用户名: 密码: 验证码:
通用效应因子tTF/SA选择性诱发肿瘤组织血管栓塞
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性诱发肿瘤组织血管血栓性栓塞从而导致肿瘤组织的缺血性坏死是一种很有前景的抗肿瘤策略。tTF融合蛋白利用导向载体将截短的组织因子tTF选择性地定位于肿瘤组织血管,可以诱发肿瘤组织血管栓塞,阻断肿瘤营养物质和氧气的供给,引发肿瘤缺血性坏死,发挥抗肿瘤作用。由于肿瘤组织单一靶点数量的有限性及表达的异质性,现使用单载体介导的肿瘤血管靶向治疗效果并不理想,多靶点联合治疗是克服这一缺点的有效策略。我们设想以生物素-亲和素体系作为载体与效应因子tTF的桥联系统,利用基因工程技术构建tTF与SA的融合蛋白作为通用效应因子,并与生物素化的肿瘤血管靶向载体联合应用,实现多靶点的肿瘤组织血管靶向治疗。
     为了制备靶向通用效应因子tTF/SA融合蛋白,我们利用PCR技术分别克隆与合成截短组织因子tTF和链霉亲和素SA的基因,重组tTF与SA的融合基因,并克隆至表达载体pET22 b(+),在E.coli BL21(DE_3)中表达,镍亲和层析柱纯化tTF/SA融合蛋白。结果表明,我们获得了序列正确的tTF/SA/pET22 b(+)重组子,融合基因在E.coli BL21(DE_3)中获得高效表达。凝血实验和FX活化实验证实,纯化后的融合蛋白具有活化FX和引起血液凝固的能力;ELISA实验证实,融合蛋白能与生物素或生物素化的载体结合。
     为了证实通用效应因子和生物素化载体的联合治疗的有效性,我们通过碳二亚胺交联法分别制备整合素配体(RGD)_3多肽和单链抗核抗体M7与生物素的交联物,治疗人胃癌MGC803肿瘤动物模型。生物素化的载体(RGD)_3和M7单独或联合注射后,再分别注射tTF/SA融合蛋白,连续给药5天。结果显示tTF/SA:M7-B组的抑瘤率为43.9%、tTF/SA:(RGD)_3-B组的抑瘤率为27.7%、tTF/SA:[M7+(RGD)_3]-B组的抑瘤率为59%。免疫组化结果显示,(RGD)_3-B能选择性定位于新生的肿瘤血管,M7-B能选择性定位于变性和坏死的肿瘤细胞;病理学观察发现,通用效应因子在生物素化靶向载体介导下能有效地诱发肿瘤组织血管栓塞,导致肿瘤细胞变性坏死;而对正常组织细胞没有毒副作用。
     总之,利用基因工程技术表达的tTF/SA融合蛋白保持了组分tTF和SA的活性。在肿瘤动物模型治疗实验中,tTF/SA融合蛋白可以作为通用效应因子与生物素化载体(RGD)_3-B或M7-B或(RGD)_3-B+M7-B使用,并有效地诱发肿瘤组织血管血栓性栓塞、进而导致肿瘤组织细胞缺血坏死和抑制肿瘤生长。本研究证明tTF/SA通用效应因子与多种生物素化载体联合使用可以实现选择性肿瘤组织血管栓塞的多靶点联合治疗。
It is a promising anti-tumor strategy to selectively induce thrombosis in tumor vessels and cause necrosis of the tumor.The truncated Tissue Factor(tTF) could selectively induce thrombosis in tumor vasculature to cut off nutrition and oxygen supplies of tumor,subsequently resulted in necrosis of the tumor and attained anti-tumor effects,when tTF was targeted to the tumor vasculature by the targeting carriers of the tTF fusion protein.Owing to the fewer number and their heterogeneous expression of targets in tumor tissue,the effect of the targeted tTF therapy on tumor blood vessels mediated by single carrier is not satisfied,the multitarget combined therapy may be the promising strategy to overcome the shortcoming.It is assumed that the biotin-strepavidin system be used as the bridge to link the targeting carriers and effector tTF.The fusion proteins tTF/SA constructed by the gene engineering function as a universal effector and then is combined with the various biotinylated carriers,which targeted to tumor blood vessels,to implement the multitarget combination therapy for the thrombosis of tumor blood vessels.
     To prepare the targeting universal effector tTF/SA fusion protein,the tTF gene and SA gene were cloned,respectively,and then the fusion gene tTF/SA was constructed by PCR.The fusion gene tTF/SA was inserted into expression vector pET22 b(+) and expressed in E.coli BL21(DE_3).The fusion proteins were purified using Nickel-affinity chromatography column.The results indicated that the recombinant plasmids tTF/SA/pET22 b(+) with correct gene sequence were obtained and expressed with high.yield in E.coli BL21(DE_3).The clotting assay and FX activation assay confirmed that the purified proteins attained the activity of activating FⅩand capacity of causing blood coagulation;the results of ELISA indicated that the fusion protein tTF/SA could bind with Biotin and biotinylated carriers.
     To confirm the validity of the combination therapy of universal effector and the biotinylated carriers,the human gastric cancer MGC803 tumor mouse models were constructed,the biotinylated carriers(RGD)_3-B and M7-B,which crosslinked with Biotin by EDC,were injected individually or together,then the fusion proteins tTF/SA were continuously injected for 5 days.The results indicated that the inhibition rates of tTF/SA:M7-B,tTF/SA:(RGD)_3-B,and tTF/SA:[M7+(RGD)_3]-B were 43.9%, 27.7%,and 59%,respectively.The immunohistochemical results confirmed that the biotinylated targeting carriers could combine to their targets specifically.The histological results indicated that the universal effector tTF/SA could selectively and effectively induce thrombosis in tumor blood vessels and cause necrosis of the tumor cells directed by the biotinylated carriers,and no thrombosis and cell necrosis was observed in normal tissues of treated groups.
     In summary,the universal effector tTF/SA retained the ability of both tTF and SA.In the treatment experiment,the fusion protein tTF/SA via the biotinylated carriers((RGD)_3-B,M7-B and(RGD)_3-B+M7-B) could selectively and effectively induce thrombosis in tumor blood vessels,inhibit the growth of tumor,and lead the necrosis of tumor tissues.These results testified that the combination of universal effector tTF/SA and various biotinylated carriers can implement the multi-target combination therapy of selective thrombosis in tumor blood vessels.
引文
[1]Folkman J.Tumor angiogenesis:therapeutic implications[J].N Engl J Med,1971,285(21):1182-1186.
    [2]Oehler MK,Bicknell R.The promise of anti-angiogenic cancer therapy[J].Br J Cancer,2000,82(4):749-752.
    [3]O'Rreilly MS,Holmgren L,Chen C,et al.Angiostatin induces and sustains dormancy of human primary rumors in mice[J].Nat Med,.1996,2(6):689-692.
    [4]Saito H,Tsujitani S,Kondo A,et al.Expression of vascular endothelial growth factor correlates with hematogenous recurrence in gastric carcinoma[J].Surgery,1999,125(2):195-201.[
    5]Laughner E,Taghavi P,Chiles K,et al.HER2(neu) signaling increases the rate of hypoxia-inducible factor 1 alpha(HIF-1 alpha) synthesis:novel mechanism for HIF-1-mediated vascular endothelial growth fac.tor expression[J].Mol Cell Biol,2001,21(12):3995-4004.
    [6]Folkman J.Tumor angiogenesis:a possible control point in tumor growth[J].Ann Intern Med,1975,82(1):96-100.
    [7]Sanderson RD.Heparan sulfate proteoglycans in invasion and metastasis[J].Semin Cell Dev Biol,2001,12(2):89-98.
    [8]Li H,Lu H,Griscelli F,Opolon P,et al.Adenovirus-mediated delivery of a uPA/uPAR antagonist suppresses angiogenesis-dependent tumor growth and dissemination in mice[J].Gene Ther,1998;5(8):1105-1113.
    [9]Brooks PC,Clark RA,Cheresh DA.Requirement of vascular integrin avβ3 for angiogenesis[J].Science,1994,264(5158):569-571
    [10]Yancopoulos GD,Klagsbrun M,Folkman J.Vasculogenesis,angiogenesis,and growth factors:ephrins enter the fray at the border[J].Cell,1998,93(5):661-664.
    [11]Kong HL,Crystal RG,Gene therapy strategies for tumor antiangiogenesis[J].J Natl Cancer Inst,1998,90(4):273-286.
    [12]Hanahan D,Folkman J.Patterns and emerging mechanisms of the angiogenic switch during tumorigeresis[J].Cell,1996,86(3):353-364.
    [13]Pepper MS.Manipulating angrogenesis.From basic science to the bedside[J].Arterioscler Thromb Vosc Bioi,1997,17(4):605-619.
    [14] Liekens S,de Clereq E,Neyts J.Angiogenesis:regulators and clinical applications[J]Biochem Pharmacol,2001,61(3):253-270.
    [15] Veikkola T,Alitalo K.VEGFs,receptors and angiogenesis[J].Semin Cancer Biol,1999,9(3):211-220.
    [16] Davis S,Aldrich TH,Jones PF,Acheson A,et al.Isolation of angiopoietin-l,a ligand for the TIE2 receptor,by secretion-trap expression cloning[J].Ce//,1996,87(7):1161-1169.
    [17] Drevs J,Hofmann I,Hugenschmidt H,et al.Effects of PTK787 ZK222584,a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases,on primary tumor,metastasis,vessel density,and blood flow in a murine renal cell carcinoma model[J].Cancer Res, 2000,60(17):4819-4824.
    [18] Fong TA,Shawver LK,Sun L,et al.SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor(Flk/KDR) that inhibits tyrosine kinase catalysis,tumor vascularization.and growth of multiple tumor types[J].Cancer Res,1999,59(l):99-106.
    [19] Britten C,Rosen L,Kabbinavar F,Rosen P,Mulay M,Hemandez L.PhaseⅠ trial of SU6668,a small molecule receptor tyrosine kinase inhibitor,given twice daily in patients with advanced cancers[M].Proc ,ASCO,2002,Abstract:1922.
    [20] Drevs J,Esser N,Marme D.Effect of ZD6474,a VEGF receptor tyrosine kinase inhibitor,on primary tumor growth,metastasis and vessel density in murine renal cell carcinoma[J].Proc AACR,2002,43:1082.
    [21] Rusnati M,Presta M.Interaction of angiogenic basic fibroblast gtowth factor with endothelial cell heparin sulfate protecglycans.Biological implications in neovascularization[J].Int J Clin Lab Res,1996,26(l):15-23.
    [22] Botta M,Manetti F,Corelli F.Fibroblast growth factors and their inhibitors[J].Curr Pharm Des,2000,6(18):1897-1924.
    [23] Jackson JR,Seed MP,Kircher CH,et al.The codependence of angiogenesis and chronic inflammation[J] FASEB J,1997,ll(6):457-465.
    [24] Falcone DJ,McCaffrey TA,Haimovita-Friendman A,Garcia M.Transforming growth factor-61 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor[J] J Cell Physiol,1993,155(3):595-605.
    [25] Mignatti P,Rifkin DB.Plasminogen activators and matrix metalloproteinases in angiogenesis[J].Enzyme Protein,1996,49(1-3):117-137.
    [26] Brown PD.Ongoing trails with matrix metalloproteinase inhibitors[J]Expert Opin Investing Drugs,2000,9(9):2167-2177.
    [27] Allen CM,Sharman WM,La Madeleine C,et al.Attenuation of photodynamically induced apoptosis by an RGD containing peptide[J]Photochem Photobiol Sd,2002,l(4):246-254.
    [28] Friedlander M,Brooks PC,Shaffer RW,et al.Definition of two angiogenic pathways by distinct integrins[J].Science,1995,270(5241):1500-1502.
    [29] Posey JA,Khazaeli MB,DelGrosso A,et al.A pilot trial of Vitaxin,a humanized anti-vitronectin receptor(anti alpha v beta 3) antibody in patients with metastatic cancer[J].Cancer Biother Radiopharm,2001,16(2):125-132.
    [30] Kumar CC,Malkowski M,Yin 2.,et al.Inhibition of angiogenesis and tumor growth by SCH221153,a dual a_vB_3 and a_vB_5 integrin receptor antagonist[J].Gancer Res,2001,61(5):2232-2238.
    [31] Eskens FA,Dumez H,Hoekstra R,Perschl A,et al.Phase Ⅰ and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide(EMD121974),a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumors[J]Eur J Cancer,2003,39(7):917-926.
    [32] Dameron KM,Volpert OV,Tainsky MA,Bouck N.Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1[J].Science,1994,265(5178):1582-1584.
    [33] Singh RK,Gutman M,Bucana CD,et al.Interferons aandBdown-regulate the expression of basic fibroblast growth factor in human carcinomas[J],Prac Natl Acad Sci USA,1995,92(10):4562-4566.
    [34] Clapp C,Martial JA,Guzman RC,et al.The 16-kilodaltori N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis[J].Endrocrinology.l993,133(3):1292-1299.
    [35] O'Reilly MS,Holmgren L,Shing Y,et al.Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[J].Cell,1994,79(2):315-328.
    [36] O'Reilly MS,Boehm T,Shing Y,et al.Endostatin:An endogenous inhibitor of angiogenesis and tumor growth[J].Cell,1997,88(2):277-285.
    [37] Zhai Y,Ni J,Jiang GW,et al.VEGI,a novel cytokine of the tumor necrosis factor family,is an angiogenesis inhibitor that suppresses the growth of colon caecinomas in vitro[J].Faseb J,1999,13(1):181-189.
    [38] Pike SE,Yao L,Jones KD,et al.Vasostatin,a calreticulin fragment,inhibits angiogenesis and suppresses tumor growth[J] J Exp Med,1998,188(12):2349-2356.
    [39] O'Reilly MS,Pirie-Shepherd S,Lane WS,et al.Antiangiogenic activity of the cleaved conformation of the serpin antithrombin[J],5cience,1999,285(5435):1926-1928.
    [40] Rak J.Mitsuhashi Y,Bayko L,et al.Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis[J].Cancer Res,1995,55(20):4575-4580.
    [41] Siemeister QWeindel K,Mohrs K,et al.Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein[J].Cancer Res,1996,56(10):2299-2301.
    [42] Kerbel RS,Viloria-Petit A,Okada F,et al.Establishing a link between.oncogenes and tumor angiogenesis[J].Mol Med,1998,4(5):286-295.
    [43] Kawano T,Yanoma S,Nishimura G,et al.The inhibitory effects of TNP470 on tumour growth of head and neek carcinoma cell producing interleukin-8[J]J Laryngol Otol,2001,115(10):802-807.
    [44] Denekamp J.Endothelial cell proliferation as a novel approach to targeting tumour therapy[J]. Br J Cancer,1982,45(l):136-139.
    [45] Denekamp J.Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy[J].Br J Radiol,1993,66(783):181-196.
    [46] Burrows FJ,Watanabe Y,Thorpe PE.A murine model for antibody-directed targeting of vascular endothelial cells in solid tumors[J].Cancer Res,1992,52(21):5954-5962.
    [47] Burrows FJ,Thorpe PE.Vascular targeting-a new approach to the therapy of solid tumors[J]. Pharmacol Ther,1994,64(l):155-174.
    [48] Burrows FJ,Thorpe PE.Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature[J].Proc NatlAcad Sci USA,1993,90(19):8996-9000.
    [49] Peter B,Hiroya H,Donald MM.Cellular abnormalities of blood vessels as targets in cancer [J].Curr Opin Genet Dev,2005,15(l):102-lll.
    [50] Modzelewski RA,Davies P,Watkins SC,et al.Isolation and identification of fresh tumor-derived endothelial cells from a murine RIF-1 fibrosarcoma[J].Cancer Res,1994,54(2):336-339.
    [51] Siemann DW,Rojiani AM.The novel vascular-targeting agent ZD6126 shows enhanced anti-tumour efficacy in large,bulky tumours[M].14th EORTC-NCI-AACR,Germany,2002,19-22.
    [52] Landuyt W,Verdoes O,Darius DO,et al.Vascular targeting of solid tumours:a major "inverse" volume-response relationship following combretastatin A-4 phosphate treatment of rat rhabdomyosarcomas[J].Eur J Cancer,2000,36(14):1833-1843.
    [53]Fox SB,Gatter KC,Bicknell R,et al.Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer[J].Cancer Res,1993,53(18):4161-4163.
    [54] Nihei Y,Suzuki M,Okano A,et al. Evaluation of antivascular and antimitotic effects of tubulin binding agents in solid tumor therapy[J] Jpn J Cancer Res,1999,90(12):1387-1395.
    [55] Baguley BC,Holdaway KM, Thomsen LL,et al.Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine:evidence for a vascular mechanism[J].Eur J Cancer, 1991,27(4):482-487.
    [56] Dark GG,Hill SA,Prise VE,et al.Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature[J].Cancer Res,1997,57(10):1829-1834.
    [57] Hori K,Saito S,Sato Y,et al.Stoppage of blood flow in 3-methylcholanthrene-induced autochthonous primary tumor due to a novel combretastatin A-4 derivative, AC7700, and its antitumor effect[J]Med Sci Monit,2001,7(l):26-33.
    [58] Chaplin DJ,Pettit GR,Parkins CS,et al.Antivascular approaches to solid tumour therapy: evaluation of tubulin binding agents[J].Br J Cancer Suppl,1996,27 (S):86-88.
    [59] Hill SA,Toze GM,Pettit GR,et al.Preclinical evaluation of the antitumour activity of the novel vascular targeting agent Oxi 4503[J]Anticancer Res,2002,22(3):1453-1458.
    [60] Davis PD,Dougherty GJ,Blakey DC,et al.ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature[J].Cancer Res,2002,62(24):7247-7253.
    [61] Philpott M,Baguley BC, and Ching LM. Induction of tumour necrosis factor-a by single and repeated doses of the antitumour agent 5, 6-dimethylxanthenone-4-acetic acid[J].Cancer Chemother Pharmacol,1995,36(2):143-U8.
    [62] Wilson WR,Li AE,Cowan DS,et al.Enhancement of tumor radiation response by the antivascular agent 5, 6-dimethylxanthenone-4-acetic acid[J]Int J Radiat Oncol Biol Phys,1998,42(4):905-908.
    [63] Thorpe PE.Vascular targeting agents as cancer therapeutics[J].Clin Cancer Res,2004,10(2):415-427.
    [64] Burrows FJ,Watanabe Y,Thorpe PE.A murine model for antibody-directed targeting of vascular endothelial cells in solid tumors[J].Cancer Res,1992,52(21):5954-5962.
    [65] Burrows FJ,Derbyshire EJ,Tazzari PL,et al.Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy[J].Clin Cancer Res,1995,1(12):1623-1634.
    [66] Rajotte D,Arap W,Hagedorn M,et al.Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display[J] J Clin Invest,1998,102(2):430-437.
    [67] St Croix B,Rago C,Velculescu V,et al.Genes expressed in human tumor endothelium[J]. Science,2000,289(5482):1197-1202.
    [68] Ramakrishnan S,Olson TA,Bautch VL,et al.Vascular endothelial growth factor-toxin conjugate specificially inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo[J].Cancer ites,1996,56(6):1324-1330.
    [69] Veenendaal LM,Jin H,Ran S,et al.In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors[J].Proc Natl Acad Sci USA,2002,99(16):7866-7871.
    [70] Masood R,Gordon EM,Whitley MD,et al.Retroviral vectors bearing IgG-binding motifs for antibody-mediated targeting of vascular endothelial growth factor receptors[J] Jnt J Mol Med,2001,8(4):335-343.
    [71] Savontaus MJ,Sauter BV,Huang TG,et al.Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells[J].Gene Ther,2002,9(14):972-979.
    [72] Jin N,Chen W,Blazar BR,Ramakrishnan S,et al.Gene therapy of murine solid tumors with T cells transduced with a retroviral vascular endothelial growth factor-immunotoxin target gene[J].Hum Gene Therr,2002,13(4):497-508.
    [73] Arap W,Pasqualini R,Ruoslahti E.Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J].Science,1998,279(5349):377-380.
    [74] Ellerby HM,Arap W,EHerby LM,et al.Anti-cancer activity of targeted pro-apoptotic peptides[J].Nat Med,1999,5(9):1032-1038.
    [75] Kok RJ,Schraa AJ,Bos EJ,et al.Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics[J].Bioconjug Chem,2002,13(l):128-135.
    [76] Schraa AJ, Kok RJ, Botter SM,et al.RGD-modified anti-CD3 antibodies redirect cytolytic capacity of cytotoxic T lymphocytes toward alphav-beta3 expressing endothelial cells[J]Jnt J Cancer,2004,ll2:285.
    [77] Hood JD,Bednarski M,Frausto R,et al.Tumor regression by targeted gene delivery to the neovasculature[J].Science,2002,296(5577):2404-2407.
    [78] Schiffelers RM,Ansari A,Xu J,et al.Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanopartide[J]Niv;rov Acids Res,2004,32(19):el49.
    [79] Halin C.Rondini S,Nilsson F,et al.Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature[J]Nat Biotechnol Biotechnol,2002,20(3):264-269.
    [80] Carnemolla B,Borsi L,Balza E,et al.Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix[J].Blood,2002,99(5):1659-1665.
    [81] Matsuno F,Haruta Y,Kondo M,et al.Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new antiendoglin monoclonal antibodies[J].Clin Cancer Res,1999,5(2):371-382.
    [82] Tsunoda S,Ohizumi I,Matsui J,et al.Speciiic binding of TES-23 antibody to tumour vascular endothelium in mice,rats and human cancer tissue:a novel drug carrier for cancer targeting therapy[J].Br J Cancer,1999,81(7):1155-1161.
    [83] Marty C,Odermatt B,Schott H,et al.Cytotoxic targeting of F9 teratocarcinomatumours with anti-ED-B fibronectin scFv antibody modified liposomes[J].Br Cancer,2002,87(l):106-112.
    [84] Huang XM,Molema GM,King S,et al.Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature[J].Science,1997,275(5299):547-550.
    [85] Spicer EK,Horton R,Bloem L,et al.Isolation of cDNA clones coding for human tissue factonPrimary structure of the protein and cDNA[J]Proc Natl Acad Sci USA,1987,84(15):5148-5152.
    [86] Davie EW,Fujikawa K,Kisiel W.The coagulation cascade:initiation,maintenance,and regulation[J].Biochemistry,1991,30(43):10363-10370.
    [87] Ruf W,Rehemtulla A,Morrissey JH,et al.Phospholipid-independent and -dependent interactions required for tissue factor receptor and cofactor function [J]J Biol Chem,1991,266(4):2158-2166.
    [88] Krishnaswamy S,Field KA,Edgington TS,et al.Role of the membrane surface in the activation of human coagulation factor X[J]J Biol Chem,1992,267(36):26110-26120.
    [89] Ran S,Gao B,Duffy S,Watkins L,et al.Infarction of solid Hodgkin's tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature[J].Cancer Res,1998,58(20),4646-4653.
    [90] Nilsson F,Kosmehl H,Zardi L,et al.Targeted delivery of tissue factor to the ED-B domain of fibronectin,a marker of angiogenesis,mediates the infarction of solid tumor in mice[J].Cancer Res,2001,61(2):711-716.
    [91] Liu C,Huang H,Donate F,et al.Prostate-specific membrane antigen directed selective thrombotic infarction[J].Cancer Res,2002,62(19):5470-5475.
    [92] Hu P,Yan J,Sharifi J,et al.Comparison of three differemt targeted tissue factor fusion proteins for inducing tumor vessel thrombosis[J].Cancer Res,2003,63(16):5046-5053.
    [93] Dvorak HF.Tumors:wounds that do not heal.Similarities between tumor stroma generation and wound healing[J] .N Engl J Med,1986,315(26):1650-1659.
    [94] Haubitz M,Bninkhorst R.Influence of a novel rapamycin analogon SDZ RAD on endothelial tissue factor and adhesion molecule expression[J].Transplant Proc,2002,34(4):1124-1126.
    [95] Hische EA,Tutuarima JA,Helm HJ.Spectrophotometry of tissue thromboplastin in cerebrospinal fluid[J].Clin Chem,1981,27(8):1427-1430.
    [96] Stone MJ,Ruf W,Miles DJ,et al.Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodied:glycosylation of mutants,activity and physical characterization[J].Biochem,1995,320(2):605-614.
    [97] Wulfing C,Pluckthun A.Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli Influence of folding catalysis[J].J Mol Biol,1994,242(5):655-669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700