用户名: 密码: 验证码:
亚麻粗纱生物煮练及其纤维结构和性能演变特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻纤维天然古朴、色彩柔和,具有独特的凉爽舒适性,是化学纤维所不具备,其它天然纤维不可比拟的,被誉为“植物纤维中的皇后”。亚麻产品具有“绿色保健”的特点,倍受消费者青睐,是国际市场上最受欢迎的纺织品之一。然而亚麻脱胶技术存在的不足制约了亚麻纺织难以纺高支纱和生产高档产品。尽管粗纱煮漂工艺有助于纺高支纱,但是工业上多采用化学煮练,其产生的环境污染和对纱线性能的损伤,使得生物沤麻、生物脱胶以及生物煮漂工艺的工业化应用显得刻不容缓。
     但目前有关亚麻粗纱生物煮练多在中性或偏酸性条件下进行,使得其需要联合传统碱煮才能完成煮练任务。因此,为了减少、甚至不用氢氧化钠煮练,行业内尝试将碱性果胶酶用于棉纤维、织物精练和大麻脱胶。针对亚麻粗纱胶质成分及其采用工艺纤维纺纱特性,本文探讨了在碱性条件下进行生物煮练的可能性。在生物煮练工业化进程中,行业中多关注缩短煮练时间、煮练工艺制定及基于纤维残胶率、强度、分裂度等指标的效果评价,对纤维结构和性能演变研究则关注较少。基于此,本文筛选出含果胶酶和木聚糖酶的纤维单胞菌(Cellulomonas sp)DA8菌株,并采用其在碱性条件下处理亚麻粗纱,在探讨最优煮练工艺同时,结合DSC、TGA和TDA热分析技术、气相色谱-质谱技术、X射线小角散射技术和拉曼光谱分析技术对比分析研究了不同煮练后亚麻纤维结构和性能的演变特征。本文的研究结果如下:
     (1)筛选出碱性脱胶菌株DA8。经形态、生理生化和16SrDNA序列分析,将其分类鉴定为纤维单胞菌(Cellulomonas sp)。酶活测定表明该菌液同时具有果胶酶活力和木聚糖酶活力,并在pH为6.5-9.0,50℃以下酶活较稳定。DA8菌株在碱性条件下对亚麻粗纱煮练表明,纤维强力损伤小(下降14.19%);扫描电子显微镜对比观察表明,和原纱亚麻纤维以及传统化学处理纤维相比,DA8处理后亚麻纤维表面胶质去除干净且表面光滑。以煮练后亚麻粗纱束纤维强度和分裂度为响应指标,通过正交实验优化了DA8菌液在碱性条件下的煮练工艺:初始pH为9,温度为40℃,浴比为1:15,时间为12h,摇床转速为200rmp。
     (2)探讨了漂白工序、碱性果胶酶对DA8细菌煮练的辅助作用,并与传统化学煮练和课题组筛选另一株DA10细菌和自提粗酶煮练和煮漂中试进行对比研究。研究表明漂白工艺对细菌煮练纤维强力损伤大概在1.5—1.9%左右,煮练后不进行水洗而直接进行一浴漂白和粗纱直接漂白对纤维强度损伤相对较大;和原纱试样相比,无论是DA8细菌煮练,还是以氢氧化钠为主的化学煮练均会损伤亚麻纤维强度,但和化学煮练相比,DA8细菌煮练中纤维强度损伤较小,且细菌煮漂后强力总体下降约是化学煮漂的58.8%;在碱性果胶酶辅助DA8细菌煮练中,碱性果胶酶与DA8用量比例为15:135时,纤维分裂度和强度均达最高,且JFC、EDTA和Na5P3O10同时添加有助于进一步提高煮练效果;在纤维性能上,自提粗酶→碱煮联合煮练较DA10细菌→碱煮联合煮练占一定优势。
     (3)对不同煮漂工序后纤维进行热性能分析的同时,进行了热解动力学分析和结晶动力学分析。由热解TGA曲线可知,亚麻粗纱不同煮漂工序后纤维的热解可分为3个过程:初始降解阶段、热解主要阶段和残渣热解阶段,在第三阶段,DA8细菌煮练及其煮漂工艺处理后纤维又分为炭化阶段和二次失重阶段,其他试样则只产生至炭化阶段;亚麻粗纱不同煮练后纤维热解残留质量不同表明生物煮练及其煮漂处理后纤维在热解过程中更加容易生成挥发性物质,而不会继续生成焦炭;TGA、DTA和DTG分析表明不同处理后亚麻纤维各个阶段的起始、拐点温度和终止温度向高温侧轻微移动,且主反应区间也增加;通过DSC曲线获得了不同煮练后纤维相转变温度,其大小顺序为S4>S0>S1>S3>S5>S2,而经工厂传统化学碱煮练-漂白纤维DSC曲线变化较平坦,无法确定其吸热峰和放热峰以及相转变温度;通过Coats和Redfern法求得第二反应阶段下活化能E和反应动力学参数,结果表明煮练处理后亚麻纤维热解第二阶段均可由一级反应过程描述,且拟合结果系数全部在0.99-1之间;DSC曲线计算获得了不同煮练后纤维结晶度的同时,通过Avrami方法计算获得了不同煮练后亚麻纤维结晶动力学基本参数。
     (4)采用裂解-气相色谱质谱分析了不同煮漂工序以及不同生物煮练后亚麻纤维的裂解产物特征。分析研究表明,不同煮漂工序后亚麻纤维在10℃/min升温速率下升温至570℃时热解共包含37种裂解产物,其中共同裂解产物包括二氧化碳、丙烯、环氧乙烷和呋喃半乳糖酐4种;不同煮漂工序后亚麻纤维的保留时间在16min前出现明显色谱峰,之后没有出现明显的特征峰;不同生物煮练后亚麻纤维裂解产物包括二氧化碳小分子化合物、乙醛类化合物、环氧乙烷和三十二烷杂环化合物以及吡哺戊糖糖类化合物;中试试样中自提粗酶煮漂后亚麻纤维的裂解产物增加较多,其中包括二氧化碳小分子化合物;醛、酮、醇、醚、酸和酯类化合物,醛类包括4-戊烯醛、4-戊烯醛;醇类包括环丁醇、2-己炔-1-醇;酮类包括3,3-二甲基-2-戊酮、羟基丙酮;醚类包括乙基缩水甘油基醚;酸类包括乙酸;杂环类化合物,2,3-二甲基-环氧乙烷、顺-2,3环氧丁烷、环氧丙烷、过氧化氢戊烷基、过氧化氢庚基、过氧化氢二丙基、3,4-戊二烯、1,8-二碘辛烷、过氧化氢戊烷基;阿拉伯糖糖类化合物。
     (5)采用X射线小角散射分析研究了不同煮练后亚麻纤维的结构演变特征。不同煮练后亚麻纤维X射线小角散射曲线有一个明显的散射峰,散射峰极大值对应的散射矢量q分布在0.6-0.8nm-1之间,其中工厂化学煮练漂白后纤维散射峰极大值对应的散射矢量最小,周期长度也最长;亚麻纤维平均周期长度分布在80-108nm之间,其中直接漂白后粗纱纤维的平均周期长度最低,说明其纤维分离度最差,细菌煮练后两种漂白方案处理纤维的平均周期长度相近,均为87.59nm,而原纱粗纱、化学煮练粗纱、DA8细菌煮练粗纱则相近;亚麻纤维的Guinier曲线在小角处呈上凹状表明煮练后纤维散射体系是密度不均匀体系,不同煮练工序处理后亚麻纤维微原纤形状不同,工厂化学漂白和DA8细菌煮练后微原纤近似于球状,其他方案处理与原纱纤维相同,其微原纤均为旋转椭球状或长棒状;亚麻粗纱煮练后,其Porod均呈正偏离,亚麻粗纱不同煮练工序处理后纤维微原纤截面层厚度分布在0.59-0.64nm之间,不同生物煮练后亚麻纤维微原纤界面层厚度则分布在0.62-0.70nm之间;除工厂酶漂粗纱纤维散射体具有表面分形结构外,其他处理均具有质量分形特征。
     (6)采用拉曼光谱分析研究了亚麻粗纱不同煮练后纤维结构演变特征。分析表明,亚麻粗纱不同处理后纤维中纤维素的主要特征峰为2897,1121,1098,378cm-1;2897cm-1峰产生于纤维素C-H及CH2的伸缩振动。1121cm-1峰归属于纤维素C-O-C糖苷键的对称伸缩振动和C-O-C环呼吸振动,而1098cm-1是纤维素C-O-C糖苷键的非对称伸缩振动峰。378cm-1归属于纤维素β—-D葡萄糖苷键。生物煮练后,在漂白工艺中0.3-0.4%浓度的NaOH用量即会使得亚麻纤维中纤维素结晶区由纤维纤维素Ⅰ向纤维素Ⅱ发生多晶形转变。采用纤维素拉曼峰强度比值R=I1120/11098表征不同处理后亚麻纤维分子变化程度,R值越大,表明半纤维、果胶等非纤维素碳水化合物和木质素的影响越大。
     综合分析表明,在碱性条件下进行亚麻粗纱生物煮练是可行的,通过现代分析技术提取、分析和对比不同煮练后纤维结构和性能演变特征,不仅为进一步合理制定生物煮练工艺、成功实现生物煮练工业化提供了数据支持,而且为进一步阐明碱性条件下生物煮练机理,和更好地开发、利用亚麻纤维奠定了较好的基础。
Natural flax fiber is known as the Queen of plant fiber. It is quaint, soft, unique cool and comfortable. These properties are not available in chemical fibers and are incomparable for other natural fibers. Flax products have the feature of green health which does consumers a favor, and is one of the most popular in the international textile market. However, technology deficiencies of the flax degumming restrict linen textile spinning high counts yarn and production of high-end products. The processes of roving scouring and bleaching can help spinning high counts yarn, but chemical scouring was multi-used in industrial which produces environmental pollution and damage to the yarn properties. So it is urgent to make bio-retting, bio-degumming and bio-scouring and bleaching process industrial application.
     Currently the bio-scouring of the flax roving has been done more in neutral or slightly acidic conditions. The alkaline pectinase was used for cotton fiber, fabric scouring and degumming of hemp fibers. For gum composition of flax roving as well as its use of fiber spinning process characteristics, the paper discusses possibilities of the bio-scouring in alkaline conditions. In the industrialization process of the bio-scouring, more attention to shorten the scouring time, scouring process and its effects evaluation about residual gum, strength, splitting and other indicators was paid. But the structure and properties of the fiber is less of a concern. To achieve bio-scouring or biological degumming of the flax roving, an alkalophilic strain containing pectinase and xylanase was screened from the rotten wrack around Zhoushan archipelago sea area and used for flax roving under alkaline conditions. After exploring the optimal scouring process, some novel analysis methods such as thermal analysis technology of DSC, TGA and TDA, gas chromatography-mass spectrometry, X-ray small-angle scattering and Raman spectroscopy were used to discuss the structure and performance characteristics of different flax fibers after different scouring. The conclusions of this study are as follows:
     (1) An alkalophilic strain was screened from the rotten wrack around Zhoushan archipelago sea area. It was characterized as Cellulomonas sp and named DA8by strain morphology, physiology, biochemistry and the16s rDNA sequences. Enzyme activity showed that the activities of petinase and xylanase were obtained, and are stable under50℃and at pH values in the range of6.5to9.0. The application showed that the strain had a good characteristic of scouring, and less strength loss of flax fiber was14.19%. Scanning electron microscopy (SEM) showed that the gum in the flax fiber was mostly degraded, and the most smooth fiber surface was displayed, compared with fiber untreated and scoured by caustic soda. The fineness and strength of bundle fiber were evaluated and the orthogonal experimental design of bacterial scouring. An optimum processing was obtained:the initial pH is9.0, the scouring temperature is40℃, Liquor ratio is1:15, degum time is12h and the shake speed is200rpm. The effect of initial pH and scouring temperature on the fineness and strength of bundle fiber was higher.
     (2) The effects of bleaching process, role of alkaline pectinase on bacterial scouring of DA8, DA10bacteria and crude enzyme were analysized and compared. Studies have shown that the fiber strength damage on process of bacteria scouring and bleaching is about1.5-1.9percent, while the fiber strength damage after scouring without washing and directly bleaching and direct roving bleach is relatively large. Compared to the untreated sample, DA8bacteria scouring and sodium hydroxide chemical scouring will damage flax fiber strength. But the fiber strength damage from DA8bacteria scouring is small than that of chemical scouring, and the overall strength of the bacteria scouring and bleaching is a decrease of approximately58.8%of traditional chemical scouring and bleaching.It is concluded that the amount of alkaline pectinase and DA8ratio of15:135, the fiber fineness and strength reached the highest, and that JFC, EDTA and Na5P3O10will improve further the effect of bio-scouring of DA8. The crude enzyme-alkali scouring occupy a certain advantage compared with DA10bacteria-alkali scouring on fiber performance.
     (3) The analysis such as thermal performance, pyrolysis kinetic and crystallization kinetics was carried out for different fibers after different scouring and bleaching processes. TGA curve indicated pyrolysis of flax roving after different scouring and bleaching processes can be divided into three processes such as the initial degradation phase, the main phase and the residue pyrolysis stage. In the third stage, DA8bacteria scouring and its bleaching is divided into carbonized fiber weight loss phase and the second phase, while other samples occurs only charring. Different residues of flax roving show bio-scouring generated volatiles more easily and will not continue to produce coke during pyrolysis. TGA, DTA and DTG analysis showed initial temperature, peak temperature and final temperature in various stages have a slight move to the higher temperature side and the main reaction zone also increases for different samples. The transition temperature was obtained from DSC curves, and the order of S4> SO> S1> S3> S5> S2was concluded. While the DSC curve of the sample with conventional chemical scouring and bleaching is relatively flat, in which the endothermic peak, exothermic peak and the glass transition temperature can not be determined. The activation energy E and the kinetic parameters were calculated by the method of Coats and Redfern during the second reaction stages. The results show that pyrolysis of flax fibers after different scouring may be represented by a second stage reaction process description, and the fitting coefficients are good in the0.99-1for all samples. The crystallinity of the fiber after scouring was also calculated from DSC curves and the parameters of crystallization kinetics flax fibers after scouring was obtained through different Avrami method.
     (4) Features on Pyrolysis of flax fibers after scouring treatment were analysized using pyrolysis-gas chromatography mass spectrometry (PG-CMS). The results indicated there are total37kinds of pyrolysis compounds for flax fiber treated with different scouring and bleaching under the rate of10℃/min heating at the temperature of570℃. Wherein there are four kinds of co-pyrolysis products including in carbon dioxide, propylene, ethylene oxide and beta.-D-Glucopyranose. For different processes of scouring and bleaching there are significant peaks before16min of retention times, and there are no obvious characteristic peaks after16min of retention times. While for the flax fibers treated with different bio-scouring small molecule compounds such as carbon dioxide, ethylene oxide and tri-dodecyl heterocyclic compounds and sugar compounds like DL-Arabinose were included in the pyrolysis products. As far as the samples from pilot, the pyrolysis products increase considerably for the flax fibers mentioning the crude enzyme scouring and bleaching, which including small molecules of carbon dioxide, aldehydes, ketones, alcohols, ethers, acids and esters, aldehydes and DL-Arabinose etc..
     (5) Structural evolution characteristics of flax fibers treated different scouring were discussed by the Small angle X-ray scattering (SAXS). A distinct scattering peak can be observed by SAXS curve for flax fibers treated by different scouring and bleaching. Besides, a meridional peak between q=0.6-0.8nm-1was also observed, possibly for the first time in cellulose fibers, and this has been attributed to a crystalline/non-crystalline repeat distance between80-108nm. It has also been noted that there is considerable change in structure as flax fibers scouring of NaOH and bleaching in industry for its smallest meridional peak value. Thus repeat distant of chemical scouring-bleaching is the longest, while it is the lowest for samples of bleaching. The repeat distance is similar to two bleaching samples of DA8bacteria scouring and both of them is87.59nm. It is similar for that of samples untreated, NaOH cooked and DA8bacteria scoured. The results show that Guinier curve goes in the small concave corners, which indicates the density of scattering system is uneven for flax fiber with different scouring. The microfibrils of similar spherical is observed for two samples of DA8bacterial scouring and traditional chemical scouring and bleaching, while the micro-fibrils of rotated ellipsoidal or long rod are observed for the other samples. The results of Porod showed that there is a positive deviation for all samples untreated and treated. Analysis indicated that the structure of the cellulose micro-fibrils is consistent with cross section thickness of approximately0.59-0.64nm after different scouring and bleaching processes, while the cross section thickness of samples with different scouring are located about0.62-0.70nm. In addition to the sample of scouring with crude enzymatic and bleaching in pilot the surface of the scattering body has a fractal structure, other treatments have mass fractal characteristics.
     (6) The structure evolution characteristics of flax fiber after different scouring were studied by Raman spectroscopy. The results showed that the principal peaks of cellulose for treated flax fiber with different roving methods are2897,1121,1098,378cm-1respectively. The intensitive Raman line (2897cm-1) in the range of the CH and CH2stretching vibrations. The Raman line assigned to the vibrational mode Vs(C-O-C) of the fiber cellulose at1121cm-1, while the Raman lines at1098cm-1assigned to the skeletal vibrational modes Vs(C-O-C) and Vas(C-O-C)of the β(1→4) glycosidic linkages of the P-D-glucopyranosyl units of cellulose can serve as characteristic marker bands for multi-component systems like flax fiber. The Raman lines at378cm-1assigned to the β-D-glucopyranosyl units of cellulose. Two Raman lines of cellulose have been used to calculate the intensity rations R=I1120/I1098which had turned out as a sensitive response to molecular changes of flax fibers treated with different scouring. Bleaching of bio-scoured flax fibers in0.3-0.4%of alkali concentrations causes the polymorphic transformation of cellulose Ⅰ into cellulose Ⅱ.
     In conclusion, it is feasible that the bioscouring was carried out under alkaline conditons for flax roving. It is helpful to extract, analyze and compare the caracteristics on the evolution of the structure and performance after different scourings by modern analytical techniques. And it can provide data support for further developing process, industrialization and mechanisms discussing of bioscouring.
引文
[1]王靖.亚麻短纤的脱胶、漂白及柔软工艺研究[D].东华大学,2007.
    [2]吴洁.绢麻纺概论[M].北京:中国纺织出版社,2001.10.
    [3]黄小龙.南方亚麻微生物脱胶技术及其机理研究[D].湖南农业大学,2004.
    [4]田俊莹,俞秀君.亚麻落麻脱胶工艺的探讨[J].染整技术,2000,22(3):3.
    [5]Akin D. E., Foulk J. A., Dodd R. B., et al. Enzyme-retting of flax and characterization of processed fibers [J]. Journal of Biotechnology,2001,89 (2-3): 193-203.
    [6]严伟李崇丽,吕明科.亚麻纺纱、织造与产品开发[M].北京;中国纺织出版社.2005.
    [7]中国农业科学院麻类研究所.中国麻类作物栽培学[M].北京;农业出版社.1962.
    [8]刘仁庆.纤维素化学基础[M].北京:北京科学出版社,1985.
    [9]姚穆,孙润军,陈美玉,来侃.植物纤维素、木质素、半纤维素等的开发和利用[J].精细化工,2009,10:937-941.
    [10]张玉忠,刘洁,高培基等.天然纤维素超显微结构的扫描隧道显微镜研究[J].生物物理学报,1997,(03):33-37.
    [11]王健.纤维素闪速热裂解试验中活性纤维素的生成研究[D].浙江大学,2006.
    [12]喻红芹,牛建设,郁崇文.亚麻粗纱的生物处理[J].纤维素科学与技术,2008,16(1):5.
    [13]喻红芹.亚麻的品质及生物处理的研究[D].东华大学,2009.
    [14]郑庆康.木质素的生物降解[J].四川纺织科技,1998,(01):38-39.
    [15]栾春英,卫德林.亚麻木质素结构及其对纤维质量的影响[J].苎麻纺织科技,1996,(Z1):54-56.
    [16]邬义明.植物纤维化学(第二版)[M].北京:中国轻工业出版社,1997.
    [17]姜繁昌,邵宽,周岩兰.苎麻纺纱学[M].北京:纺织工业出版社,1989.
    [18]杨淑蕙.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2001.
    [19]中野淮三(编),高洁,鲍禾等.木质素的化学一一基础与应用[M].北京:轻工业出版社,1988.
    [20]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [21]管映亭,董政娥,温桂清.苘麻韧皮纤维研究[J].纺织学报,2003,(06):64-65,65.
    [22]王鹏,谢益民,范建云.果胶-木素复合体化学结构~(13)C同位素示踪法的研究[J].陕西科技大学学报,2006,(05):17-23,44.
    [23]高月琴.大麻脱胶及助剂选用[J].印染助剂,1992,(04):23-25,23.
    [24]许符节.初论苎麻脱胶与苎麻纺纱之关系[J].麻纺织技术,1998,(Z1):15-18.
    [25]陆钟钰.染整工业词典[M].北京;中国纺织出版社.1994:243-246.
    [26]Xiao Z., Wang S., Bergeron H., et al. A flax-retting endopolygalacturonase-encoding gene from Rhizopus oryzae [J]. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology,2008, 94 (4):563-571.
    [27]顾伯明.亚麻纺纱[M].北京:纺织工业出版社,1987.
    [28]吕江南,贺德意,王朝云等.全国麻类生产调查报告(V)[J].中国麻业,2004,(06):38-43.
    [29]刘正超.染化药剂[M].北京:中国纺织出版社,2001.
    [30]Clarke J. H., Rixon J. E., Ciruela A., et al. Family-10 and family-11 xylanases differ in their capacity to enhance the bleachability of hardwood and softwood paper pulps [J]. Applied Microbiology and Biotechnology,1997,48 (2):177-183.
    [31]Sharma H. S. S., Faughey G. J. Comparison of subjective and objective methods to assess flax straw cultivars and fibre quality after dew-retting [J]. Annals of Applied Biology,1999,135 (2):495-501.
    [32]Morrison Iii W. H., Archibald D. D., Sharma H. S. S., et al. Chemical and physical characterization of water- and dew-retted flax fibers [J]. Industrial Crops and Products,2000,12(1):39-46.
    [33]Sumere C Van, Sharma.H, Analysis of fine flax fibre produced by enzymatic retting [J]. Aspects Appl Biol,1991,28 15-20.
    [34]Henriksson G., Akin D. E., Slomczynski D., et al. Production of highly efficient enzymes for flax retting by Rhizomucor pusillus [J]. Journal of Biotechnology,1999, 68 (2-3):115-123.
    [35]Zhang J., Henriksson G, Johansson G. Polygalacturonase is the key component in enzymatic retting of flax [J]. Journal of Biotechnology,2000,81 (1):85-89.
    [36]Musialak M., Wrobel-Kwiatkowska M., Kulma A., et al. Improving retting of fibre through genetic modification of flax to express pectinases [J]. Transgenic Research,2008,17 (1):133-147.
    [37]Zhang J., Johansson G., Pettersson B., et al. Effects of acidic media pre-incubation on flax enzyme retting efficiency [J]. Textile Research Journal,2003, 73 (3):263-267.
    [38]Zhang J., Henriksson H., Szabo I. J., et al. The active component in the flax-retting system of the zygomycete Rhizopus oryzae sb is a family 28 polygalacturonase [J]. Journal of Industrial Microbiology and Biotechnology,2005, 32 (10):431-438.
    [39]Evans J. D., Akin D. E., Foulk J. A. Flax-retting by polygalacturonase-containing enzyme mixtures and effects on fiber properties [J]. Journal of Biotechnology,2002, 97 (3):223-231.
    [40]Foulk J. A., Akin D. E., Dodd R. B. Processing techniques for improving enzyme-retting of flax [J]. Industrial Crops and Products,2001,13 (3):239-248.
    [41]张丽珠,王奉喜.亚麻脱胶新工艺的研究[J].中国麻作,1988,(02):34-36,31.
    [42]郑喜群,刘晓兰,江洁.亚麻生物脱胶新方法及其比较[J].纺织学报,2001,22(4):3.
    [43]Sharma H. S. S., Whiteside L., Kernaghan K. Enzymatic treatment of flax fibre at the roving stage for production of wet-spun yarn [J]. Enzyme and Microbial Technology,2005,37 (4):386-394.
    [44]Kernaghan K., Sharma H. S. S., Whiteside L. Development of a novel roving-treatment process employing sequential chelating agent and enzymatic stages, utilising thermal analysis for assessment of fibre and yarn quality [J]. Enzyme and Microbial Technology,2006,39 (7):1373-1385.
    [45]Lipp-Symonowicz B., Tanska B., Wrzocek H. Effect of enzymatic treatment on the morphology and physical/chemical properties of flax fibres and yarns [J]. Wplyw obrobki enzymatycznej na budow morfologiczna i wlasnosci fizyko-chemiczne wlokna lnu oraz parametry metrologiczne przedzy,2003, (3):17-20.
    [46]Sharma H. S. S. Effects of the application of chemical additives to desiccated flax on retting [J].1986,
    [47]郑来久,张宁,马东霞.基于亚麻粗纱的酶煮漂技术研究[J].纺织学报, 2004,25(6):3.
    [48]姜生.亚麻粗纱生物酶脱胶工艺技术探索[J].广西纺织科技,2008,37(5):3.
    [49]王立群,徐蓓,校合香等.天麻不同加工方法的红外光谱指纹特征分析[M].光谱学与光谱分析.2004.
    [50]彭源德,刘正初,郑科等.亚麻快速生物脱胶发酵条件研究[J].中国麻业,2005,27(2):4.
    [51]吴丽艳.亚麻增效脱胶菌的分离、筛选和鉴定[D].云南大学,2007.
    [52]孙燕华.亚麻脱胶微生物的筛选、鉴定及其多样性研究[D].内蒙古大学,2009.
    [53]魏薇.利用DGGE技术研究黑龙江省各地沤麻系统中细菌多样性[D].黑龙江大学,2007.
    [54]赵丹.甘露聚糖酶产生菌的分离、鉴定及产酶条件的研究[D].黑龙江大学,2006.
    [55]凌宏志,葛菁萍,魏薇等.亚麻温水脱胶液中细菌菌群结构分析[J].应用与环境生物学报,2009,15(5):5.
    [56]田英华,刘晓兰,郑喜群.黑曲霉固态发酵生产亚麻脱胶用复合酶的研究[J].中国酿造,2008,(12):4.
    [57]郑科,彭源德,刘正初等.亚麻快速生物脱胶技术研究Ⅱ.亚麻快速生物脱胶过程中发酵液成分变化规律[J].中国麻业,2004,26(1):4.
    [58]Akin D. E., Henriksson G., Morrison Iii W. H., et al. Enzymatic Retting of Flax [M].1998:269-278.
    [59]Henriksson G., Akin D. E., Rigsby L. L., et al. Influence of chelating agents and mechanical pretreatment on enzymatic retting of flax [J]. Textile Research Journal, 1997,67 (11):829-836.
    [60]Akin D. E., Slomczynski D., Rigsby L. L., et al. Retting flax with endopolygalacturonase from Rhizopus oryzae [J]. Textile Research Journal,2002,72 (1):27-34.
    [61]Meijer W. J. M., Vertregt N., Rutgers B., et al. The pectin content as a measure of the retting and rettability of flax [J]. Industrial Crops and Products,1995,4 (4): 273-284.
    [62]丁若垚,董政娥,郁崇文等.一种蜡状芽孢杆菌DA3菌株及其获得方法和应用,CN102002467A [P]. [2011-04-06].
    [63]张兴群,丁若垚,郁崇文等.一种假单胞菌DA10菌株及其获得方法和应用,CN102010837A[P]. [2011-04-13].
    [64]董政娥,丁若垚,郁崇文等.一种纤维单胞菌DA8菌株及其获得方法和应用, CN102010836A[P]. [2011-04-13].
    [65]郑磊,丁若垚,郁崇文.脱胶细菌在亚麻粗纱煮练中的初步应用[J].纺织学报,2012,(08):66-70.
    [66]郑磊,丁若垚,董政娥等.亚麻粗纱的细菌煮练初探[J].东华大学学报(自然科学版),2012,(04):396-400.
    [67]董政娥,丁若垚,郑磊等.亚麻粗纱细菌煮练工艺优化探讨[J].毛纺科技,2013,(03):42-46.
    [68]郑磊.亚麻粗纱的细菌煮练研究[D].东华大学,2012.
    [69]赵宇.亚麻粗纱的生物化学联合煮练工艺研究[D].东华大学,2013.
    [70]丁若垚.亚麻粗纱脱胶微生物的选育与应用[D].东华大学,2013.
    [71]Foulk J. A., Fuqua M. A., Ulven C. A., et al. Flax fibre quality and influence on interfacial properties of composites [J]. International Journal of Sustainable Engineering,2010,3 (1):17-24.
    [72]Akin D. E., Morrison Iii W. H., Rigsby L. L., et al. Influence of water presoak on enzyme-retting of flax [J]. Industrial Crops and Products,2003,17 (3):149-159.
    [73]郭雅琳,赵玉萍,林福海.亚麻的化学组成和微观结构对染色性能的影响[J].化学通报,2002,65(6):4.
    [74]Mooney C., Stolle-Smits T., Schols H., et al. Analysis of retted and non retted flax fibres by chemical and enzymatic means [J]. Journal of Biotechnology,2001,89 (2-3): 205-216.
    [75]朱国华,俞建勇.亚麻脱胶后纤维的纵向结构和强力的研究[J].上海纺织科技,2004,32(3):2.
    [76]Akin D. E., Morrison Iii W. H., Gamble G. R., et al. Effect of retting enzymes on the structure and composition of flax cell walls [J]. Textile Research Journal,1997,67 (4):279-287.
    [77]Akin D. E., Condon B., Sohn M., et al. Optimization for enzyme-retting of flax with pectate lyase [J]. Industrial Crops and Products,2007,25 (2):136-146.
    [78]Akin D. E., Foulk J. A., Dodd R. B. Influence on flax fibers of components in enzyme retting formulations [J]. Textile Research Journal,2002,72 (6):510-514.
    [1]贾志华,张元明.亚麻粗纱煮漂工艺的研究进展及发展趋势[J].中国麻业科学,2007,29(6):4.
    [2]Lipp-Symonowicz B., Tanska B., Wolukanis A., et al. Influence of enzymatic treatment on the flax fibre morphological structure, physico-chemical properties and metrological parameters of yarn [J]. Fibres and Textiles in Eastern Europe,2004,12 (1):61-65.
    [3]Lipp-Symonowicz B., Tanska B., Sapieja A. Ecological aspect of preliminary treatments of flax fibre [J]. Fibres and Textiles in Eastern Europe,2004,12 (2):63-66.
    [4]Sharma H. S. S., Whiteside L., Kernaghan K. Enzymatic treatment of flax fibre at the roving stage for production of wet-spun yarn [J]. Enzyme and Microbial Technology,2005,37 (4):386-394.
    [5]田英华,刘晓兰,王凤.基于果胶复合酶的亚麻粗纱煮练工艺优化[J].纺织学报,2011,32(6):
    [6]田英华.基于酶法煮练的亚麻粗纱化学成分变化研究[J].江苏农业科学,2011,39(6):
    [7]高树珍,刘庆建.酶在亚麻粗纱煮漂工艺上的应用研究[J].黑龙江纺织,2012,(2):4.
    [8]郑来久,张宁,马东霞.基于亚麻粗纱的酶煮漂技术研究[J].纺织学报,2004,25(6):3.
    [9]赵小锋,张军,郭琪等.复合生物酶法煮练亚麻粗纱工艺的研究[J].毛纺科技,2009,37(12):3.
    [10]喻红芹,牛建设,郁崇文.亚麻粗纱的生物处理[J].纤维素科学与技术,2008,16(1):5.
    [11]杨海军,周律,郭世良等.棉织物染整中不同果胶酶精练效果的比较研究[J].印染助剂,2010,(12):28-30.
    [12]吴辉.棉织物碱性果胶酶复配精练工艺研究[D].江南大学,2008.
    [13]刘龙,汪志浩,张东旭等.碱性果胶酶的生物制造及其在纺织工业清洁生产中的应用研究进展[J].生物工程学报,2009,(12):1819-1828.
    [14]靳贺玲,张玉萍.碱性果胶酶精练棉针织物表面红外光谱分析[J].纺织学报,2010,(01):81-84.
    [15]靳贺玲,秦姝.碱性果胶酶精练对棉纤维表面结构的影响[J].纺织学报,2009,(03):53-57.
    [16]董云舟,赵政,堵国成等.碱性果胶酶及其在棉纺织预处理中的应用[J].工业微生物,2004,(02):30-34.
    [17]田英华,刘晓兰,郑喜群等.碱性果胶酶对大麻脱胶工艺的影响[J].贵州农业科学,2010,(05):187-189.
    [18]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999.
    [19]车秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [20]曹颖,吴丽莉,俞建勇.碱处理时间对亚麻可纺性能指标的影响[J].印染助剂,2009,26(7):4.
    [21]曹颖,吴丽莉,张双等.亚麻二粗纤维精细化改性工艺[J].纺织学报,2006,27(11):3.
    [22]张元明,于伟东.亚麻纤维理化性能研究[J].中国麻业,2003,25(3):5.
    [1]王建刚,袁小红,甘应进等.莲纤维的热学性能[J].纺织学报,2010,(02):7-9,23.
    [2]侯秀良,刘启国,王善元.采用WAXD、DSC技术研究山羊绒、羊毛纤维的结晶结构[J].东华大学学报(自然科学版),2004,(03):86-89.
    [3]孙佩,孙润军,来侃.北极狐绒毛纤维的热学性能研究[J].西安工程科技学院学报,2007,(05):569-571.
    [4]张建春,施楣梧,刘巍等.Lyocell纤维的热学性能研究[J].纺织学报,2000,(03):134-136,130.
    [5]叶霞,刘伟,王剑等.胍类化合物对亚麻纤维热降解性能的影响[J].上海纺织科技,2011,(06):43-45.
    [6]雷文,任超,雷文广等.苎麻纤维布增强UP树脂复合材料的物理力学性能[J].南京林业大学学报(自然科学版),2007,(01):23-26.
    [7]陆立明编译.热分析应用基础[M].上海:东华大学出版社,2010.
    [8]朱沛华.药物的热分析动力学研究[D].山东大学,2002.
    [9]杜兆芳,刘晓华,程贤生等.大麻纤维针刺毡Mg(OH) 2整理后的热性能分析[J].纺织学报,2010,(03):68-71.
    [10]李淳,王晓.等离子体引发亚麻接枝丙烯酸的表征和机理[J].纺织学报,2005,(04):41-44.
    [11]牟秋红,韦春,虞锦洪.剑麻纤维的处理方法对其热性能和形态结构的影响[J].桂林工学院学报,2004,(04):469-473.
    [12]叶霞,石建兵,焦云红等.麻纤维的阻燃处理及热行为[J].吉首大学学报(自然科学版),2004,(02):89-91.
    [13]吴君南,郝新敏,冯新星等.闪爆处理对大麻纤维结构与性能的影响[J].纺织学报,2008,(04):14-17.
    [14]刁均艳,潘志娟.黄麻、苎麻及棕榈纤维的聚集态结构与性能[J].苏州大学学报(工科版),2008,(06):39-43.
    [15]Van De Velde K., Kiekens P. Thermal degradation of flax:The determination of kinetic parameters with thermogravimetric analysis [J]. Journal of Applied Polymer Science,2002,83 (12):2634-2643.
    [16]Wielage B., Lampke T., Marx G., et al. Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene [J]. Thermochimica Acta,1999,337 (1-2):169-177.
    [17]谢涛,张儒.常春油麻藤纤维素与半纤维素级分的热裂解动力学[J].纺织学报,2011,(05):22-28.
    [18]王树荣,郑赞,文丽华等.半纤维素模化物热裂解动力学研究[J].燃烧科学 与技术,2006,(02):105-109.
    [19]Orfao J. J. M., Antunes F. J. A., Figueiredo J. L. Pyrolysis kinetics of lignocellulosic materials-Three independent reactions model [J]. Fuel,1999,78 (3): 349-358.
    [20]廖艳芬,王树荣,骆仲泱等.纤维素快速热裂解试验研究及分析[J].浙江大学学报(工学版),2003,(05):86-91,105.
    [21]廖艳芬.纤维素热裂解机理试验研究[D].浙江大学,2003.
    [22]谭洪,王树荣,骆仲泱等.木质素快速热裂解试验研究[J].浙江大学学报(工学版),2005,(05):710-714.
    [23]姚燕,王树荣,郑赞等.基于热红联用分析的木质素热裂解动力学研究[J].燃烧科学与技术,2007,(01):50-54.
    [24]焦爱红,傅智敏.物质热稳定性分析实验方法及仪器比较[J].分析仪器,2008,(02):52-57.
    [25]王新威.芳香族纤维耐高温性能研究[D].东华大学,2007.
    [26]李文明,蔡微.差热分析法对SrCO3分解反应动力学的研究[J].神州(中旬刊),2010,(12):24-25.
    [27]田硕,杜冠华.药物多晶型的差热分析法[M].中国药理学会2008年药学发展前沿论坛论文集.太原.2008:123-125.
    [28]梁少娟.DSC技术在食品中的应用[J].商品与质量焦点关注,2012,(1):76-77.
    [29]胡国玲,朱治玲,郭晓玲.差示扫描量热法(DSC)及其在沥青研究中的应用[J].山西建筑,2005,31(8):113-114.
    [30]原健安.用DSC分析聚合物对改性沥青性质的影响[J].石油沥青,1997,(02):25-28,27.
    [31]Sebestyen Z., May Z., Reczey K., et al. The effect of alkaline pretreatment on the thermal decomposition of hemp [J]. Journal of Thermal Analysis and Calorimetry, 2011,105 (3):1061-1069.
    [32]Kissinger, H.E.. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis [J]. Research Nail Bur Standards,1956, (57):5.
    [33]Albano C., Gonzalez J., Ichazo M.. Thermal stability of blends of polyolefins and sisal fiber [J]. Polymer Degradation and Stability,1999,66 (2):179-190.
    [34]Parvinzadeh Gashti M., Elahi A. UV radiation inducing succinic acid/silica-kaolinite network on cellulose fiber to improve the functionality [J]. Composites Part B:Engineering,2013,48 158-166.
    [35]Sekiguchi Yuki, Shafizadeh Fred. Effect of inorganic additives on the formation, composition, and combustion of cellulosic char [J]. Journal of Applied Polymer Science,1984,29 (4):1267-1286.
    [36]Kazayawoko M., Balatinecz J. J., Woodhams R. T. Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes [J]. Journal of Applied Polymer Science,1997,66 (6):1163-1173.
    [37]高明,任学军.无机盐阻燃麻纤维热解及阻燃机理研究[J].华北科技学院学报,2004,1(4):5.
    [38]Arbelaiz A., Fernandez B., Ramos J. A., et al. Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites:Effect of treatments [J]. Thermochimica Acta,2006,440 (2):111-121.
    [39]Devallencourt C., Saiter J. M., Capitaine D. Characterization of recycled celluloses:Thermogravimetry/Fourier transform infra-red coupling and thermogravimetry investigations [J]. Polymer Degradation and Stability,1996,52 (3): 327-334.
    [40]Buranov A. U., Ross K. A., Mazza G. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol [J]. Bioresource Technology,2010,101 (19):7446-7455.
    [41]Vicini S., Princi E., Luciano G, et al. Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate [J]. Thermochimica Acta,2004,418 (1-2):123-130.
    [42]刘军利.木质纤维类生物质定向热解行为研究[D].中国林业科学研究院,2011.
    [43]刘乃安.生物质材料热解失重动力学及其分析方法研究[D].中国科学技术大学,2000.
    [44]Zeriouh A., Belkbir L. Thermal decomposition of a Moroccan wood under a nitrogen atmosphere [J]. Thermochimica Acta,1995,258 (C):243-248.
    [45]Roberts A. F. A review of kinetics data for the pyrolysis of wood and related substances [J]. Combustion and Flame,1970,14 (2):261-272.
    [46]宋春财,胡浩权,朱盛维等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,(04):311-316.
    [47]刘清泉.PAA膜结晶度和PEO结晶动力学的研究[D].中南大学,2003.
    [48]吴世臻,杜莹华.用DSC差示扫描热量法测定纤维结晶度的探讨[J].天津纺织工学院学报,1995,(03):31-34.
    [49]唐人成,杨旭红,王华杰等.纺织用天然竹纤维的结构和热性能[J].林产化学与工业,2004,24(1):43-47.
    [50]杜国军,刘晓兰,郑喜群,田英华,崔永志,于海鹏.亚麻纤维在脱胶过程中形态结构的变化[J].纺织学报,2008,12:12-16.
    [51]何小芳,戴亚辉,曹新鑫等.基于Origin软件的塑料结晶动力学DSC曲线拟合与数据处理[M].2010年塑料助剂生产应用技术、信息交流会论文集.厦门.2010:379-382.
    [52]王威岗,韦杰,董长青.木质纤维热解的热重和反应动力学研究[J].可再生能源,2007,(05):23-26.
    [1]王素方.烟草中物质裂解气相色谱-质谱分析及裂解机理研究[D].中国科学技术大学,2004.
    [2]真伪天麻裂解气相色谱分析实验研究[M].第十届分析与应用裂解学术会议论文集.台州.1998.
    [3]俞雄飞,王巧英,黄姣等.裂解气相色谱质谱技术鉴定聚酯纤维[J].合成纤维工业,2011,(03):64-66.
    [4]钱和生.裂解气相色谱-质谱法研究芳香族聚酯类纤维热分解[J].合成纤维,2008,(03):25-29.
    [5]钱和生.裂解气相色谱质谱法研究Lyocell纤维裂解作用[J].东华大学学报(自然科学版),2008,(05):549-553.
    [6]王健.纤维素闪速热裂解试验中活性纤维素的生成研究[D].浙江大学, 2006.
    [7]廖艳芬.纤维素热裂解机理试验研究[D].浙江大学,2003.
    [8]Morrison Iii W. H., Archibald D. D. Analysis of Graded Flax Fiber and Yarn by Pyrolysis Mass Spectrometry and Pyrolysis Gas Chromatography Mass Spectrometry [J]. Journal of Agricultural and Food Chemistry,1998,46 (5):1870-1876.
    [9]Morrison Iii W. H., Himmelsbach D. S., Akin D. E., et al. Chemical and spectroscopic analysis of lignin in isolated flax fibers [J]. Journal of Agricultural and Food Chemistry,2003,51 (9):2565-2568.
    [10]林丹丽,钱和生,顾莉琴.天然彩棉的裂解气相色谱-质谱分析[J].分析测试学报,2006,25(z1):2.
    [11]刘军利,蒋剑春,黄海涛.纤维素CP-GC-MS法裂解行为研究[J].林产化学与工业,2009,29(5):7.
    [12]刘军利,蒋剑春,黄海涛.木聚糖CP-GC-MS法裂解行为研究[J].林产化学与工业,2010,30(1):6.
    [13]Miller R. S., Bellan J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics [J]. Combustion Science and Technology,1997,126 (1-6):97-137.
    [14]Piskorz J., Radlein D. St A. G, Scott D. S., et al. Pretreatment of wood and cellulose for production of sugars by fast pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1989,16(2):127-142.
    [15]Russell J. A., Miller R. K., Molton P. M. Formation of aromatic compounds from condensation reactions of cellulose degradation products [J]. Biomass,1983,3(1): 43-57.
    [16]Matsushita Y., Kakehi A., Miyawaki S., et al. Formation and chemical structures of acid-soluble lignin II:Reaction of aromatic nuclei model compounds with xylan in the presence of a counterpart for condensation, and behavior of lignin model compounds with guaiacyl and syringyl nuclei in 72%sulfuric acid [J]. Journal of Wood Science,2004,50 (2):136-141.
    [17]Shafizadeh F., Fu Y. L. Pyrolysis of cellulose [J].1973,
    [18]Raisanen U., Pitkanen I., Halttunen H., et al. Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis [J]. Journal of Thermal Analysis and Calorimetry,2003,72 (2):481-488.
    [19]Alen R., Kuoppala E., Oesch P. Formation of the main degradation compound groups from wood and its components during pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1996,36 (2):137-148.
    [20]Van Arendonk J. J. C. M., Niemann G. J., Boon J. J. The effect of enzymatic removal of proteins from plant leaf material as studied by pyrolysis-mass spectrometry:Detection of additional protein marker fragment ions [J]. Journal of Analytical and Applied Pyrolysis,1997,42 (1):33-51.
    [1]林金友.静电纺微纳米多级结构纤维制备及其在油水分离中的应用[D].东华大学,2012.
    [2]占学旺.淀粉回生过程中间体(多糖)凝聚结构变化的研究[D].河南工业大学,2011.
    [3]胡恒亮,穆祥祺,边栋材.高温处理聚酯长丝X光小角散射(SAXS)的相关函数分析[J].天津纺织工学院学报,1986,(Z1):118-122.
    [4]Astley O. M., Donald A. M. A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers [J]. Biomacromolecules,2001,2 (3): 672-680.
    [5]Kato K. L., Cameron R. E. Structural aspects of the thermally accelerated ageing of cellulose:Effect of cellulose source and ageing conditions [J]. Polymer International,2002,51 (8):707-714.
    [6]Leppanen K., Andersson S., Torkkeli M., et al. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering [J]. Cellulose,2009,16 (6):999-1015.
    [7]Muller M., Czihak C., Vogl G, et al. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering [J]. Macromolecules,1998,31 (12):3953-3957.
    [8]Virtanen T., Svedstrom K., Andersson S., et al. A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing [J]. Cellulose,2012,19 (1):219-235.
    [9]陈晓.高性能聚丙烯腈基碳纤维微观结构和形态结构研究[D].东华大学,2010.
    [10]郭培培.甘薯淀粉及淀粉膜结构性能的粒径效应[D].河南工业大学,2012.
    [11]O. Clatter, O. Kratky. Small Angle X-ray Scattering [M]. New York; Academic Press.1982:300-350.
    [12]李思滔,刘宁东.一些结晶共聚物的形态结构的X射线小角散射研究[J].高分子材料科学与工程,1987,(01):26-33.
    [13]Firestone M. A., Wolf A. C., Seifert S. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers [J]. Biomacromolecules,2003,4 (6): 1539-1549.
    [14]朱育平.小角X射线散射—理论、测试、计算、及应用[M].化学工业出版社,2009.
    [1]郑顺旋.激光喇曼光谱学[M].上海:上海科学技术出版社,1985.
    [2]张金萍.拉曼光谱法在甲基苯丙胺检测中的应用[D].华东师范大学,2011.
    [3]任斌,田中群.表面增强拉曼光谱的研究进展[J].现代仪器,2004,(05):1-8,13.
    [4]柯以侃,董惠茹.分析化学手册第三分册:光谱分析[M].北京:化学工业出版社,2001.
    [5]胡军,胡继明.拉曼光谱在分析化学中的应用进展[J].分析化学,2000,(06):764-767,678-771.
    [6]Humbert B., Alnot M., Quiles F. Infrared and Raman spectroscopical studies of salicylic and salicylate derivatives in aqueous solution [J]. Spectrochimica Acta-Part A:Molecular and Biomolecular Spectroscopy,1998,54 (3):465-476.
    [7]黄海平,田英芬,何尚锦等.拉曼光谱在高分子中的应用新进展[J].热固性树脂,2001,(02):38-44.
    [8]李灿,李美俊,拉曼光谱在催化研究中应用的进展[J].分子催化,2003,(03):213-240.
    [9]王阳,吴晓斌,王佳等.近场拉曼光谱在纳米结构表征中的应用[J].光谱学与光谱分析,2006,(07):1253-1259.
    [10]杨春艳.红外光谱在腐蚀研究中的应用与发展[J].腐蚀与防护,2001,(10):434-436,440.
    [11]余国滔.拉曼光谱在医学上的应用(Ⅰ)[J].光散射学报,1996,(02):53-62.
    [12]张树霖.简介生物学领域中的拉曼散射研究[J].光散射学报,1995,(01):47-51.
    [13]吴练中,柯惟中.激光拉曼光谱法验证中草药有效成分的结构特征[J].光谱学与光谱分析,1995,(06):51-54.
    [14]谭君,祝连彩.拉曼光谱在结构生物学中的应用[J].重庆教育学院学报,2004,(03):49-52.
    [15]孙素琴,郁监源,胡鑫尧.分子光谱法无损鉴别生药材的最新进展[J].光谱学与光谱分析,1999,(06):841-843.
    [16]张鹏翔,赵金涛,杨延勇.显微拉曼技术在公安法学中的应用[J].光散射学报,1998,(Z1):94-97.
    [17]王吉有,王闵,刘玲等.拉曼光谱在考古中的应用[J].光散射学报,2006,(02):130-133.
    [18]王昶.波谱分析技术在宝石鉴定中的应用评述[J].光谱实验室,2001,(03):301-303.
    [19]胡继明,胡军.拉曼光谱在分析化学中的某些应用进展[J].光散射学报,1998,(Z1):35-38.
    [20]李光晓.拉曼光谱技术的新进展[J].光电子技术与信息,1998,(01):1-7,12.
    [21]李琼瑶.激光共焦显微拉曼光谱与应用[J].仪器仪表与分析监测,1999,(03):33-36.
    [22]侯秀良,王善元.采用激光显微拉曼光谱仪研究山羊绒、羊毛纤维的结构[J].毛纺科技,2004,(01):38-41.
    [23]李欣雨.用近红外和拉曼光谱法预测木材和纸浆的性能[J].国际造纸,2008,(05):30-34.
    [24]彭红,林鹿,李嘉喆.现代分析技术在纤维低聚糖结构研究中的应用[J].食品与发酵工业,2008,(03):101-104.
    [25]罗仪文,孙其然,徐彻等.显微红外光谱仪与显微拉曼光谱仪对纺用无色单根纤维的检测[J].证据科学,2010,(06):739-747.
    [26]张智衡,马建锋,许凤.结香纤维素与木素分布的显微激光拉曼光谱研究[J]. 光谱学与光谱分析,2012,(04):1002-1006.
    [27]王玉珑,刘艳新,彭子峰.近红外傅立叶变换拉曼光谱(NIR—FTR)在造纸工业中的应用[C]2008(第十五届)全国造纸化学品开发应用技术研讨会.6.
    [28]Jahn A., Schroder M. W., Futing M., et al. Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy [J]. Spectrochimica Acta-Part A:Molecular and Biomolecular Spectroscopy,2002,58 (10):2271-2279.
    [29]乔西娅.拉曼光谱特征提取方法在定性分析中的应用[D].浙江大学,2010.
    [30]周秀军.基于拉曼光谱的食用植物油定性鉴别与定量分析[D].浙江大学,2013.
    [31]张艳.龙须草纤维的性能研究[D].青岛大学,2008.
    [32]李淳,王晓.等离子体引发亚麻接枝丙烯酸的表征和机理[J].纺织学报,2005,(04):41-44.
    [33]张双燕.化学成分对木材细胞壁力学性能影响的研究[D].中国林业科学研究院,2011.
    [34]Agarwal U. P., Ralph S. A. FT-Raman spectroscopy of wood:Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana) [J]. Applied Spectroscopy,1997,51 (11):1648-1655.
    [35]Agarwal U. P., Ralph S. A. Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy [J]. Holzforschung,2008,62 (6):667-675.
    [36]UP Agarwal. Advances in Lignocellulosics Characterization [M]. Atlanta; TAPPI Press.1999:209.
    [37]Agarwal U. P., Atalla R. H. In-situ Raman microprobe studies of plant cell walls: Macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P [J]. Planta,1986,169 (3):325-332.
    [38]Gilbert R.D., Kadla J.F. Polysaccharides-cellulose, in:D.L. Kaplan (Ed.), Biopolymers from Renewable Resources [M]. Berlin, Heidelberg, New York: Springer,1998.
    [39]Atalla R. H., Dimick B. E. Raman-spectral evidence for differences between the conformations of cellulose Ⅰ and cellulose Ⅱ [J]. Carbohydrate Research,1975,39 (1): C1-C3.
    [40]Atalla R. H. Raman spectral studies of polymorphy in cellulose.1. Celluloses Ⅰ and Ⅱ [J].1976,
    [41]Schenzel K., Fischer S. NIR FT Raman spectroscopy- A rapid analytical tool for detecting the transformation of cellulose polymorphs [J]. Cellulose,2001,8 (1): 49-57.
    [42]Schenzel K., Almlof H., Germgard U. Quantitative analysis of the transformation process of cellulose Ⅰ → cellulose Ⅱ using NIR FT Raman spectroscopy and chemometric methods [J]. Cellulose,2009,16 (3):407-415.
    [43]Schenzel K., Jahn A., Peetla P., et al. NIR FT Raman spectroscopy and micro spectroscopy-New methods for determining objective parameters of hemp and flax fibres [J]. Pflanzenbauwissenschaften,2007,11 (SUPPL.):16-21.
    [44]Schenzel K., Fischer S., Brendler E. New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy [J]. Cellulose,2005,12 (3):223-231.
    [45]Edwards H. G. M., Farwell D. W., Webster D. FT Raman microscopy of untreated natural plant fibres [J]. Spectrochimica Acta-Part A:Molecular and Biomolecular Spectroscopy,1997,53 (13):2383-2392.
    [46]Schrader B., Klump H. H., Schenzel K., et al. Non-destructive NIR FT raman analysis of plants [J]. Journal of Molecular Structure,1999,509 (1-3):201-212.
    [47]Himmelsbach D. S., Akin D. E. Near-Infrared Fourier-Transform Raman Spectroscopy of Flax (Linum usitatissimum L.) Stems [J]. Journal of Agricultural and Food Chemistry,1998,46 (3):991-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700