用户名: 密码: 验证码:
基于渗扩改性不锈钢的船用燃料电池双极板特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减少船舶尾气排放是《MARPOL公约》附则VI中改善海洋大气环境和港口环境的重点。聚合物电解质膜(PEM)燃料电池具有效率高、运行温度低、室温快速启动和环境友好等特点。大功率PEM燃料电池可作为商业船舶、港口船舶和内河船舶等的动力和船舶电网发电站,是减少船舶尾气排放的重要技术途径之(?)双极板是连接单电池构成大功率燃料电池电堆的重要的多功能组件,直接决定着燃料电池的能量密度、体积密度和成本。本文针对不锈钢双极板表面同时存在耐蚀性和导电性不足的问题,提出采用等离了表面合金化方法制备新型改性层,并研究其腐蚀行为和表面导电性等性能,探索改性层与耐蚀性、导电性的关系,以及表面耐腐蚀和表面导电机制。主要工作与结果如下:
     采用等离子表面合金化方法在商用304不锈钢(SS)表面分别制备出了钨、钼和铌的合金化渗扩改性层。改性层均匀致密且无微孔和微裂纹等缺陷,与基体的结合为良好的冶金结合。在模拟PEMFC环境中(70℃,0.05M H2SO4+2ppm HF溶液,通氢气模拟阳极环境,通空气模拟阴极环境),上述改性层均发生钝化现象,在燃料电池工作电位区处于钝化状态;合金化渗扩改性层的成分直接影响双极板的耐腐蚀性,由于铌在酸性环境中的优异耐蚀性,其合金化渗扩改性层表现出较好的耐蚀性和稳定性。
     在过渡金属合金化渗扩改性层的基础上,引入含氮或碳的反应气体,分别制备出铌氮化物和铌碳化物的化合物渗扩改性层。铌氮化物渗扩改性层是由多相β-Nb2N、δ'-NbN和δ-NbN铌氮化物表层和铌、氮扩散次表层所组成;铌碳化物渗扩改性层则由单相NbC表层和扩散次表层组成。在模拟PEMFC环境巾化合物改性层均提高不锈钢的耐腐蚀性、降低钝化电流密度、降低表面接触电阻、提高表面疏水性。铌氮化物和碳化物合金化渗扩改性层使304SS双极板在PEMFC条件下的腐蚀电流密度分别降到了0.127μA cm-2和0.058μA cm-2均低于1μAcm-2;恒电位极化后,铌碳化物合金化渗扩改性304SS的接触电阻达到9.04mΩ cm2,小于10mΩcm2,满足美国能源部(DOE)2015年的双极板目标性能要求
     利用ICP-AES技术对腐蚀溶液中溶解的金属离子进行分析,并结合XPS的分析结果探讨了不同的腐蚀环境对表面改性前后304SS钝化膜的成分、结构和厚度影响。结果表明,钝化膜结构和成分受腐蚀条件的控制,也直接决定改性层的耐腐蚀性和表面导电性。认为铌碳化物渗扩改性层钝化膜较薄,其中除了含有Nb氧化物外还有一定量的NbC,有利于表面导电性的提高。
     此外,本文还研究了含有不同甲醇浓度的酸性溶液的双极板性能,随着甲醇浓度的提高,铌碳化物合金化渗扩改性前后不锈钢的腐蚀速度均降低,铌碳化物渗扩改性304SS形成的钝化膜较薄,具有n型半导性质;而不锈钢形成的钝化膜较厚,具有双层结构一外层n-型半导体层和内层p-型半导体层。
Reducing the exhaust emission of ships is the important contents of annex VI in MARPOL73/78convention, aiming to improve the environments of ocean and port. Polymer electrolyte membrane (PEM) fuel cells, which can be assembled into high-power stacks, have gained extensive attention as new power sources and electric stations for ships due to their relatively simple operating mechanisms, high efficiency and low emissions. Bipolar plates are one of the most crucial components, constituting the dominant share of the total weight and the total cost of the high-power fuel cell stack. Stainless steels are potential candidates for bipolar plate materials to replace the traditional graphite bipolar plate. However, bare stainless steels can not be successfully applied into a commercial PEMFC in terms of corrosion resistance and interfacial contact resistance. To address the insufficient corrosion resistance and high surface resistivity of stainless steel, a surface modification technique-plasma surface alloying method was utilized to make the surface modification of the commercial AISI304stainless steel (304SS). Following are the main study and results:
     Considering the good corrosion resistance of transition metal in acid environment, the tungsten, molybdenum and niobium alloying diffusion layer was respectively prepared on surface of304SS by plasma surface alloying method. The three modification layers are uniform in thickness, dense in microstructures without pinhole, micropore and microcracks, and well in metallurgical adhesion to the304SS substrate with no interfacial defects. The corrosion resistance were investigated and evaluated in simulated PEFMC environment (0.05M H2SO4+2ppm F" solution at70℃, purged with H2to simulate the anodic environment and purged with air to simulate the cathodic environment). The results showed that the modification layers were passivated in PEMFC environment. The corrosion resistance of stainless steel was affected by the composition of the modification layer, and the niobium alloying diffusion layer greately improved the corrosion resistance and stability of304SS.
     Transition metals nitrides and carbides usually have high electrical conductivity and good corrosion resistance, which can be made up the disadvantages of transition metal. On basis of the transition metal alloying diffusion layer, the niobium nitrid and niobium carbide alloying diffusion layers were respectively prepared on surface of304SS by introducing nitrogen or carbon containing gas to the plasma atmosphere. The niobium nitride alloying diffusion layer was comprised of β-Nb2N、δ-NbN and δ-NbN with a niobium nitride surface layer (8~9μm) and a Nb and N diffusion solid solution subsurface layer (1~2μm); The niobium carbide diffusion layer with a cubic NbC phase was comprised of surface layer (~6μm) and a Nb and C diffusion subsurface layer (-1μm). In simulated PEMFC environments, the compound modification layer improved the corrosion resistance, reduced the passivation current density and interfacial contact resistance (ICR), and increased the hydrophobicity of304SS. The niobium nitride and carbide diffusion layer considerably improves the corrosion resistance of304SS, which reduced the corrosion current density to0.127μA cm-2and0.058μA cm-2in simulated PEMFC environment, respectively. Moreover, the ICR of Nb-C304SS kept at9.04mΩ cm2after10h potentiostatic tests fulfilling the requirement of DOE in2015.
     The ICP-AES was used to detect the dissolution of metal ions in the corrosion solutions and in combination with the XPS analyses, the influence of corrosion environments on the composition, structure and thickness of passive film formed on304SS before and after surface modification were further discussed. The results reveal that the corrosion environments affected the composition and structure of passive film, which directly decided the corrosion resistance and conductivity of the modification layer. The passive film formed on the niobium carbide diffusion layer was composed of niobium oxide as well as NbC benefiting the improvement of surface conductivity.
     Besides, the performances of bipolar plate were investigated in aqueous acid methanol solutions with varied methanol concentrations. It was found that the corrosion resistance of the304SS (before and after surface modification) was better when the methanol content is higher. The passive films formed on Nb-C304SS were n-type semiconductor, while those formed on304SS were composed of a duplex electronic structure with an external n-type semiconductor layer and an internal p-type semiconductor layer.
引文
[1]Alkauer S, Zhou P. A comparative study on life cycle analysis of molten carbon fuel cells and diesel engines for marine application. J. Power Sources,2006,158(1):188-199.
    [2]唐丽华,陈祝平,傅小明,基于PEMFC的船舶新动力系统.造船技术,2008,4:35-40.
    [3]衣宝廉.燃料电池-原理、技术、应用.北京:化学工业出版社,2003.
    [4]Chalk S. G, Miller J. F. Challenges for fuel cells in transport applieations. J. Power Sources,2000, 6:40-51
    [5]孙明涛,孙俊才,季世军.燃料电池在船舶上的应用.第二届国际氢能论坛青年氢能论坛,2003.
    [6]Bar-On I, Kirchain R, Roth R. Technical cost analysis for PEM fuel cells. J. Power Sources,2002, 109:71-75
    [7]http://news.xinhuanet.com/energy/2009-12/11/content_12631787.htm
    [8]Heras N, Roberts E P L, Langton R et al. A review of metal separator plate materials suitable for automotive PEM fuel cells. Energy Environ. Sci.,2009,2:206-214.
    [9]李国华,潘朝光,徐莉等.柔性石墨板的氢气透过率研究.材料导报,2004,1:97-99.
    [10]Davies D P, Adcock P L, Turpin M T et al. Bipolar plate materials for solid polymer fuel cells. J. Appl. Electrochem.,2000,30,101-105.
    [11]Hodgson D R, May B, Adcock P L et al. New lightweight bipolar plate system for polymer electrolyte membrane fuel cells. J. Power Sources,2001,96,233-235.
    [12]Hentall P L, Lakeman J B, Mepsted G O et al. New materials for polymer electrolyte membrane fuel cell current collectors. J. Power Sources,1999,80,235-241
    [13]Woodman A S, Anderson E B, Jayne K D et al. American Electroplaters and Surface Finishers Society, AESF SUR/FIN099 Proc.,1999,6,21-24
    [14]Silva R F, Franchi D, Leone A et al. Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte membrane fuel cells. Electrochim. Acta,2006,51:3592-3598.
    [15]王正樵,五幼林.不锈钢.北京:化学工业出版社,1991.
    [16]Olsson C O A, Landolt D. Passive films on stainless steel-chemistry, structure and growth. Electrochim. Acta,2003,48:1093-1104.
    [17]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应川[M].北京:化学工业出版社,2008.
    [18]Macdonald D D. The point defect model for the passive state. J. Electrochemical Soc.,1992, 139:3434-3449.
    [19]Bojinov M, Fabricius G, Laitinet T et al. Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys. Electrochim. Acta,2000, 53:2029-2048.
    [20]Belo M C, Walls M. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment. Corros. Sci.,1998,40:447-463.
    [21]Raraasubramanian N, Preocanin N, Davidson R D. Analysis of Passive Films on Stainless Steel by Cyclic Voltammetry and Auger Spectroscopy. J. Electrochem. Soc.,1985,132:793-798.
    [22]桂艳,高岩.不锈钢表面钝化膜特性的研究进展.特殊钢.2011,32:20-24.
    [23]Haupt S, Strehblow H. A combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 0.5 M H2SO4. Corros. Sci.,1995,37:43-54.
    [24]Mudali U K, Katada Y. Electrochemical atomic force microscopic studies on passive films of nitrogen-bearing austenitic stainless steels. Electrochem. Acta,2001,46:3735-3742.
    [25]Bardwell J A, Sproule G I, Macdougall B R et al. In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J. Electrochem. Soc.1992,139:371-374.
    [26]Maurice V, Yang W P, Marcus P et al. X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films fomed on (100) Fe-18Cr-13Ni single crystal surface. J. Electrochem. Soc.,1998,145:909-920.
    [27]Costa D, Yang W, Marcus P. XPS analysis of passive film formed on chromium in acidic solution without and with chloride ions. Mater. Sci. Forum,1995,185-188:325-336.
    [28]Olsson C O, Hamm D, Landolt D. Electrochemical Quartz crystal microbalance stuties of the passive behavior of Cr in a sulfuric acid solution. J. Electrochem. Soc.,2000,147:2563-2571.
    [29]Wallinder D, Pan J, Leygraf C. EIS and XPS study of surface modification of 316LVM stainless steel after passivation. Corros. Sci.,1999,41:275-289.
    [30]Doh S, Je J, Kim K et al. Influence of Cr and Mo on the passivation of stainless steel 430 (18Cr) and 444 (18Cr-2Mo):in situ XANES study. Nul. Instrum. Meth. B,2003,199:211-215.
    [31]Zhang Y S, Zhu X M, Liu M et al. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy. Appl. Surf. Sci.,2004, 222:89-101.
    [32]Ernst P, Newman R C. Pit growth studies in stainless steel foils. Ⅱ. Effect of temperature, chloride concentration and sulphate addition. Corros. Sci.,2002,44:943-954.
    [33]Elsener B, Rossi A. Effect of pH on elelctrochemical behavior and passive film composition of stainless steel. Mater. Sci. Forum,1995,192-194:225-236.
    [34]Hara N, Sugimoto K. In situ analysis of passive films on Fe-Cr-Ni alloy by potential modulated UV-visible reflection spectroscopy. J. Electrochem. Soc.,1991,138:1594-1599.
    [35]Malik A U, Mayan Kutty P C, Siddiqi N et al. The influence of pH and chloride concentration on the corrosion behavior of AISI 316L steel in aqueous solutions. Corros. Sci.,1992,33:1809-1827.
    [36]程学群,李晓刚,杜翠薇,等.小锈刚和镍是基合金在高温高压醋溶液中的腐蚀行为.中国腐蚀与 防护学报,2006,26(2):70-74.
    [37]Stucki S, Scherer G G, Schlagowski S et al. PEM water electrolyser:evidence for membrane failure in 100 kW demonstration plants. J. Appl. Electrochem.,1998,28:1041-1049.
    [38]Ma L, Warthesen S, Shores D A. Evaluation of materials for bipolar plates in PEMFCs. J. New Mat. Electrochem. Systems,2000,3:221-228.
    [39]黄倬,图海令,张冀强等.质子交换膜燃料电池的研究开发与应用.北京:冶金工业出版社,2000.
    [40]St-Pierre J, Wilkinson D P, Knights S et al. Relationships between water management, contamination and lifetime degradation in PEFC. J. New Mat. Electrochem. Systems,2000,3:99-106
    [41]Ragnar H, Electric Contacts:Theory and Application, Fourth Edition, New York Springer-Verlag, 1967:1-20.
    [42]Davies D P, Adcock P L, Turpin M et al. Stainless steel as a bipolar plate material for solid polymer fuel cells. J. Power Sources,2000,86,237-242.
    [43]Wang H, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J Power Sources,2003,115:243-251.
    [44]Kim J S, Peelen W H A, Hemmes K et al. Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steel. Corros. Sci.,2002,44:635-6
    [45]Iversen A K. Stainless steels in bipolar plates-surface resistive properties of corrosion resistant steel grades during current loads. Corros. Sci.,2006,48:1036-1058.
    [46]Padhy B R, Reddy R G. Performance of DMFC with SS 316 bipolar/end plates. J Power Sources,2006, 153:125-129.
    [47]Wang H, Turner J A. Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources,2004,128,193-200.
    [48]Park Y C, Lee S H, Kim S K et al. Performance and long-term stability of Ti metal and stainless steel as metal bipolar plate for a direct methanol fuel cell. Int. J. Hydrogen Energy,2010,34:4320-4328.
    [49]Makkus R C, Janssen A H H, de Bruijin F A et al. Use of stainless steel for cost competitive bipolar plates in the SPFC. J Power Sources,2000,86:274-282.
    [50]Kraytsberg A, Auinat M, Ein-Eli Y. Reduced contact resistance of PEM fuel cell's bipolar plates via surface texturing. J Power Sources,2007,164:697-703.
    [51]Ma L, Warthesen S, Shores D A. Evaluation of materials for bipolar plates in PEMFCs. J. New Mater. Electrochem. Syst.,2000,3:221-228.
    [52]LaConti A B, Hamdam M, McDonaldin R C, Handbook of Fuel Cells-Fundamentals, Technology and Applications, ed. W. Vielstich, H. A. Gasteiger and A. Lamm, Wiley, New York,2004,3:647-662.
    [53]Wind J, Spa'h R, Kaiser W et al. Metallic bipolar plates for PEM fuel cells. J. Power Sources,2002, 105,256-260.
    [54]Mallant R K A M, Koene F G H, Verhoeve C W Get al. Fuel Cell Seminar, San Diego, CA,1994
    [55]Makkus R C, Janssen A H H, de Brujin F A et al. Stainless steel for cost-competitive bipolar plates in PEMFCs. Fuel Cell Bulletin,2000,3:5-9.
    [56]Pozio A, Silva R F, de Francesco M et al. Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta.,2003,48:1543-1549.
    [57]Tran D T, Velev O A, Kakwan I J et al. Electrochem. Soc. Abstr.190th Fall Meeting, San Antonio, TX,1996.
    [58]Lee S J, Lai J J, Huang C H. Stainless steel bipolar plate. J Power Sources.2005,145:362-368.
    [59]李映辉,金雪芹,徐洪峰等.热处理不锈钢用作质子交换膜燃料电池双极板.电源技术,2005,29:566-569.
    [60]住友金属工业株式会社,固体高分子型燃料电池用不锈钢材,ZL专利号:00105765.0,2003-8-13.
    [61]Kim K M, Kim J H, Lee Y Y, Kim K Y. Effect of immersion in NaOH solution on ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy,2011, 36:13014-13021.
    [62]Yang C, Wang J, Xie X et al. Electrochemical behavior of surface treated metal bipolar plates used in passive direct methanol fuel cell. Int. J. Hydrogen Energy,2012,37:867-872.
    [63]Joseph S, McClure J C, Chianelli R et al. Int. J. Hydrogen Energy,2005,30:1339-1344.
    [64]Lucio Garcia M A, Smit M A. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell. J. Power Sources,2006,156:397-402.
    [65]Ren Y J, Chen J, Zeng C L. Corrosion protection of type 304 stainless steel bipolar plates of proton exchange membrane fuel cells by doped polyaniline coating. J. Power Sources,2010,195:1914-1919.
    [66]Hornung R, Kappelt G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. J. Power Sources,1998,72:20-21.
    [67]Utsunomiya M, Tsuji M, Kuwayama T et al. Metallic separator for fuel cell and production method for the same. US Pat., US7214440, Honda Motors Co,2004.
    [68]Vyas G, Cheng Y T, Abd Elhamid M H et al. Ultra-low loadings of Au for stainless steel bipolar plates. US Pat, US6866958,2003.
    [69]Huang 1 B. Evaluation of silver-coated stainless steel bipolar plates for fuel cell applicatioins. J. Power Sources,2011,196:7649-7653.
    [70]Lu G Q, Wang C Y. Development of micro direct methanol fuel cells for high power applications. J. Power Sources,2005,144:141-145.
    [71]Brady M P, Yang B, Wang H et al. The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates. Metals. Mater. Soc.,2006,58:50-57.
    [72]Brady M P, Yang B, Tortorelly P F et al. FY2005 Progress Report, DOE Hydrogen Program,2005.
    [73]Wang H, Brady M P, Teeter G et al. Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates:Part 1:Model Ni-50Cr and austenitic 349TM alloys. J. Power Sources, 2004,138:86.
    [74]Tian R J, Sun J C, Wang L. Plasma-nitrided austenitic stainless steel 316L as bipolar plate for PEMFC. Int. J. Hydrogen Energy,2006,31:1874-1878.
    [75]Tian R J, Sun J C, Wang L. Effect of plasma nitriding on behavior of austenitic stainless steel 304L bipolar plate in proton exchange membrane fuel cell. J. Power Sources,2007,163:719-724.
    [76]Tian R J, Sun J C, Wang L. Surface stability and conductivity of a high Cr and Ni austenitic stainless steel plates for PEMFC. Rare Metals,2006,25:299-234.
    [77]Wang J L, Sun J C, L i S et al. Surface diffusion modification AISI 304SS stainless steel as bipolar plate material for proton exchange membrane fuel cell. Int. J. Hydrogen Energy,2012,37:1140-1144.
    [78]Nam D G, Lee H C. Thermal nitridation of chromium electroplated AISI316L stainless steel for polymer electrolyte membrane fuel cell bipolar plate. J. Power Sources,2007,170:268-2674.
    [79]Tian R J, Sun J C. Corrosion resistance and interfacial contact resistance of TiN coated 316L bipolar plates for proton exchange membrane fuel cell. Int. J. hydrogen Energy,2011,36:6788-6794.
    [80]Jeon W S, Kim J G, KimY J et al. Electrochemical properties of TiN coating on 316 L stainless steel separator for polymer electrolyte membrane fuel cell. Thin Solid Films 2008,516:3669-3672.
    [81]Cho E A, Jeon U S, Hong S A et al. Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. J. Power Sources,2005,142:177-183.
    [82]Wang L, Northwood D O, Nie X et al. Corrosion properties and contact resistance of TiN, TiAIN and CrN coatings in simulated proton exchange membrane fuel cell environments. J, Power Sources,2010, 195:3814-3821.
    [83]Pozio A, Zaza F, Masci A et al. Bipolar plate materials for PEMFCs:A conductivity and stability study. J. Power Sources,2008,179:631-639.
    [84]Zhang D, Duan L, Guo L et al. Corrosion behavior of TiN-coated stainless steel as bipolar plate for
    proton exehange membrane fuel cell. Int. J. Hydrogen Energy,2010,35:3721:3726.
    [85]Jeon W S, Kim J G, Kim Y J et al. Electrochemical properties of TiN coatings on 316L stainless steel separator for polymer electrolyte membrane fuel cell. Thin Solid Films,2008,516:3669-3672.
    [86]Larijani M M, Elmi M, Yari M et al. Nitrogen effect on corrosion resistance of ion beam sputtered nanocrystalline zirconium nitrides films. Surf. Coat. Technol.,2009,203:2591-2594.
    [87]Lin M T, Wan C H, Wu W. Comparison of corrosion behaviors between SS304 and Ti substrate coated with (Ti, Zr)N thin films as metal bipolar plate for unitized regenerative fuel cell. Thin Solid Films,2013,544:162-169.
    [88]Ramqvist L, Hamrin K., Johansson G et al. Charge transfer in transition metal carbides and related compounds studied by ESCA. J. Phys. Chem. Solids.1969,30:1835-847.
    [89]Vallance S R, Round D M, Ritter C et al. Ultrarapid Microwave Synthesis of Superconducting Refractory Carbides. Adv. Mater.,2009,21:4502-4504.
    [90]Ramanathan S, Oyama S T. New Catalysts for Hydroprocessing:Transition Metal Carbides and Nitrides. J.Phys. Chem.,1995,99:16365-16372.
    [91]Jha R, Awana V P S. Vacuum Encapsulated Synthesis of 11.5 K NbC Superconductor. J. Supercond. Nov. Magn.,2012,25:1421-1425.
    [92]Ren Y J, Zeng C L. Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process. J. Power Sources,2007,171:778-782.
    [93]Lee H Y, Choi J W, Hwang G H et al. Performance degradation of TiN-and TiC-deposited AISI316 bipolar plate for proton exchange membrane fuel cells. Metals and Materials International,2006, 12:147-151.
    [94]Lee J K, Kweon H J, Suh J W. Jpn Patent Application, JP2006156386,2006.
    [95]Feng K, Wu G, Hu T et al. Dual Ti and C ion-implanted stainless steel bipolar plates in polymer electrolyte membrane fuel cells. Surf. Coat. Techno.,2012,206:2914-2921.
    [96]Chung C Y, Che S K, Chiu P J et al. Carbon film-coated 304 stainless steel as PEMFC bipolar plate. J. Power Sources,2008,176:276-281.
    [97]Fukutsuka T, Yamaguchi T, Miyano S I et al. Carbon-coated stainless steel as PEFC bipolar plate material. J. Power Sources,2007,174:199-205.
    [98]Yi P, Peng L, Feng L et al. Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates. J. Power Sources,2010, 195:7061-7066.
    [99]Feng K, Shen Y, Sun H et al. Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy,2009,34:6774-6777.
    [100]Morshed M M, McNamara B P, Cameron D C et al. Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. J. Mater. Process Technol.,2003,141:127-131.
    [101]Iijima T, Okada M, Kubomura K. Jpn. Pat., JP2005093172,2005.
    [102]Lee S J, Huang C H, Chen Y P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. J. Mater. Process. Technol.,2003,140:688-693.
    [103]Yu H, Yang L, Zhu L et al. Anticorrosion properties of Ta-coated 316L stainless steel as bipolar plate material in proton exchange membrane fuel cells. J. Power Sources,2009,191:495-500.
    [104]Yoon W, Huang X, Fazzino P et al. Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources,2008,179.265-273.
    [105]徐艰.等离子表面冶金学.北京:科学出版社,2008.
    [106]H H莫尔订诺姓等著,徐克占,王勤译.钼合金.北京:治金工业出版社,1984:1-16.
    [107]Lee T M, Chang E. A comparison of the corrosion behavior and surface characteristics of vacuum-brazed and heat-treated Ti6A14V alloy. Journal of Materials Science:Materials in Medicine, 1998,9:429-437.
    [108]Bui N, Irhzo A, Dabosi F et al. On the Mechanism for Improved Passivation by Additions of Tungsten to Austenitic Stainless Steels. Corrosion,1983,39:491-496.
    [109]Pourbaix M. ATLAS OF ELECTROCHEMICAL EQUILIBRIA IN AQUEOUS SOLUTION. Huston:NACE; 1974.
    [110]张弘,苏永安,古凤英.钨在不同温度下形成的辉光等离子渗镀层的特性.中国腐蚀与防护学报,2002,2:59-62.
    [111]Cavigliasso G E,Esplandiu M J, Macagno V A. Influence of the forming electrolyte on the electrical properties of tantalum and niobium oxide films:an EIS comparative study. J. Appl. Electrochem.,1998, 28:1213-1219.
    [112]Robin A. Corrosion behavior of niobium, tantalum and their alloys in boiling sulfuric acid solutions. Int. J. Refract. Met. H.,1997,15:317-323.
    [113]Weil K S, Xia G, Yang Z G et al. Development of a niobium clad PEM fuel cell bipolar plate material. Int. J. Hydrogen Energy,2007,32:3724-3733.
    [114]Pozio A, Silva R F, Masci A. Corrosion study of SS430/Nb as bipolar plate materials for PEMFCs. Int. J. Hydrogen Energy,2008,33:5697-5702.
    [115]Hong S T, Kim D W, You Y J et al. Effect of annealing on two different niobium-clad stainless steel PEMFC bipolar plate materials. Transactions of the Nonferrous Metals Society of China,2009, 19:56-60.
    [116]Kim J H, Jung D W, Kim S K et al. Durability of a niobium thin film for bipolar plates in PEMFC. Vacuum,2012,86:1789-1794.
    [117]Feng K, Li Z, Cai X et al. Corrosion behavior and electrical conductivity of niobium implanted 316L stainless steel used as bipolar plates in polymer electrolyte membrane fuel cells. Surf. Coat. Technol., 2010,205:85-91.
    [118]Shores D A, Deluga G A. Handbook of fuel cell-fundmentals, Technology and Applications. John Wiley & Sons.2003, p273.
    [119]Li Y, Meng W, Swathirajan S et al. Corrosion resistance PEM fuel cell. US Patent 5624769,1997.
    [120]Pozio A, Silva R F, De. Francesco M et al. Nafion degradation in PERFCs from end plate iron contamination. Electrochim. Acta,2003,48:1543-1549.
    [121]Borup R L, Wanderborgh N E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. Mater Res Soc Symp Proc.,1995,393:151-155.
    [122]Kumagai M, Myung S T, Kuwata Shiho et al. Corrosion behavior of austenitic stainless steel as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochim. Acta, 2008,53:4205-4212.
    [123]Ma L, Warthesen S, Shore D A. Evaluation of materials for bipolar plates in PEMFCs. J. New Mat. Systems,2000,3:221-228.
    [124]Makkus R C, Janssen A H H, Bruijin F A et al. Use of stainless steel for cost competitive bipolar plates in the SPFC. J. Power Sources,2000,86:274-282.
    [125]Lafront A M, Ghali E, Morales A T. Corrosion behavior of two bipolar plate materials in simulated PEMFC environment by electrochemical noise technique. Electrochim. Acta,2007,52:5076-5085.
    [126]Li M C, Zeng C L, Luo S Z et al. Electrochemical corrosion characteristics of type 316 stainless steel in simulated anode environment for PEMFC. Electrochim. Acta,2003,48:1735-1741.
    [127]Pozio A, Zaza F, Masci A et al. Bipolar plate materials for PEMFCs:a conductivity and stability study. J. Power Sources,2008,179:631-639.
    [128]Wang Y, Northwood D O. Effect of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells. Electrochim. Acta,2007, 52:6793-6798.
    [129]Cho K H, Lee W G, Lee S B et al. Corrosion resistance of chromized 316L stainless steel for PEMFC bipolar plates. J. Power Sources,2008,178:671-676.
    [130]Lee S J, Huang C H, Lai J J et al. Corrosion-resistant component for PEM fuel cells. J. Power Sources,2004,131:162-168.
    [131]Feng K, Shen Y, Sun H et al. Conductive amorphous carbon-coated 316L SS as bipolar plates in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy,2009,34:6771-6777.
    [132]Feng K, Shen Y, Liu D et al. Ni-Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy,2009,35:690-700.
    [133]Lee S B, Cho K H, Lee W G et al. Improved corrosion resistance and interfacial contact resistance of 316L stainless steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment. J. Power Sources,2009,187:318-323.
    [134]Dur E, Cora O N, Koc M. Experimental investigations on the corrosion resistance characteristics of coated metallic bipolar plates for PEMFC. Int. J. Hydrogen Energy,2011,36:7162-7173.
    [135]Yang B, Brady M P, Wang H et al. Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates. J. Power Sources,2007,174:228-236.
    [136]Miachon S, Aldebert P. Internal hydration H2/O2100 cm2 polymer electrolyte membrane fuel cell. J Power Sources,1995,56:31-36.
    [137]Makkus R C, Janssen A H H, Bruijn F A et al. Use of stainless steel for cost competitive bipolar plate in the SPFC. J. Power Sources,2000,86:274-282.
    [138]Ihonen J, Jaouen F, Lindbergh G et al. A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements. Electrochim. Acta,2001,46:2899-2911.
    [139]Davies D P, Adcock P L, Turpin M. Bipolar plate materials for solid polymer fuel cells. J Appl. Electrochem.,2000,30:101-105.
    [140]Wang Y, Northwood D O. An investigation into polypyrrole-coated 316L stainless steel as a bipolar plate material for PEM fuel cells. J. Power Sources,2006,163:500-508.
    [141]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [142]Marino L. Comprotement electrochimique du molybdene:analogies avec le chrome. Gazz. Ital.1905, 35:193-224.
    [143]Liang C H, Cao C H, Huang N B. Electrochemical behavior of 304 stainless steel with electrodeposited niobium as PEMFC bipolar plates. Int. J. Minerals Metallurgy and Materials,2012, 19:328-332.
    [144]Reichman B, Bard A J. The Electrochromic process at WO3□electrodes prepared by vacuum evaporation and anodic oxidation of W. J. Electrochem. Soc.,1979,126:583-591.
    [145]Basiouny M S E, Hassan S A, Hefny M M. The formation and dissolution of tungsten oxide in sulphuric acid solutions. Corrs. Sci.,1980,20:909-917.
    [146]Was G S, Demaree J D, Rotberg V et al. Corrosion and mechanical behavior of ion implanted bearing steels for improved fretting behavior. Surf. Coat. Technol.,1994,66:446.
    [147]Smiat F A. Recent advances in the application of ion implantation to corrosion and wear protection. Nucl. Instrum. Methods Phys. Res. B,1985,532:10-11.
    [148]Tjong S C. Polymer nanocomposite bipolar plates reinforced with carbon nanotubes and graphite nanosheets. Energy Environ. Sci.,2011,4:605-626.
    [149]Belo M D C, Walls M, Hakiki N E et al. Composition structure and properties of the oxide films formed on the stainless steel 316L in a primary type pwr environment. Corrs. Sci.,1998,40:447-463.
    [150]Wang H, Teeter G, Turner J. Investigation of a Duplex Stainless Steel as Polymer Electrolyte Membrane Fuel Cell Bipolar Plate Material. J. Electrochem. Soc.,2005,152:B99-B104.
    [151]Wang J L, Sun J C, Li S et al. Surface diffusion modification AIS1304SS stainless steel as bipolar plate material for proton exchange membrane fuel cell. Int. J. Hydrogen Energy,2012,37:1140-1144.
    [152]Macdonald D D. The point defect model for the passive state. J. Electrochemical Soc.,1992, 139:3434-3449.
    [153]Bojinov M, Fabricius G, Laitinet T et al. Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys. Electrochim. Acta,2000, 53:2029-2048.
    [154]Janninck R F, Whitmore D H. Electrical conductivity and thermoelectric power of niobium dioxide. J. Phys. Chem. Solids,1966,27:1183-1187.
    [155]Meissner W, Franz H, Westerhoff H. Messungen mit Hilfe von flussigem Helium. XXII Widerstand von Metallen, Legierungen und Verbindungen. Ann. Phys.1933,409:593-618.
    [156]Williams W S. Electrical properties of hard materials. Int. J. Refract. Met. Hard Mater.,1999, 17:21-26.
    [157]Ensinger W. On the mechanism of crystal growth orientation of ion beam assisted deposited thin films. Nucl. Instrum. Methods Phys. Res., Sect. B,1995,106:142-146.
    [158]Havey K S, Zabinski J S, Walck S D. The chemistry, structure, and resulting wear properties of magnetron-sputtered NbN thin films. Thin Solid Films,1997,303:238-245.
    [159]Hayashi N, Murzin I H, Sakamoto I et al. Single-crystal niobium nitride thin films prepared with radical beam assisted deposition. Thin Solid Films,1995,259:146-149.
    [160]Lee C W, Kim Y T. High temperature thermal stability of plasma-deposited tungsten nitride Schottky contacts to GaAs. Solid State Electron.,1995,38:679-682.
    [161]Wang L X, Sun J C, Li P B et al. Molybdenum nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. Int. J. Hydrogen Energy,2012,37:5676-5883.
    [162]Lengauer W, Bohn M, Wollein B et al. Phase reactions in the Nb-N system below 1400 ℃. Acta mater.,2000,48:2633-2638.
    [163]Kim S K, Cha B C, Yoo J S. Deposition of NbN thin films by DC magnetron sputtering process. Surf. Coat. Technol.,2004,177-178:434-440.
    [164]Bendavid A, Martin P J, Kinder T J et al. The deposition of NbN and NbC thin films by filtered vacuum cathodic arc deposition. Surf. Coat. Technol.,2003,163-164:347-352.
    [165]Cappucio G, Gambardella U, Morone A et al. Pulsed laser ablation of NbN/MgO/NbN multilayers. Appl. Surf. Sci.,1997,109:399-402.
    [166]Zhitomirsky V N, Grimberg I, Rapoport L et al. Structure and mechanical properties of vacuum arc-deposited NbN coatings. Thin Solid Films,1998,326:134-142.
    [167]Larsson M, Hollman P, Hendequist et al. Deposition and microstructure of PVD TiN/NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering. Surf. Coat. Technol.,1996,86-87:351-356.
    [168]彭松,肖斌平,郝建奎 等.NbN薄膜的制备与性能研究.光谱学与光谱分析.2005,25:487-490.
    [169]Hotovy I, Buc D, Brcka J et al. Study of Niobium Nitride Films Produced by DC Reactive Magnetron Sputtering. Phys. Status Solidi A,1997,161:97-104.
    [170]Fenker M, Balzer M, Jehn H A et al. Improvement of the corrosion resistance of hard wear resistant coatings by intermediate plasma etching or multilayered structure. Surf. Coat. Technol.,2002, 150:101-106.
    [171]Oya G I, Onodera Y. Phase transformations in nearly stoichiometric NbNx. J. Appl. Phys.,1976, 47:2833-2840.
    [172]William G V K, Selvic V E, Barshilia H C et al. Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAIN, coatings and nanolayered TiAlN/CrN multiplayer coatings prepared by reactive dc magnetron sputtering. Electrochem. Acta,2006, 51:3461-3468.
    [173]Chang K L, Han S, Lin J H et al. The effect of MEVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition. Surf. Coat. Technol.,2003,172:72-78.
    [174]Zhang L, Zhang J, Wilkinson D P et al. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J. Power Sources,2006,156:171-182.
    [175]Zhang Y, Ronning F, Gofryk K et al. Aligned carbon nanotubes sandwiched in epitaxial NbC film for enhanced superconductivity. Nanoscale,2012,4:2268-2271.
    [176]Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today,1992,15:179-200.
    [177]Acchar W, Greil P, Martinelli A E et al. Sintering behaviour of alumina-niobium carbide composites. J. Euro.Ceramic Soci.,2012,5:1421-1425.
    [178]Sen U. Kinetics of niobium carbide coating produced on AJSI 1040 steel by thermo-reactive deposition technique. Mater. Chem. Phys.,2004,86:189-194.
    [179]Vallance S R, Round D M, Ritter C et al. Ultrarapid microwave synthesis of superconducting refractroy carbides. Adv. Mater.,2009,21:4502-4504.
    [180]Sen U. Wear properties of niobium carbide coatings performed by pack method on AISI 1040 steel. Thin Solid Films,2005,483:152-157.
    [181]周菊秋,黄列如,谭日善,等.中国钽、铌碳化物的生产和应用.稀有金属材料与工程,1998.1:28-33.
    [182]Nedfors N, Tengstrand O, Lewin E et al. Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Technol., 2011,206:354-359
    [183]Duhalde S, Colaco R, Audebert F et al. Deposition of NbC thin films by pulsed laser ablation. Appl. Phys. A,1999,69:569-571.
    [184]Clinard F W, Kempter J R, Kempter C P. Low-temperature electrical properties of some transition methals and transition metal carbides. J. Less-Common Metals,1968,15:59-73.
    [185]Sustarsic B,Jenko M, Godec M et al. Microstructural investigation of NbC-doped vacuum-sintered tool-steel-based composites. Vacuum,2003,71:77-82.
    [186]Zhang K, Wen M, Meng Q N et al. Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surf. Coat. Technol.,2012,212:185-191.
    [187]Papaconstantopoulos D A, Pickett W W, Klein B M et al. Electronic properties of transition-metal nitrides:the group-Vand group-VI nitrides VN, NbN, TaN, CrN, MoN and WN. Phys. Rev. B 31 (1985) 753-761.
    [188]Storms E K, Krikorian N H. The niobium-niobium carbide system. J. Phys. Chem.,1960, 64:1471-1477.
    [189]Zoita C N, Braic L, Kiss A et al. Characterization of NbC coatings deposited by magnetron sputtering method. Surf. Coat. Technol.,2010,204:2002-2005.
    [190]Wang H, Turner J A, Li X et al. SnO2:F coated austenite stainless steels for PEM fuel cell bipolar plates. J. Power Sources,2007,171:567-574.
    [191]Okazaki Y, Tateishi T, Ito Y. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Materials Transaction, JIM.,1997,38:78-84.
    [192]Liao M Y, Goton Y, Tsuji H et al. Compound-target sputtering for niobium carbide thin-film deposition. J. Vac, Sci. Technol. B,2004,5:L24-L27.
    [193]Clark D T, Thomas H R. Applications of ESCA to polymer chemistry. XVII. Systematic investigation of the core levels of simple homopolymers. J. Polymer Sci. Polymer Chem. Ed.,1978, 16:791-820.
    [194]Wang Y, Northwood D O, Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells. Electrochim. Acta,2007, 52:6793-6798.
    [195]Borup R L, Vanderborgh N E. Design and Testing Criteria for Bipolar Plate Materials for Pern Fuel Cell Applications. Mater. Res. Soc,1995,393:151-156.
    [196]Xie C, Bostaph J, Pavio J. Development of a 2 W direct methanol fuel cell power source. J. Power Sources,2004,136:55-65.
    [197]Yuan Z, Zhang Y, Leng J et al. Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells. J. Power Sources,2012,125:134-142.
    [198]Liu Y, Xie X, Shang Y et al. Power characteristics and fluid transfer in 40 W direct methanol fuel cell stack. J. Power Sources,2007,164:322-327.
    [199]Yoo J H, Choi H G, Nam J E et al. Dynamic behaviour of 5-W direct methanol fuel cell stack. J. Power Sources,2006,158:13-17.
    [200]Guo Z, Faghri A. Development of planar air breathing direct methano! fuel cell stacks. J. Power Sources,2006.160:1183-1194.
    [201]Abdelkareem M A, Nakagawa N. DMFC employing a porous plate for an efficient operation at high methanol concentrations. J. Power Sources,2006,162:114-123.
    [202]Li X, Faghri A, Xu C. Water management of the DMFC passively fed with a high-concentration methanol solution. Int. J. Hydrogen Energy,2010,35:8690-8698.
    [203]Nakagawa N, Tsujiguchi T, Sakurai S et al. Performance of an active direct methanol fuel cell fed with neat methanol. J. Power Sources,2012,219:325-332.
    [204]Anna P L. The effects of water and chloride ions on the electrochemical behaviour of iron and 3041 stainless steel in alcohols. Corros. Sci.,1985,25:43-53.
    [205]Ray M, Singh V B. Effect of Sulfuric Acid on Corrosion and Passivation of 316 SS in Organic Solution. J. Electrochem. Soc,2011,158:C359-C368.
    [206]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [207]Yang Y, Guo L, Liu H. Effect of fluoride ions on corrosion behavior of SS316L in simulated proton exchange membrane fuel cell (PEMFC) cathode environments. J. Power Sources,2010,195:5651-5659.
    [208]Kavai T, Nishihara H, aramaki K. Corrosion of iron in electrolytic anhydrous methanol solutions containing ferric chloride. Corros. Sci.,1995,37:823-831.
    [209]Stein Z, Gileadi E. Proton Conductivity in Mixed Solvents. J. Electrochem. Soc,1985, 132:2166-2171.
    [210]Sakakibara M, Saito N, Nishihara H et al. Corrosion of iron in anhydrous methanol. Corros. Sci., 1993,34:391-402.
    [211]Mepsed G O, Moore J M. Handbook of fuel cell:fundamentals, technology, and applications, John Wiley and Sons, Ltd., New York,2003, pp.286-293.
    [212]Olsson C O A, Landolt D. Passive films on stainless steels-chemistry, structure and growth. Electrochim. Acta,2003,48:1093-1104.
    [213]Wu X, Ma H, Chen S et al. General Equivalent Circuits for Faradaic Electrode Processes under Electrochemical Reaction Control. J. Electrochem. Soc,1999,146:1847-1853.
    [214]Liu L, Li Y, Wang F. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions. Electrochim. Acta,2007,52:2392-2400.
    [215]Macdonald D D. On the Existence of Our Metals-Based Civilization:1. Phase-Space Analysis. J. Electrochem. Soc,2006,153:B213-B224.
    [216]Hakiki N E, Montemor M F, Ferreira M G S et al. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions. Corros. Sci.,2000,42:687-702.
    [217]Macdonald D D. On the Existence of Our Metals-Based Civilization:I. Phase-Space Analysis. J. Electrochem. Soc,2006,153:B213-B224.
    [218]Tsuchiya H, Fujimoto S, Chihara O et al. Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution. Electrochim. Acta,47 (2002) 4357-4366.
    [219]Jiang R, Chen C, Zheng S. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films. Electrochim. Acta,55 (2010) 2498-2504.
    [220]Sa A I, Rangel C M, Skeldon P et al. Semiconductive properties of anodic niobium oxides. Port. Electrochim. Acta,2006,24:305-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700