用户名: 密码: 验证码:
高成炭率酚醛树脂的制备及其在C/C复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相浸渍法制备C/C复合材料的性能与浸渍剂树脂的成炭率以及树脂炭的结构密切相关,因此,高成炭率树脂的制备以及树脂炭的催化石墨化研究就成为液相浸渍法制备C/C复合材料研究领域中最为重要的两个方面。
     本文以氨水为催化剂,利用甲醛和苯酚制备了C/C复合材料用高成炭率酚醛树脂。系统地考察了醛/酚摩尔比、合成温度、保温时间等反应条件对酚醛树脂的收率、固含量、游离甲醛含量、粘度、固化损失率以及成炭率等的影响,确立了制备高成炭率酚醛树脂的最佳工艺条件。采用了三种方法对已制备的酚醛树脂进行改性,进一步提高了其成炭率,为制备C/C复合材料打下了良好的基础。利用TG-MS,FTIR和固体C-NMR技术对比研究了常规酚醛树脂和硼酚醛树脂(BPF)的热解过程,确定了酚醛树脂热解成炭的温度区间。探讨了酚醛树脂的内在结构与其热稳定性和成炭率之间的关系。在酚醛树脂中加入硼、铬、锰、铁、钴和镍六种催化元素,并采用X射线衍射对树脂炭的催化石墨化效果及其催化机理进行了分析。在对比酚醛树脂炭催化石墨化效果的基础上,优化选择了硼、铬和铁三种元素催化的酚醛树脂炭制备的C/C复合材料作为研究对象,研究了C/C复合材料的弯曲强度、电阻率、摩擦系数和磨损量与基体炭材料石墨化度的关系。寻找一条低成本制备高性能C/C复合材料的方法。
     研究结果表明:甲醛/苯酚摩尔比、反应温度和保温时间是影响酚醛树脂结构和性能的主要因素,酚醛树脂的内在结构与其成炭性能密切相关。经优化得出在以氨水为催化剂的条件下最佳工艺为:甲醛/苯酚摩尔比为1.2:1,反应温度为90℃,保温时间为25min。在该工艺条件下制备的酚醛树脂固化物在700℃热处理后的成炭率可达73.8%。
     改性是提高C/C复合材料的树脂炭酚醛树脂基体的成炭率常用方法,本文采用了三种方法对合成的氨酚醛树脂进行了进一步改性处理。第一种方法是在氨酚醛树脂添加水杨醛和苯甲醛活性稀释剂,活性稀释剂分子链中的官能团与酚醛树脂形成共轭体系提高酚醛树脂的成炭率;第二种方法是在酚醛树脂中引入硼元素来改变其分子结构,生成键能较高的硼酯键以提高酚醛树脂的成炭率;第三种方法是对酚醛树脂进行复合改性,即在硼改性后的酚醛树脂中再添加活性稀释剂,从而进一步提高酚醛树脂的成炭率。初步实验结果表明,复合改性比单一改性的酚醛树脂具有更高的成炭率,经过700℃热处理后其成炭率大于80%。
     利用TG-MS、FTIR和固体C-NMR技术研究了醛酚比为1.2的酚醛树脂(PF1.2)的热解过程,探讨了酚醛树脂成炭率与其结构的关系,结果表明:酚醛树脂结构中不同取代位亚甲基的相对含量是影响酚醛树脂耐热性能和成炭率的主要因素。对对位(P-P')位亚甲基的热稳定性高于邻邻位(O-O')位亚甲基, O-O'位亚甲基在树脂热解前与两相邻酚羟基可环烷化成氧杂蒽环,从而提高树脂的成炭率。
     对比研究了硼酚醛树脂(BPF)和PF1.2的热解过程,探讨了硼元素的引入对酚醛树脂热稳定性和成炭率的影响,找出了影响硼酚醛树脂成炭率的主要结构因素及其热解成炭的温度区间。结果表明:引入的硼酸通过生成硼酯键改变了酚醛树脂的分子结构。正是由于硼酸改性酚醛树脂中生成的硼酯键使其具有比自制氨酚醛树脂更高的耐热性和成炭率。
     XRD分析结果表明:经过1600℃及以上高温热处理时,六种元素对酚醛树脂炭都有不同程度的催化石墨化效果。硼元素对酚醛树脂炭材料的催化石墨化过程如下:硼原子在高温下通过扩散作用与碳形成固溶体,硼原子进入炭材料六元环平面内的缺陷位置促使石墨结构的完善。因此通过硼催化的无定形炭材料可转化为均一的A组分。锰元素催化机理与硼元素类似,但其催化石墨化作用较硼差;铬元素与炭材料在高温下形成碳化物,通过碳化铬的分解转化为Ts组分;酚醛树脂炭先溶解于单质铁、单质钴和单质镍中,然后再析出石墨化G组分和Ts组分。
     对比研究了空白试样与分别添加硼、铁和铬的酚醛炭基C/C复合材料的电阻率、弯曲强度、摩擦系数和磨损量。实验结果表明,空白试样由于基体炭为难石墨化的,其电阻率高达39.44μ m,含催化剂的树脂炭石墨化程度较高;其中硼催化试样的电阻率为16.82μ m;铁催化试样的的电阻率为19.82μ m,铬催化试样的电阻率为30.72μ m,基体炭经催化石墨化后其电阻率降低幅度很大。催化石墨化后基体炭与碳纤维的界面结合强度减弱导致了C/C复合材料弯曲强度的降低。C/CBlank的弯曲强度高达176MPa, C/CB、C/CFe和C/CCr的弯曲强度分别为115MPa、66MPa和53Mpa,说明基体炭中含有催化剂的C/C复合材料的弯曲强度都有所降低。催化石墨化对酚醛炭基C/C复合材料的摩擦学性能有明显的影响。空白试样的摩擦系数为0.71,而硼催化试样和铁催化试样的摩擦系数较低,分别为0.27和0.28。磨损量与基体炭和炭纤维的界面接合情况相关,界面接合较弱C/CFe复合材料的磨损量最大,而界面接合较强的C/CBlank和C/CB复合材料磨损量较小。
The performance of C/C composites prepared by liquid impregnation method isclosely related to the char yield of resin impregnation resin and the structure of resincarbon. Therefore, the research on the resin preparation with high char yield andresearch on catalytic graphitization of resin carbon become two most important partsin the research field of C/C composites prepared by liquid impregnation method.
     This study used ammonia as catalyst, used formaldehyde and phenol to prepareC/C composites with high char yield phenolic resin. And the study systematicallyexamined the impact of reaction conditions such as the ratio of formaldehyde/phenolmolar, synthetic temperature, holding time on the yield of phenolic resin, solidcontent, free formaldehyde content, viscosity, curing loss rate and char yield, theoptimum conditions to prepare the phenolic resin with high char yield wereestablished. Three methods had been used to modify the prepared phenolic resin inorder to further improve its char yield, which had laid a good foundation for thepreparation of C/C composites. TG-MS, FTIR and solid C-NMR techniques were usedto conduct comparative study on the pyrolysis process of conventional phenolic resinand boron phenolic resin (BPF) and determine the temperature range of phenolic resinpyrolysis char. The relationship between the structure of phenolic resin and itsthermal stability and char yield was explored. Six catalytic elements of boron,chromium, manganese, iron, cobalt and nickel were added into phenolic resin, AndX-ray diffraction (XRD), scanning electron microscope (SEM) and metallographicmicroscope observation and Raman spectra were used to characterize the catalyticgraphitization effect of its catalytic resin carbon, and the catalytic mechanism of eachelement was analyzed. On the basis of contrasting phenolic resin carbon catalyticgraphitization effect, C/C composites prepared by phenolic resin carbon by threeelements of Boron, chromium, and iron catalysis were optimally selected to be theresearch object. The relationship of bending strength, resistivity, friction coefficientand wear volume of C/C composites and graphitization degree of matrix carbonmaterials was studied. A low cost method to prepare high performance C/Ccomposites was found.
     The results showed that the formaldehyde/phenol molar ratio, reactiontemperature and holding time were the main factors influencing the structure and performance of phenolic resin, the structure of phenolic resin was closely related toits char performance. It was obtained after optimization that the optimum processunder the condition of ammonium hydroxide as catalyst was as follows: the ratio offormaldehyde/phenol molar was1.2:1, the reaction temperature was90℃, theholding time was25min.The cured phenolic resin prepared by this process after heattreatment at700℃could reach73.8%.
     Modification is a common method to improve the char yield of C/C compositesresin carbon phenolic resin matrix; this study adopted three methods for synthesis ofammonia phenolic resin for further modification. The first method was to addsalicylaldehyde and benzaldehyde reactive diluents in ammonia phenolic resin, thefunctional groups in molecular chain reactive diluent and phenolic resin formedconjugate system, which improved char yield of phenolic resin; The second methodwas to introduce boron element in phenolic resin to change its molecular structure, thegenerated key could improve boron ester bond in order to improve the char yield ofphenolic resin; The third method was to conduct the compound modification ofphenolic resin, namely adding reactive diluent in boron modified phenolic resin, thusfurther improve char yield of phenolic resin. Preliminary experimental results showedthat the composites modification had higher char yield compared with the singlemodification phenolic resin, its char yield was larger than80%after700℃heattreatment.
     TG-MS, FTIR and solid C-NMR technology was used to study the pyrolysisprocess of PF1.2resin, the relationship between phenolic resin char yield and itsstructure was discussed. Results showed that the relative content of irreplaceablemethylene in the structure of phenolic resin was a main factor influencing phenolicresin heat resistance and the char yield. The thermal stability of (P-P ') methylene washigher than that of O-O' methylene, O-O ' methylene could be naphthenic intoxanthene ring with two adjacent phenolic hydroxyl before pyrolysis of the resin,thereby increasing the resin char yield.
     The pyrolysis processes of boron phenolic resin (BPF) and PF1.2werecomparatively studied, the impact of introducing boron element on the phenolic resinthermal stability and char yield was explored, and the major structural factorsinfluencing boron phenolic resin char yield and the temperature range of its pyrolysischar were identified. The results showed that the introduced boronic acid changedmolecular structure of the phenol resin by generating boron ester bond. It was becausethe generated keys in Boronic acid-modified phenolic resin that made it had a higher heat resistance and char yield than the homemade ammonia phenolic resin.
     The analysis results of XRD, Raman spectroscopy and metallographicobservation showed that after the heat treatment of high temperature above1600℃,six elements had different degrees of catalytic graphitization effect on phenolic resincarbon. The catalytic graphitization process of boron on phenolic resin carbonmaterials was as follows: Boron atoms formed a solid solution with carbon bydiffusion at high temperature; the defect position of boron atoms into thesix-membered ring carbon material plane promoted the improvement of the graphitestructure. Therefore, amorphous carbon material catalyzed by boron could beconverted into a homogeneous Component A. Catalytic mechanism of manganese wassimilar to that of boron, but its catalytic graphitization was worse than boron;Chromium and carbon materials form the carbide at high temperatures, chromiumcarbide was decomposed and transformed into Ts component; Phenolic resin carbonwas dissolved first in elemental iron, elemental cobalt and elemental nickel and thengraphite Component G and Component Ts were precipitated.
     The resistance, bending strength, friction coefficient and wear of blank sampleadded respectively to boron, iron and chromium, phenolic carbon-based C/Ccomposites were comparatively studied. Experimental results showed that theresistivity of blank sample was up to39.44μ m because the carbon matrix wasdifficult to graphitize, the resin carbon containing catalyst had a higher degree ofgraphitization; among them, the resistivity of boron catalytic was16.82μ m, theresistivity of the iron catalyzed sample was19.82μ m, the resistivity of chromiumcatalyzed sample was30.72μ m, the resistivity matrix carbon after catalyticgraphitization reduced significantly. The interface bonding strength of matrix carbonafter catalytic graphitization and carbon fiber weakened, leading to the decrease ofC/C composites bending strength. The bending strength of C/CBlankwas up to176MPa, the bending strength of C/CB、C/CFeand C/CCrwere115MPa、66MPa and53Mpa, respectively, indicating the bending strength of C/C composites in the matrixcarbon containing catalyst reduced. The catalytic graphitization had a distinct effecton the tribological properties on phenolic carbon matrix C/C composites. The frictioncoefficient of blank sample was0.71, and the friction coefficients of boron catalyticsamples and iron catalytic sample were low, they were0.27and0.28respectively.Wear extent was related to the interface bonding situation of matrix carbon and carbonfiber, weak interfacial bonding C/CFecomposites materials had the biggest wearextent, and strong interfacial bonding C/CBlankand C/CBcomposites had the smallest wear extent.
引文
[1]赵俊国,徐君,周师庸.碳/碳复合材料制备方法及其新理论[J].鞍山钢铁学院学报,2002,25(5):333
    [2]石荣.碳/碳复合材料的工艺组织和性能[J].材料导报,1998,6(3):65
    [3]王慧杰,郝建伟,曾凡昌.第九届全国复合材料学术会议论文集(上册)[M].北京:世界图书出版公司,1996:1
    [4]张立同,李贺军,成来飞,等.第九届全国复合材料学术会议论文集(上册)[M].北京:世界图书出版公司,1996:51
    [5]凤桐,蔡玉海,薛维宝.新型酚醛树脂及其复合材料国内外发展概况[J].热固性树脂,1998(4):47-48
    [6] Goodman,S.H. Handbook of Thermoset Plastics[M].2nd Edition. New York:William Andrew Publishing/Noyes,1998
    [7] H.J.Kim, Z.Brunovska, H.Ishida. Synthesis and thermal characterization ofpolybenzoxazines based on acetylene-functional monomers[J]. Polymer,1999,40:6565
    [8]尹廷会.高性能酚醛树脂改性研究进展[J].化工进展,2001(9):13-16
    [9]黄发荣,焦杨生.酚醛树脂及其应用[M].北京:化学工业出版社,2003
    [10]魏化震,王成国,王海庆.新型抗烧蚀酚醛树脂的研究[J].材料工程,2003(3):31-34
    [11]魏化震,王成国,王海庆.高交联密度酚醛树脂的合成[J].塑料工业,2003,31(2):16-18
    [12]张衍,王井岗,刘育建.新型高残碳酚醛树脂的性能研究[J].宇航材料工艺,2003(5):35-39
    [13]石鲜明,吴瑶曼,余云照.用作耐热材料的新型酚醛树脂的研究动向[J].高分子材料通报,1998,12(4):57-64
    [14] Trick K A and Saliba T E. Mechanisms of the Pyrolysis of Phenolic Resin in aCarbon/phenolic composite[J]. Carbon,1995,33(11):1509-1515
    [15] M.F. Grenier-Loustalot,G. Raffin, B. Salino, O. Paysse. Phenolic resins Part6.Identifications of volatile organic molecules during thermal treatment of neatresols and resol filled with glass fibers [J]. Polymer,2000,41:7123-7132
    [16]陈祥宝.高性能树脂基体[M].北京化学工业出版社,1999:15
    [17]任曾茂,叶润喜.苯胺改性酚醛树脂胶粘剂的研究[J].中国胶粘剂,1994,3(4):32
    [18]张立群,王一中,王益庆,等.粘土/丁苯橡胶纳米复合材料制备及性能研究.特种橡胶制品,1998,19(2):6
    [19]漆宗能,李强,赵竹第,等.一种聚酰胺/粘土纳米复合材料及其制各方法.中国发明专利,CNI138593A.1997-10-290
    [20]漆永能,王胜杰,李强,等.硅橡胶/蒙脱土插层复合材料及其制备方法.中国发明专利,CNI163288A.1997-10-290
    [21]漆宗能,柯扬船,丁幼康,等.一种聚对苯二甲酸丁二酯/层状硅酸盐纳米复合材料及其制备方法.中国发明专利,CNI187506A.1998-07-15
    [22] Wu Zenggang, Zhou Chixing,Cheng Baojia. Synthesis of novlac/montmorillonitenanocomposite by in situ suspension polymerization[J]. China synthetic rubberindusty,2001,24(4):233
    [23]王井岗,黄晓松,刘育建,等.新型高残碳酚醛树脂的研究[J].宇航材料工艺,2001(6):47-50
    [24]胡良全,程建国,滕慧萍等.纳米炭粉对炭/酚醛材料性能的影响[J].固体火箭技术,2000(3):58–62
    [25] K.Quchi and H.Hond.Fuel[J],1959,38:429
    [26] William M. Jackson and Robert T. Cokley. Journal of applied polymer science[J],1964,8:2163-2193
    [27] J.A.Parker and E.L.Winkler,NASA TR R-276,Ames Research Center,1967
    [28] Marinkovic S and Dimitriuevic S. Carbon/carbon composites prepared bychemical vapour deposition [J]. Carbon,1985;23:691
    [29] Cordero T,Thrower P A and Radovic L R.Carbon. On the oxidation resistance ofcarbon-carbon composites obtained by chemical vapor infiltration of differentcarbon cloths[J].1992;30:365
    [30] Lieberman M L. and Pierson H O. Effect of gas phase conditions on resultantmatrix pyrocarbons in carbon/carbon composites[J].Carbon,1974;12:233
    [31] Yen B K and Tadashi. An investigation of friction and wear mechanisms ofcarbon-carbon composites in nitrogen and air at elevated temperatures[J].Carbon,1996;34:489
    [32] Hishiyama Y,Inagaki M,Kimura S,Yamada S. Along the carbon way[J].Carbon,1974;12:24
    [33]稻恒道夫等.石墨化度的评价,碳素(日),1984,118:165-175
    [34]日本炭素材料学会编.中国金属学会炭素材料专业委员会编译.新·炭素材料入门[M].1999:7
    [35]李崇俊,马伯信,霍肖旭.炭/炭复合材料石墨化度的表征[J].新型炭材料.1999,14(1):19-25
    [36]邹林华,黄启忠等. C/C复合材料石墨化度的测定和评价[J].固体火箭技术,1998,21(1):43-48Zou Linhua,Huang Qizhon et al. Characterization ofGraphitization Degree for C/C Composite[J]. Journal of Solid RocketTechnology,1998,21(1):43-48
    [37]张贇,邓海金,李明等. C/C复合材料石墨化度P1模型的表征及测定[J].材料工程,2001,4:29-33Zhang Yun, DENG Hai-jin, Li Min et al. The Evaluation ofGraphitization Degree P1Model and Measurement of C/C Composites[J].材料工程,2001,4:29-33
    [38]汤中华,周桂芝,熊杰,邹志强.炭/炭复合材料石墨化度的XRD均峰位法测定[J].中国有色金属学报.2003,13(6):1435-1440Tang Zhong-hua, Zhou Gui-zhi,Xiong Jie, Zou Zhi-qian. Measurement of graphitization degree ofcarbon-carbon composites by average X-ray diffraction angle method [J]. TheChinese Journal of Nonferrous Metals.2003,13(6):1435-1440
    [39]日本炭素材料学会编.中国金属学会炭素材料专业委员会编译.新·炭素材料入门[M].1999:23
    [40]日本炭素材料学会编.中国金属学会炭素材料专业委员会编译.新·炭素材料入门[M].1999:10-220
    [41] A Oya. Review Phenomena of catalytic graphitization[J]. Journal of materialsscience,1982,17:309-322
    [42]刘洪波译.石墨化度的评价[J].炭素技术,1991,5:42.
    [43] A Oya. Review Phenomena of catalytic graphitization[J]. Journal of materialsscience,1982,17:309-322
    [44] A Oya, Sugio Otani. Catalytic graphitization of carbons by various metals[J].Carbon,1978,17:131-137.
    [45] S. H. Irving and P. L. Walker Jr, Carbon5(1967)399.
    [46] P.C. Li, Nature192(1961)864.
    [47] Young-Jae Lee, Hiroaki Hatori. The dependence of B retentivity on carboncrystallinity[J]. Materials Chemistry and Physics,2003,82:258-262.
    [48] R. L. Courtner and S. F. Dullliere, ibid.10(1972)65.
    [49] E.M. Wewerka and R. J. Imprescia, ibid.11(1973)289.
    [50] H. N. Murty, D. L. Biederman and E. A. Heintz, Carbon11(1973)163.
    [51] S. Marinkovic, C. Suznjevic, I. Dezarov.A. Mihajlovic and D. Cerovic, ibid.8(1970)283.
    [52] E. Fitzer and B. Keglel, ibid.6(1968)433.
    [53] Asao.Oya and Sugio.Otani, Catalytic graphitization of carbons by variousmaterials, Carbon Vol.17,131-137
    [54] Ni zhichun,Li qintao. Catalytic graphitization of furan resin carbon byYttrium[J]. Carbon,2008,46:365–389
    [55] C Yoxokawa, Il Hosoeawa, Y Takegami. A kinetic study of catalyticgraphitization of hard carbon[J]. Carbon,1967,5:475-480
    [56] Young-Jae Lee, Hiroaki Hatori. The dependence of B retentivity on carboncrystallinity[J]. Materials Chemistry and Physics,2003,82:258-262
    [57] A Oya, Sugio Otani. Catalytic graphitization of carbons by various metals[J].Carbon,1978,17:131-137
    [58] A Oya. Review Phenomena of catalytic graphitization[J]. Journal of materialsscience,1982,17:309-322
    [59] Ching-hwa kiang, William Goddard. Catalytic effects of heavy metals on thegrowth of carbon nanotubes and nanoparticles[J]. Phys. Chem. Solids,1996,57:35-39
    [60] A Oya, Sugio Otani. Effects of particle size of calcium and calcium compoundson catalytic graphitization of phenolic resin carbon[J]. Carbon,1979,17:125-129
    [61] R Anton. Nucleation and growth of Pd–Au alloy particles on crystalline graphiteat elevated temperatures[J]. Phys Rev B.2004,70:245-405
    [62] Fitzer E. The future of carbon-carbon composite[J]. Carbon,1987,25(2):163
    [63] BuckleyJ. D. Carbon-carbon materials and composites using CVD and CVIprocessing (anoverview)[J].1993,3:675
    [64] Birakayala Narayana, Evans Edward A. A reduced reaction model for carbonCVD/CVI processes[J]. Carbon.2002,40(5):675-683
    [65] Stoller HM, Frye ER. Processing of C/C Composites an overview paperpresented at73rdAnnual meeting. American Ceramic Society, Chicago.1971
    [66] Kotlensky WV, Pappas J.9thBiennial Carbon Cnf.1969:26
    [67] McAllister LE, Taverna AR.10thBienn Conf on Carbon,1971:40
    [68] Fitzer E, Burger A.1stInt Conf on carbon fibers their composites&Applicantion. London,1971:36
    [69] Thomas CR. Walker EI.5thLondon Int Carbon Conf.1978:520-534
    [70] Fitzer E, Huttener W, Manocha LM. Influence of process parameters on themechanical properties of carbon/carbon composites with pitch as matrixprecursor[J]. Carbon,1980,18:291-295
    [71]浦保键,浦继强.飞机炭刹车盘的快速气相沉炭[J].新型炭材料,2000,(12):27-29
    [72]汤中华,邹志强.热梯度CVI制各炭/炭复合材料及其研究进展[J].炭素,2003,(3):18-20
    [73] B. Iischner.材料科学性能过程工艺[M].化学工业出版社,1987:129-139
    [74]赵俊国,徐君,周师庸.碳/碳复合材料制备方法及其新理论[J].鞍山钢铁学院学报,2002,5(25):333-337
    [75]浦保键,浦继强.飞机炭刹车盘的快速气相沉炭[J].新型炭材料,2000,(12):27-29
    [76]汤中华,邹志强.热梯度CVI制各炭/炭复合材料及其研究进展[J].炭素,2003,3:18-20
    [77] Zhang Yonghui,Wang Jiping,Qiao Guanjun,Jin Zhihao. Progress of research onpreparation of carbon/carbon composite material by the chemical liquid vaporinfiltration method[J]. Journal of the Chinese Ceramic Society,2007,31(9):389-392
    [78]李新涛,李克智,李贺军.CLVI工艺制备C/C复合材料研究进展[J].材料导报,2005,19(11):79-81
    [79] Shinn-Shyong Tzeng,Ya-Ga Chr. Evolution of microstructure and properties ofphenolic resin-based carbon/carbon composites during pyrolysis[J]. MaterialsChemistry and Physics,2002,73(2):162-169
    [80]林起浪,李铁虎.炭/炭复合材料用基体前驱体的研究动态[J].炭素技术,2001,2:13-17
    [81] Christ K, Hunttinger K J. Carbon-fiber-reinforced carbon composites fabricatedwith mesophase pitch[J]. Carbon,1993,31(5):731
    [82]罗瑞盈.碳/碳复合材料制备工艺及研究现状[J].兵器材料科学与工程,1998,21(1):64
    [83]李晔,黄启忠,朱东波,巩前明.液相浸渍法制备C/C复合材料[J].碳素,2001,16:21-23
    [84]丁学文,齐会民,庄元其.芳基乙炔聚合物固化反应动力学和结构表征[J].华东理工大学学报,2001,14(1):105-108
    [85]陈智琴,刘洪波,何月德,陈鸯飞.高残炭率酚醛树脂的耐热性能研究[J].工程塑料应用,2006,34(11):56-60
    [86]林起浪,李铁虎.炭/炭复合材料用基体前驱体的研究动态[J].炭素技术,2001,2:13-16
    [87]沈新元.聚丙烯腈系纤维的产业用途[J].合成纤维,1998,27(1):13-17
    [88]许林,肖鹏,徐先锋,熊翔.硝酸对HTA炭纤维表面形貌和力学性能的影响[J].炭素,2007,3:39-42
    [89]戴永耀. C/C复合材料及其在航空上的应用前景[J].材料工程,1993,11:43-46
    [90]王兴业,唐羽章.复合材料力学性能[M].长沙:国防科技大学出版社,1988:12-13
    [91] Tsou H T, Kowbel. W A Hybrid. PACVD B4C/CVD Si3N4Coating for OxidationProtection of Composites[J]. Carbon,1995,33(9):1289-1292
    [92] Savage G. Carbon-Carbon Composites[M]. London:Chapman&Hall,1993:31-35
    [93] C.R. Thomas. Essentials of Carbon-Carbon Composites[J]. The Royal Societyof Chemistry,1993
    [94]赵稼祥.炭/炭复合材料的失效分析[J].炭素技术,1993,(1):30-33
    [95]刘培桐.炭纤维-树脂复合材料人工肋骨的研制与应用[J].炭素技术,1989,(3):5-7
    [96]陈华辉,邓海金,李明,等.现代复合材料[M].北京:中国物资出版社,1998:331
    [97] Ahlborn K, Chou T,Kagawa Y. The influence of the heat-treatment temperatureon the crack-growth-resistance of a fine-grained carbon[J]. Carbon,1993,31(1):205-212
    [98]李晔,黄启忠,王林山.树脂浸渍法对炭/炭复合材料力学性能的影响[J].炭素,2002,2(18):117-120
    [99]张永振.材料的干摩擦学[M].北京:科学出版社,2007:197-204
    [100]中国标准出版社.塑料标准大全,合成树脂[M].北京:中国标准出版社,1999
    [101]冯仰婕.热分析法研究固体热分解动力学处理方法[J].高分子材料科学与工程.1995(2):66-69
    [102]尚永华,谭晓明,李焰,等.高羟甲基含量甲阶酚醛树脂的合成[J].粘接,2001,22(5)7-10
    [103]殷荣忠,山永年,毛乾聪,等.酚醛树脂及其应用[M].化学工业出版社,1990:38-39
    [104]G. Astarloa Aierbe, J.M.Echeverria, M.D. Martin et al. Influence of the initialformaldehyde to phenolic molar ratio (F/P) on the formation of a phenolic resolresin catalyzed with amine[J]. Polymer,2000,41:6797
    [105]L. Costa, L. Rossi di Montelera, G. Camino, E. D. Weil and E. M. Pearce.Structure-charring relationship in phenol-formadehyde type resins[J]. PolymerDegradation and Stability,1997,56:23-35
    [106]Krystyna Rocznika, Teresa Biernacka and Maciej Skarzynski. Some propertiesand Chemical Structure of Phenolic Resin and Their Derivatives[J]. Journal ofApplied Polymer Science,1983,28:531-542
    [107]L.B.Manfredi,O.de la Osa, N.Galego Fernandez, A.Vazquez. Strucutre-properties relationship for resols with different formaldehyde/phenol molarratio. Polymer[J],1999,40:3867-3875
    [108]Kimberly A. Trick and Tony E.Saliba. Merchanism of the pyrolysis of phenolicresin in a carbon/phenolic composite[J]. Carbon,1995,33(11):1509-1515
    [109]陈精明,敖文亮,吴晓卫,等.甲阶酚醛树脂的合成研究进展[J].热固性树脂,2004,19(6):31-33
    [110]张衍,荆建芬,王井岗,等.高碳酚醛树脂的结构改性[J].玻璃钢/复合材料,2001,1:10
    [111]梁国正,顾媛娟等.双马来酰亚胺用活性稀释剂的研究[J].高分子材料科学与工程,1994(6):26
    [112]刘岚,陈用烈.活性稀释剂对不饱和聚酯流变性能的影响[J].中山大学学报(自然科学版),1999(4):123-125
    [113]沈红.杯芳烃改性低粘度高残炭酚醛树脂的研究[D].四川大学硕士论文,2004,5
    [114]Morterra, C.&Low, M. J.D. IR studies of carbons. Ⅶ:The pyrolysis of aphenol-formaldehyde resin[J]. Carbon,1985(23):525
    [115]Khmel’nitskii, R. A., Lukashenko, I. M., Kalinkevich, G.A., Brodskii, E. S.&Mikov, V. L., Khimiya Tverdogo Topliva,1989(23):120
    [116]伍林.酚醛树脂耐热性的改性研究进展[J].中国胶粘剂,2005,14(6):45-49
    [117]阎联生,傅立坤,刘晓红.树脂基防热材料烧蚀性能表征的探讨[J].固体火箭技术,2003,26(2):53
    [118]甘朝志.硼酚醛树脂的研制[J].贵州化工,1998(3):17-19
    [119]伊廷会.酚醛树脂高性能化改性研究进展[J].热固性树脂,2001,16(4):29-33
    [120]王培铭,许乾慰.材料研究方法[M].科学出版社,2005:273-275
    [121]Drumm LF, Lebranc JR. In: Solomon DH, editor. Step GrowthPolymerization[M]. New York: Marcel Dekker, l972
    [122]Moragues J. Analyse Etude Cinetique et Transformations Structurales de Resols.Relations Structure-Properties. PhD Thesis. INSA, Lyon, France, l994
    [123]Yoram Cohen and Zeev Aizenshtat. Investigation of pyrolytically producedcondensates of phenol-formaldehyde resins, in relation to their structure anddecomposition mechanism[J]. Journal of Analytical and Applied Pyrolysis,1992,22:153-178
    [124]徐复铭. Resol型酚醛树脂热解特征的TG-MS研究[J].新材料新工艺,2003(1):18-23
    [125]Marie-Florence Grenier-Loustalot, Stephane Larroque and Philippe Grenier.Phenolic resin:5. Solid-state physicochemical study of resoles with variable F/Pratios[J]. Polymer,1996,37(4):645-646.
    [126]A Oya. Review Phenomena of catalytic graphitization[J]. Journal of materialsscience,1982,17:309-322
    [127]张福勤,黄伯云,黄启忠,熊翔,刘根山,易茂中.炭/炭复合材料石墨化度的研究进展[J].矿冶工程,2000,20(1):27-29
    [128]R Anton. On the reaction kinetics of Ni with amorphous carbon[J].Carbon,2008,46:656-66
    [129]A Oya, S Yoshida. Formation of mesopores in phenolic resin-derived carbonfiber by catalytic activation using Cobalt[J]. Carbon,1978,33(8):1085-1995
    [130]R Anton. In situ TEM investigations of reactions of Ni,Fe and Fe-Ni alloyparticles and their oxides with amorphous carbon[J]. Carbon,2009,47:856-865
    [131]李晔,黄启忠,朱东波,巩前明.液相浸渍法制备C/C复合材料[J].碳素,2001,16:21-23
    [132]Kwang Hee Lee, Chul Rim Choe. Resin impregnation efficiency ofcarbon-carbon composite[J]. Journal of Material Science Letters(UK),1993,12(3):199-200
    [133]张福勤,黄启忠,黄伯云,巩前明,陈腾飞.C/C复合材料石墨化度与导电性能的关系[J].新型炭材料,2001,16:12-16
    [134]关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社.2005,7:208-265
    [135]Zhang Fuqin, Huang Qizhong, Huang Baiyun. Effects of graphitization degreeon the electrical conductivity of C/C composites[J]. New carbon materials.2001,16:45-49
    [136]Liao xiaoling, Li hejun, Xu wenfeng, Li kezhi. Effects of tensile fatigue loads onflexural behavior of3D braided C/C composites[J]. composites science andtechnology,2008,68:333–336
    [137]Yu Shu, Liu Gengshan, Li Xibin, Pu Jiqiang, Pu Baojian, Xiong Xiang. Effect ofheat treatment temperature on the properties of carbon/carbon composites[J].Journal of the Chinese Ceramic Society,2003,31(9):842-846
    [138]Matthieu houlle, Adrien deneuve, Julien amadou, Dominique begin,Cuongphamhuu. Mechanical enhancement of C/C composites via the formation of amachinable carbon nanofiber interphase[J]. Carbon,2008,46:76-83
    [139]Chen Tengfei, YangWentang, Liu Genshan, Huang Baiyun. Effect of ratio ofnon-woven cloth to short-cut fiber web of the preform on the flexural propertiesof C/C composites[J]. Materials Science and Engineering(A),2009,3:48-51
    [140]张福勤,黄伯云,黄启忠,陈腾飞,巩前明,熊翔. C/C复合材料断口热解炭及其界面形貌SEM分析[J].矿业工程,2007,2:17-19
    [141]W Kowbel, C Bruce, J C Withers. Effect of carbon fabric whiskerization onmechanical properties of C-C composites. Composites(A),1997:993-1000
    [142]Ju C P, Lee K J, Wu H D. Low-energy wear behavior of polyacrylonitrile fiberreinforced pitch-matrix carbon-carbon composites[J].Carbon,1994,32(5):971-977
    [143]陈青华,邓红兵,肖志超,苏君明,彭志刚.炭/炭复合材料摩擦性能与摩擦表面状态的关系[J].材料科学与工程学报,2008,3(26):431-435
    [144]陈青华,肖志超,邓红兵,苏君明,彭志刚.国外C/C复合材料飞机刹车盘的摩擦表面特性和摩擦磨损机理[J].材料科学与工程学报,2008,2(26):288-291
    [145]李江鸿,熊翔,张红波,肖鹏,黄伯云.模拟正常刹车条件下C/C复合材料的摩擦表面结构分析[J].摩擦学学报,2008,2(28):161-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700