter with one picojoule switching energy. Electronics letters, 1991, 27(2): 130~132
    [126] Asobe M, Kanamori T and Kubodera K. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photon. Technol. Lett., 1992, 4(4), 362~365
    [127] Islam M N and Sauer J R GEO modules as a natural basis for all-optical fiber logic systems. IEEE J. Quantum Electron., 1991, 27(3): 843~848
    [128] Menyuk C R. Nonlinear pulse propagation in birefringent optical fibers. IEEE J. of Quantum Electron., 1987, 23(2): 174~176
    [129] Menyuk C R. Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes. J. Opt. Soc. Am. B, 1988, 5(2): 392~402
    [130] Menyuk C R. Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes. Optics Letters, 1987, 12(8): 614~616
    [131] Cao X D and Meyerhofer D D. Soliton collisions in optical birefringent fibers. J. Opt. Soc. Am. B, 1994, 11(2): 380~385
    [132]唐雄燕,叶培大.双折射光纤中正交极化孤子碰撞的数值研究.北京邮电大学学报, 1994, 17(2): 10~17
    [133]江辉,庞勇,蒋佩璇.双折射光纤中孤子碰撞的数值研究.北京邮电大学学报, 1996, 19(4): 42~47
    [134]黄洪涛,聂再清.线双折射光纤与正交极化孤子碰撞的研究.中国激光, 1999, 26(6): 163~170
    [135]罗时荣,吕百达,张彬.平顶高斯光束与超高斯光束传输特性的比较研究.物理学报, 1999, 48(8): 1446~1451
    [136]卿与三,吕百达.平顶高斯光束和超高斯光束传输特性的相似性.强激光与粒子束, 2001, 13(6): 675~678
    [137]吴建伟,夏光琼,吴正茂.超高斯光脉冲在单模光纤中的传输特性.激光技术,2003, 27(4): 342~348
    [138]曹涧秋,陆启生.单模光纤中高阶色散对超高斯光脉冲传播的影响.激光技术, 2006, 30(2): 209~220
    [139] Junkichi Satsuma, Nobuo Yajima. Initial Value Programs of One-Dimensional Self-Modulation of Nonlinear Waves in Dispersive media. Prog. Theor. Phys. Suppl., 1974, 55: 284~306
    [140] Manakov S V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP, 1974, 38(2): 248~253
    [141] Smyth N F and Kath W L. Radiative losses due to pulse interactions in birefringent nonlinear optical fibers. Phys. Rev. E, 2001, 63(3): 036614~9
    [142] Kanna T and Lakshmanan M. Exact soliton solutions of coupled nonlinear Schr?dinger equations: Shape-changing collisions, logic gates, and partially coherent solitons Phys. Rev. E, 2003, 67(4): 046617~25
    [143] Solja?i? M, Steiglitz K, Sears S M, et al. Collisions of Two Solitons in an Arbitrary Number of Coupled Nonlinear Schr?dinger Equations. Phys. Rev. Lett., 2003, 90(25): 254102~4
    [144] Horikis T P and Elgin J N. Nonlinear optics in a birefringent optical fiber. Phys. Rev. E, 2004, 69(1) 016603~11
    [145] Mollenauer L F, Smith K, Gordon J P, et al. Resistance of solitons to the effects of polarization dispersion in optical fibers. Optics Letters, 1989, 14(21): 1219~1221
    [146] Stephen G Evangelides, Linn F Mollenauer, James P Gordon, et al. Polarization Multiplexing with Solitons. Journal of Lightwave Technology, 1992, 10(1):28~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700