用户名: 密码: 验证码:
服役期砼桥梁加固前后的可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构可靠度一直是本领域研究的热点问题之一,桥梁设计规范的演变、荷载等级的修订、概率极限状态设计思想的推广使得可靠度理论越来越向工程应用的方向发展。对于服役桥梁结构而言,受到各种环境荷载及不断增长的车辆荷载与交通流的作用使得结构安全性评估成为当前亟待研究的课题。目前关于结构可靠度的研究多停留在理论阶段,如何面向工程应用将可靠度理论的研究成果实用化,成为本文研究的出发点。
     本文依托西部交通建设科技项目“西部地区在役砼梁桥结构体系时变可靠度分析与评价方法的研究(2007 318 822 31)”及“桥梁设计荷载与安全鉴定荷载的研究(2008 31849404)”,主要针对服役PC桥梁可靠度评估及RC桥梁加固后可靠度分析方法展开研究,主要的研究内容与成果如下:
     针对承载能力状态下PC桥梁构件的评估,借鉴现有的耐久性研究成果及相关规程,构造了服役PC桥梁构件受剪和受弯的抗力概率模型。模型考虑了桥梁结构验算系数、承载能力恶化系数、砼截面折减系数、钢筋锈损率、锈蚀钢筋强度降低系数、锈蚀钢筋与砼协同工作系数、管道偏差修正系数、砼强度修正系数;同时考虑了抗力参数测试不定性影响的随机变量及抗力计算模式不定性影响的随机变量。构造了基于评估基准期的汽车荷载效应及人群荷载效应的概率模型,给出了构件承载力可靠度的分级标准,从而建立了服役PC桥梁构件承载能力极限状态可靠度的评估方法。
     针对正常使用极限状态下的服役PC桥梁全预应力构件及A类构件,以应力失效准则为依据,利用可靠度方法对主梁正截面上下缘有效应力抗力概率模型、恒载效应概率模型、汽车和人群荷载效应概率模型进行了研究,提出了可靠度评估流程并给出了最低可靠指标,建立了PC桥梁构件正常使用可靠度的评估方法。
     首次利用自主开发的预应力钢束张力测试仪采集了有效预应力的随机样本,对钢束有效预应力的分布规律和统计参数进行了研究。经χ2检验,有效预应力统计参数KEP服从正态分布,即KEP-N(0.97,0.09)。以分位值0.75为依据给出KEP的代表值为0.91,为服役PC桥梁构件正常使用状态的可靠度评估提供了重要依据。
     以服役RC桥梁构件时变可靠度理论为基础,采用可视化编程工具Visual Basic 6.0开发了可靠度评估系统V1.1,简化了服役RC桥梁可靠性评估的过程。
     通过对某高速公路上连续一周的车流数据进行统计分析,得到了车重的统计分析结果。利用MATLAB开发了基于实测车辆数据的随机车流模拟程序。给出了以R/(γOγRS)为依据的服役桥梁可靠度评估方法。
     利用可靠度方法对《公路桥梁加固设计规范》(JTG/T J22-2008)的矩形截面受弯构件的粘帖纤维布及钢板加固进行了分析,以Monte-Carlo法模拟随机样本获得了纤维布加固后的统计参数为:μKR,M =1.713,σKR,M=0.545,δKR,M=0.318;钢板加固后的统计参数为:μKR,M =1.696,σKR,M=0.545,δKR,M=0.320。通过研究发现两种片材加固后构件可靠指标分布规律大致相同,受加固后抗力变异性增大的影响其可靠指标略低于规范的标准。汽车运行状态对中小跨径桥梁可靠度影响较大,当ρ=0.1及2.5时的随着汽车荷载等级的提高其设计安全裕度不断增大,而ρ=1状态下,当汽车荷载效应提高0.5倍时可靠指标最大,以此得出提级加固汽车荷载等级的最优界限。针对加固后构件可靠指标的离散性,提出了以可靠性修正系数γβ来调整安全裕度的方法,通过分析计算给出了不同状况下的γβ值,p越大则γβ越大,反之亦然。
     采用以上研究成果,对一座服役PC及RC桥梁构件进行了可靠度评估及加固后可靠度的分析,验证了本文提出的方法。
Bridge reliability always is one of the concerned problems in this field. Evolvement of design code for bridge, emending of load grade and extension of probabilistic limit state design concepts are accelerating the application process of reliability method. It's an urgent issue to study that evaluates the existing bridge's safety because of the increasing traffic flow and vehicle load. At present, research on reliability mainly remains at theory stage, application achievement is not abundant, which is the target of this dissertation.
     In this dissertation, reliability for the existing pre-stressed bridge and the reinforced concrete bridge were studied respectively based on the western assignment of Ministry of Communications-"Research and assessment method of time-reliability for the existing concrete bridge in west region"(2007 318 822 31) and "Research for design load and safety indentified load of bridge"(2008 318 494 04), the fruitful results are as follows:
     Based on the research results of durability and correlation regulations, the resisting force probabilistic model in the service pre-stressed concrete bridge was established for it's resisting of cut and bent, which considered bridge structure checking calculation coefficient, bearing capacity worsening coefficient, concrete section reduction coefficient, steel bar rust damages rate, rusts away steel bar intensity step-down ratio, rusts away steel bar and concrete joint operation coefficient, pipeline deviation correction coefficient, concrete intensity correction coefficient, testing influence random variable, computation pattern uncertainty influence random variable. Probabilistic model of vehicle load and crowd load effect were established based evaluation base period. And the classification principle of bearing capacity reliability was presented, furthermore, the evaluation method for bearing capacity reliability of PC bridge remembers was put forwarded.
     For the full pc and A-class components under serviceability limit state, the stress-resisting probabilistic model, the dead load effect probabilistic model, the vehicle load and the crowd load effect probabilistic model was established. Assessment process and the limit reliability index was put forward due to the stress failure rule. And the evaluation method for pc bridge stress reliability was presented.
     Random samples were collected by means of a special instrument named Stretching Force Tester for prestressing strand. Distribution and statistical parameters of effective prestress was studied based on sample collection for actual bridge. Byχ2 identifying, the KEP obeys normal distribution, KEP-N(0.97,0.09). Under the condition ofα=0.75, the representative value is 0.91, which can provide conference for reliability assessment.
     The reliability assessment system (V1.1) was designed by Visual Basic 6.0 according to the reliability theory of concrete bridge, which simplized the procession of evaluation for the existing bridge.
     Based on the statistical analysis of random traffic flow date from a domestic highway, a program was designed to simulate the random traffic flow model by means of MATLAB. And the reliability assessment method was put forward on the bases of R/(γOγRS).
     According to the code of Specifications for Strengthening Design of Highway Bridge (JTG/T J22-2008), the reliability of steel strengthening and fiber strengthening bending members were computed. Random samples were simulated by means of Monte-Carlo method. The statistical parameters of fiber strengthening bending members wereμKR,M=1.713,σKR,M=0.545,δKR,M=0.318, and the statistical parameters of steel strengthening wereμ'KR,M=1.696,σ'KR,M=0.543,δ'KR,M=0.320. The reliabilities of steel strengthening and fiber strengthening bending members were approximately same, and the reliability indexs were slightly lower than the code, which resulted from the increasing of variability of strengthening bending members. The reliabilities of medium-small span bridges were influented deeply by the vehicle operation states, and the bridges’designing safety degree increased with the growth of vehicle load grade under the condition ofρ=0.1 and 2.5. Ifρ=1, the reliability reached maximum when the increasing range of vehicle load effect was 0.5, so the optiomal boundary was concluded. For the discreteness of strengthened member reliability, correction coefficient was put forward to adjust the safety degree of bridge, theγβwas obtained through a solving program in this dissertation, the results showed thatγβincreased with p, and vice verse.
     The menthod of evaluation and analysis were applicated to an PC bridge and an strengthened RC bridge by the research fruits upwards. And it was verified in this dissertation.
引文
[1]JTJ 023-85,公路钢筋砼及预应力砼桥涵设计规范[S].1985.北京:人民交通出版社
    [2]JTJ D60-2004,公路桥涵设计通用规范[S].2004.北京:人民交通出版社
    [3]JTJ D62-2004,公路钢筋砼及预应力砼桥涵设计规范[S].2004.北京:人民交通出版社
    [4]公路桥梁承载能力检测评定规程(报批稿),2005
    [5]黄可信,吴兴祖等(编译).钢筋砼结构中钢筋腐蚀与保护[M].中国建筑工业出版社.1983
    [6]Papadakis V. G., et al. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal,1991,88:363-373
    [7]Nishi T. Testing of concrete[J]. Proc. RILEM symp.1962,485-489
    [8]许丽萍,黄士元.预测砼中碳化深度的数学模型[J].上海建材学院学报,1991,4(4):347-357
    [9]牛荻涛,陈亦奇.砼结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报,1995,27(4):365-369
    [10]张誉,蒋利学.基于碳化机理的砼碳化深度实用数学模型[J].工业建筑.1998,28(1):16-19,47
    [11]Miki F. Predicting corrosion-free service life of a concrete structure in a chloride environment[J]. ACI Materials Journal,1990 (6)
    [12]Eric J. Numerical simulation of reinforced concrete deterioration: chloride diffusion[J]. ACI Materials Journal, 1999,96(2)
    [13]刘志勇,孙伟,杨鼎宜,周新刚.基于氯离子渗透的海工砼寿命预测模型进展[J].工业建筑.2004,34(6):61-64
    [14]李佩珍,谢慧才.RCT-速氯离子检测方法及其应用[J].混凝土.2000,(9):46-48
    [15]牛荻涛,王庆霖.一般大气环境下砼强度经时变化模型[J].工业建筑.1995,25(6):36-38
    [16]牛荻涛.海洋环境下砼强度的经时变化模型[J].西安建筑科技大学学报.1995,27(1):49-52
    [17]吴新璇.砼无损检测技术手册[M].北京:人民交通出版社.2003
    [18]Bazant Z. P., et al. Physical model for steel corrosion in concrete sea structures-theory. Journal of Structural Division[J], ASCE,1979,105(6):1137-1153
    [19]肖从真.砼中钢筋腐蚀的机理研究及数值模拟方法[D].清华大学博士学位论文.1995
    [20]牛荻涛,王庆霖等.锈蚀开裂前砼中钢筋锈蚀量的预测模型[J].工业建筑.1996,26(4):8-10
    [21]牛荻涛,王庆霖等.锈蚀开裂后砼中钢筋锈蚀量的预测[J].工业建筑.1996,26(4):11-13
    [22]张伟平.砼结构的钢筋锈蚀损伤预测及其耐久性评估[D].同济大学博士学位论文.1999
    [23]Morinaga S.. Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel[J]. Durability of building materials and components, proceedings of the 5th international conference held in Brighton, UK,1990
    [24]惠云玲.砼结构中钢筋锈蚀程度评估和预测试验研究[J].工业建筑.1997,27(6):6-9,49
    [25]邸小坛,周燕.大气环境下钢筋锈蚀规律的研究[J].第四届全国砼耐久性学术交流会论文集.苏州,1996
    [26]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑.1997,27(6):10-13,33
    [27]马良,陈慧娟,白常举.钢筋锈蚀后力学性能的试验研究[J].施工技术.2000,29(12):43-44
    [28]王林科,陶峰,王庆霖,杨兰生.锈后钢筋砼粘结锚固的试验研究[J].工业建筑.1996,26(4):14-16
    [29]赵羽习,金伟良.锈蚀钢筋与砼粘结性能的试验研究[J].浙江大学学报(工学版).2002,36(4):352-356
    [30]潘振华,牛荻涛,王庆霖.锈蚀率与极限粘结强度关系的试验研究[J].工业建筑.2000,30(5):10-12,9
    [31]惠云玲,李荣,林志伸.砼基本构件钢筋锈蚀前后性能试验研究[J].工业建筑.1997,27(6):14-18,57
    [32]陶峰,王林科,王庆霖,刘建军.服役钢筋砼构件承载力的试验研究[J].工业建筑.1996,26(4):17-20,27
    [33]金伟良,赵羽习.锈蚀钢筋砼梁抗弯强度的试验研究[J].工业建筑.2001,31(5):9-11
    [34]杜进生,刘西拉.无粘结预应力砼构件的可靠度分析[J].建筑结构学报.2002,23(1)
    [35]陈帅.基于正常使用极限状态下的预应力砼梁的优化设计[D].浙江大学硕士学位论文.2006
    [36]刘椿,朱尔玉,朱晓伟.预应力砼桥梁的发展状况及其耐久性研究发展[J].铁道建筑.2005,(11)
    [37]刘荣桂,陆春华.大气环境下预应力结构的耐久性设计理论[J].江苏大学学报(自然科学版).2006,27(6)
    [38]刘荣桂,陆春华.海工预应力砼氯离子侵蚀模型及耐久性[J].江苏大学学报(自然科学版).2005,26(6)
    [39]张俊芝,苏小卒.无粘结预应力砼梁的体系可靠性分析[J].工业建筑.2004,34(1)
    [40]闫磊,贺拴海.在役预应力砼桥梁缺损状况的检测及评价技术研究[J].交通标准化.2006,9.35-40
    [41]贡金鑫,赵国藩.钢筋砼轴心受压构件加固后的可靠度分析[J].建筑结构学报,2000,35(3).
    [42]王佶,卢哲安,王二磊.高速公路桥涵加固后可靠度分析[J].第四届亚太可持续发展交通与环境技术大会论文集,2005
    [43]孙晓燕.服役期及加固后的钢筋砼桥梁可靠性研究[D].大连理工大学博士学位论文.2004
    [44]赵军.预应力CFRP布加固砼梁可靠性研究[J].桂林工学院学报,2005,25(2).166-168
    [45]张宇,李思明.粘钢加固钢筋砼梁可靠性分析[J].湖南大学学报(自然科学版).2005,32(6),11-14
    [46]鲍卫刚.公路车辆荷载研究[J].公路,1997,Vol.42(3):8-12.
    [47]Nowak A.5. CollinsK.R. Reliability of struetures[R].Newyork: MeGraw-Hill,2000.
    [48]NowakA.5.Live load model for highway bridges[J]. Journal of Struetural Safety,1993, Vol.13(1+2):53-66
    [49]Nowak A.S. NassifH. Effeet of truek loads on bridges[J]. Journal of Transportation Engineering,1993, Vol.119(6):853-867
    [50]Cremona, C. Optimal extrapolation of traffic load effeets[J]. Struetural Safety. Vol.23(2001):31-46.
    [51]MiaoT.J. Chan TH. T. Bridge live load models from WIM data[J]. Engineering Struetures,2002, Vol.24(8):1071-1084.
    [52]梅刚,秦权,林道锦.公路桥梁车辆荷载的双峰分布概率模型[J].清华大学学报,2003,Vol.43(10):1394-139.
    [53]王硕.桥梁运营荷载状况研究[D].同济大学硕士学位论文.2007
    [54]吕颖钊.服役砼桥梁可靠性评估与寿命预测研究[D].长安大学博士学位论文.2006
    [55]欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑.1995,25(8):11-16,35
    [1]Hasofer A. M., Lind N. C.. Exact and invariant second-moment format[J]. Journal of Engineering Mechanics, ASCE, 1974,100(1):111-121
    [2]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    [3J赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:水利水电出版社,1984
    [4]贡金鑫.结构可靠指标求解的一种新的迭代方法[J].计算结构力学及其应用.1995,12(3):369-373
    [5]张明.结构可靠度分析-方法与程序[M].北京:科学出版社,2009
    [6]贡金鑫,仲伟秋,赵国藩.结构可靠指标的通用计算方法[J].计算力学学报.2003,20(1):12-18
    [7]金伟良.结构可靠度数值模拟的新方法.建筑结构学报.1996,17(3)
    [8]Engeleund S., Rackwitz R.. A benchmark study on importance sampling techniques in structural reliability[J]. Structural Safety,1993,12(4):255-276
    [9]Mori Y., Ellingwood B.. Time-dependent system reliability analysis by adaptive importance sampling[J]. Structural Safety, 1993,12(1):59-73
    [10]张建仁,秦权.现有砼桥梁的时变可靠度分析[J].工程力学.2005,22(4):90-95
    [11]牛荻涛,王庆霖.一般大气环境下砼强度经时变化模型[J].工业建筑.1995,25(6):36-38
    [12]牛荻涛.海洋环境下砼强度的经时变化模型[J].西安建筑科技大学学报.1995,27(1):49-52
    [13]http://cdc.cma.gov.cn/index.jsp中国气象科学数据共享服务网
    [14]蔡昊.砼抗冻耐久性预测模型[D].北京:清华大学博士学位论文,1998.
    [15]冀晓东冻融后砼力学性能及钢筋砼粘结性能的研究[D],大连理工大学博士论文,2007
    [16]商怀帅、宋玉普、覃丽坤.普通砼冻融循环后性能的试验研究[J],砼与水泥制品,2005,142(2):9-11。
    [17]覃丽坤、宋玉普、陈浩然等.冻融对砼力学性能的影响[J],岩石力学与工程学报,2005,24(增1):5048-5053。
    [18]商怀帅.引气砼冻融循环后多轴强度的试验研究[D].大连理工大学博士学位论文.2006
    [19]金伟良,赵羽习.砼结构耐久性[M].北京:科学出版社,2002.
    [20]牛荻涛.砼结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [21]惠云玲.砼结构中的钢筋锈蚀程度和预测试验研究[J].工业建筑,1996,26(4):11-13
    [22]邸小坛,周燕.大气环境下钢筋锈蚀规律研究[J].第四届全国砼耐久性学术交流会论文集。苏州,1996
    [23]邸小坛、周燕.旧建筑物的检测加固与维护[M].地震出版社,1992.
    [24]. CECS 220:2007砼结构耐久性评定标准[S].2007.北京:中国建筑工业出版社
    [25]王深.钢筋砼结构锈胀裂缝的研究及耐久性评估[D].同济大学硕士学位论文.2000
    [26]Thoft-Christensen, modelling of the Deterioration of Reinforced Concrete Structures[J], Proceedings of IFIP Conference on Reliability and Optimization of Structural Sytems, Ann Arbor, Michigan,2000b,15-26.
    [27]公路桥梁承载能力检测评定规程(报批稿),2005
    [28]惠云铃,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13,33
    [29]惠云玲,李荣,林志伸.砼基本构件钢筋锈蚀前后性能试验研究[J].工业建筑.1997,27(6):14-18,57
    [30]JTG D62-2004,公路钢筋砼及预应力砼桥涵设计规范[S].2004.北京:人民交通出版社
    [31]GB/T 50283-1999,公路工程结构可靠度设计统一标准[S].1999.北京:计划出版社
    [32]JTG H11-2004,公路桥涵养护规范[S].2004.北京:人民交通出版社
    [33]邹天一,李扬海.结构可靠度[M].北京:人民交通出版社.1998
    [34]杜进生,刘西拉.无粘结预应力砼构件的可靠度分析[J].建筑结构学报.2002,23(1)
    [35]欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑.1995,25(8):11-16,35
    [36]李扬海,鲍卫刚,郭修武,程翔云等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997
    [37]常大民,江克斌.桥梁结构可靠性分析与设计[M].北京:中国铁道出版社,1995
    [38]吕颖钊.服役砼桥梁可靠性评估与寿命预测研究[D].长安大学博士学位论文.2006
    [1]牛荻涛.砼结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [2]邸小坛,周燕.砼碳化规律研究[R].北京:中国建筑科学研究院,1995
    [3]张誉,蒋利学,张伟平,屈文俊编著.砼结构耐久性概论[M].上海:上海科学技术出版社,2003
    [4]朱安民.砼碳化与钢筋耐久性[J].混凝土,1992(6):18-22
    [5]金伟良,赵羽习.砼结构耐久性[M].北京:科学出版社,2002.
    [6]邸小坛,周燕.大气环境下钢筋锈蚀规律研究[J].第四届全国砼耐久性学术交流会论文集。苏州,1996
    [7]Bazant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Theory[J], Journal of Structural Division, ASCE, Vol.105, No.6,1979, PP.1137-1153.
    [8]惠云玲.砼结构中的钢筋锈蚀程度和预测试验研究[J].工业建筑,1996,26(4):11·13
    [9]邸小坛,周燕.旧建筑物的检测加固与维护[J].地震出版社,1992.
    [10]CECS 220:2007,砼结构耐久性评定标准[S].2007.北京.中国建筑工业出版社
    [11]王深.钢筋砼结构锈胀裂缝的研究及耐久性评估[D].同济大学硕士学位论文.2000.
    [12]Thoft-Christensen, modelling of the Deterioration of Reinforced Concrete Structures[J], Proceedings of IFIP Conference on Reliability and Optimization of Structural Sytems, Ann Arbor, Michigan,2000,15-26.
    [13]张伟平.砼结构的钢筋锈蚀损伤预测及其耐久性评估[D].同济大学博士学位论文,1999.
    [14]Morinaga S., Prediction of Service Life of Reinforced Concrete Buildings Based on the Corrosion rate of Reinforcing Steel[J], Durability of Building Materials and Components, Proceedings of the Fifth International Conference Helded in Brighton, UK,1990
    [15]惠云铃,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10·13,33
    [16]马良喆,陈慧娟,白常举.钢筋锈蚀后力学性能的试验研究[J].施工技术,2000(12):43-44
    [17]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1):43-46
    [18]张平生,卢梅,李小燕.锈损钢筋的力学性能[J].工业建筑,1995(9):41-44
    [19]全明研.老化和损伤的钢筋砼构件的性能[J].工业建筑,1990(2):15-19
    [20]孙维章,梁宋湘等.锈蚀钢筋剩余承载力的研究[J].水利水运科学研究,1993(2):169-179
    [21]惠云玲,李荣,林志伸,全明研.砼基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997(6):14-18
    [22]陶峰,王林科,王庆霖.服役钢筋砼构件承载力的试验研究[J].工业建筑,1996(6):17-27
    [23]CECS 220:2007砼结构耐久性评定标准[S].2007.北京:中国建筑工业出版社
    [24]JTJ D62-2004,公路钢筋砼及预应力砼桥涵设计规范[s].2004.北京:人民交通出版社
    [23]王栋Visual Basic使用教程[M].2000.北京:清华大学出版社
    [1]中交公路规划设计院有限公司等.桥梁设计荷载与安全鉴定荷载研究工作大纲[R].2009年4月
    [2]李扬海,鲍卫刚,郭修武,程翔云等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997
    [3]GB/T50283-1999.公路工程结构可靠度设计统一标准[S].北京:中国计划出版社,1999.
    [4]梅刚,秦权,林道锦.公路桥梁车辆荷载的双峰分布概率模型[J].清华大学学报,2003,43(10):1394-139.
    [5]顾祥林,许勇,张伟平.既有建筑结构构件的安全性分析[J].建筑结构学报.2004,25(6):117-122
    [6]闫磊,吕颖钊,贺拴海.服役砼桥梁构件可靠性实用评估方法[J].交通运输工程学报,2009,Vol.9(5):13-17.
    [7]周品,赵新芬MATLAB数理统计分析[M].北京:国防工业出版社.2009
    [8]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2009
    [9]王硕.桥梁运营荷载状况研究[D].同济大学硕士学位论文.2007
    [10]吕颖钊.服役砼桥梁可靠性评估与寿命预测研究[D].长安大学博士学位论文.2006
    [1]段成晓,刘小玲,徐德新等.既有桥梁外贴CFRP加固后剩余使用寿命预测[J].武汉大学学报(工学版),2008,41(6),70-74
    [2]沈蒲生,谭宇昂.钢筋砼受弯构件粘帖加固时加固材料最大用量研究[J].湖南大学学报(自然科学版),2004,31(6),51-55
    [3]Victor Giurgiutiu, Jed Lyons, Michael Petrou. Experimental Fracture Mechanics for the Bond between Composite Overlays and Concrete Substrate[J].ACI Structural Journal,1999, (6-7):56-67;
    [4]李永德,朱明.FRP加固修复砼用粘结材料的研究——浸渍树脂[J],化学建材,2001,(4):29-32;
    [5]李荣,佟晓利,颜子涵.碳纤维加固砼结构技术应用实践[J].工业建筑,1998,28(11):14-18;
    [6]王曼霞,赵稼祥,碳纤维的发展、问题与对策[J].玻璃钢/复合材料,2000(1):48-51;
    [7]张素梅,王玉银,杨卫东.外粘钢板加固强钢筋砼梁的性能分析[J].哈尔滨建筑大学学报,1999.32(4):13-17;
    [8]周云麟,褚贵阁.马钢第二烧结厂钢筋砼框架粘贴钢板补强加固[J].施工技术,1994(9):48-53;
    [9]王孔藩,庄文华,高锌.建筑结构加固新技术-粘钢加固法[J].施工技术,1994.(7):25-27;
    [10]JTJ D60-2004,公路桥涵设计通用规范[S].2004.北京:人民交通出版社
    [11]贡金鑫.结构可靠指标求解的一种新的迭代方法[J].计算结构力学及其应用,1995,12(3):369-373.
    [12]GB/T 50283-1999.公路工程结构可靠度设计统一标准[S].1999.北京:中国计划出版社
    [13]赵国藩,贡金鑫,赵尚传.工程结构生命权过程可靠度研究[M].北京:中国铁道出版社,2004
    [14]孙晓燕.服役期及加固后的钢筋砼桥梁可靠性研究[D].大连理工大学博士学位论文.2004
    [15]Allen D. E.. Limit states criteria for structural evaluation of existing buildings[J]. Canadian Journal of Civil Engineering, 1991
    [16]ISO/CD 13822. Bases for design on structures-assessment of existing structures[R].
    [17]赵挺生.现存建筑物可靠性评价[J].建筑结构.1998,(10):41-45
    [18]张跃松,王要武,张钟涛.建筑工程结构可靠度与使用寿命的预测及定量关系分析[J].建筑科学.2001,17(4):35-38
    [19]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996
    [20]周建方,周美英,李典庆.现役钢闸门结构最低可靠度标准的确定[J].中国农村水利水电.2003,(5):48-51
    [21]牛荻涛.砼结构耐久性与寿命预测[M].北京:科学出版社,2003
    [22]孙文静,李永和.服役结构剩余寿命预测[J].上海大学学报(自然科学版).2004,10(6):635-638,648
    [23]Frangopol D. M.. Bridge safety and reliability[M]. ASCE,1999
    [24]Maria M. S., Aleksander S., Andrzej S. N.. Reliability Analysis for Eccentrically Loaded Columns[J]. ACI STRUCTURAL JOURNAL,102(5):676-688,2005
    [25]李扬海,鲍卫刚,郭修武,程翔云等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700