用户名: 密码: 验证码:
碳载体纳米催化剂的制备及其催化去除氮氧化物的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从燃煤电厂、垃圾焚烧锅炉、柴油机和汽车中排放出的氮氧化物会导致酸雨、光化学烟雾以及臭氧层的破坏,从而对人类的健康和生存构成极大危害。NOx的排放已经引起了世界各国的广泛关注和高度重视。面对日益增加的NOx排放,人们采取多种办法对其进行控制。选择性还原技术(SCR)被证明是最有效的减少NOx的方法。而开发新型高效的催化剂又是SCR技术的关键。
     本论文采用湿化学方法制备了一系列的碳基催化剂并检测了它们的催化脱硝性能。首先,将碳纳米管引入传统催化剂V205-TiO2体系中,取得了很好的催化性能。为了进一步提高催化剂的性能,Mn, Ce, Mo, Cr, Ni, Co掺入已经优化好的催化剂V2O5-TiO2-CNTs中,发现CeOχ可有效地提高SCR活性。我们还通过浸渍法制备了三种不同碳材料负载CuOχ的催化剂并发现了一种简单的可恢复失活催化剂性能的方法。
     在传统催化剂V2O5/TiO2中加入碳纳米管可极大促进催化剂的脱硝性能。加入10%碳管的催化剂效果最好,在300℃可达到89%的脱除效率。引入的碳纳米管可增加催化剂的比表面积、孔体积、酸度和氧化还原性能。高的氧化性能可以促进NO氧化成NO2进而提高NOx去除率。另外,V2O5/TiO2-CNTs催化剂对二氧化硫和水有很好的抵抗作用。
     把MnOx加入到V2O5/TiO2-CNT可以实现综合高温活性钒和低温活性锰的目标。在2750C时,V205-MnOx/Ti02-CNTs催化剂可达到99%的脱除效率。从TOF的计算可以看出,用机械法制备的钒锰复合催化剂上钒和锰有相互促进作用。由于碳管的引入使得钒锰结合不紧密从而避免了抑制作用。同时,由掺杂引起的酸强度的增加和氧化性能的提高也有助于SCR的催化性能。
     通过溶胶凝胶法把Co. Ce. Cr> Mo和Ni掺入到催化剂V2O5/TiO2-CNTs中。其中,Ce可有效促进NH3-SCR反应。大量Ce3+的存在可以增加化学吸附氧,进而利于催化反应的进行。CeOx可以抑制催化剂的团聚而增加其比表面积和分散性。掺入CeOx后,催化剂的酸度和氧化还原性能都有所提高。由8O2引起的催化剂中毒与反应温度和空速有极大关系,低温和高的空速容易使催化剂中毒。为了保持催化剂的活性,至少2%的O2浓度是需要的。
     在碳纳米管、活性炭和石墨负载CuOx催化剂中,碳管是最好的载体。CuOx-CNTs在250℃可达到67%的转化效率。碳纳米管负载CuOx优异的催化性能可能来自于Cu良好的分散性、大量Cu+的存在和强酸性位的存在。
Nitrogen oxides (NOx) discharged from power plants, waste incinerators, industrial boilers, engines, and automobiles can result in acid rain, photochemical smog, and ozone depletion. These adverse effects have aroused worldwide attention. Due to the increasing threat of NOx to the environment, many approaches have been investigated to control NOx emission. Selective catalytic reduction (SCR) technique has been proven to be one of the most effective methods for reducing NOx emissions. The keypoint for SCR technique is to develop novel and effective catalysts at low temperatures.
     In my thesis, we prepared a series of carbon supported catalysts through wet chemical methods and examined their catalytic performance for NOx removal. Great promotion effect was achieved upon introduction of carbon nanotubes to traditional catalyst V2Os-TiO2. To further improve catalytic reactivity of optimized catalyst, we dope a series of additional element such as Mn, Ce, Mo, Cr, Ni, Co to catalyst V2O5-TiO2-CNTs. Experimental results showed that CeOx can enhance SCR activity of catalysts greatly. We also synthesized three kind of catalysts in which carbon materials support CuOx and found a simple way to regenerate the deactivated catalysts.
     The introduction of carbon nanotubes to catalyst V2O5-TiO2 can promote its SCR performance greatly. The best reactivity of catalyst was achieved by doped 10% carbon nanotubes, the removal efficiency for NOx can reach up to 89%at 300℃.The specific surface, pore volume, acidity and reducibility of catalyst increased with introduction of carbon nanotubes. The high reducibility can enhance the oxidation efficiency of NO to NO2. The catalyst V2O5-TiO2-CNTs has a good resistence to SO2 and H2O.
     The combination of low-temperature active MnOx and high-temperature active V2O5 was accomplished by adding MnOx into V2O5/TiO2-CNT composites. A NOX removal efficiency of 99%was observed over V2O5-MnOx/TiO2-CNTs at 275℃under a GHSV of 36000 h"1. TOF results suggest a possible constructive interaction between V2O5 and MnOx for catalysts prepared by mechanical mixing. The possible separation of Mn and V with the assistance of CNTs and the increase of reducibility and acidic strength all contribute to the improvement of catalytic activity.
     Co, Ce. Cr, Mo, Ni were introduced to catalyst V2O5/T1O2-CNTS with sol-gel method and Ce was proved to be most effective to promote NH3-SCR activity. A large number of Ce3+contributes to the increase of chemisorbed oxygen, which favors the SCR activity. The aggregation of catalyst might be inhibited by CeOx thus result to the increase of specific surface. Moreover, the increase of surface acidity and reducibility both contribute to the extra NOx conversion upon addition of CeOx-The deactivation of catalyst VCeqTiC caused by SO2 depends on reaction temperatures and gas velocity strongly. And at least 2%of oxygen in exhaust gas is essential to keep high SCR activity.
     Cu-CNTs was prepared by wet impregnation method and a NOx removal efficiency of 67%was achieved at 250℃. which could be attributed to the good dispersion of CuOx, the existence of Cu+and strong acid sites on the catalysts" surface. Moreover, the regeneration of deactivated catalyst CuOx-CNTs caused by SO2 could be achieved by heating the catalyst in N2 at 300℃.
引文
[1]K. Skalska, J.S. Miller, S. Ledakowicz. Trends in NOx abatement:A review. Sci. Total Environ.,2010,408:3976-3989.
    [2]Z. Liang, X. Ma, H. Lin, Y. Tang. The energy consumption and environmental impacts of SCR technology in China. Appl. Energ..2011,88:1120-1129.
    [3]J. Li, H. Chang, L. Ma, J. Hao, R.T. Yang. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catal. Today,2011.
    [4]李锋.以纳米TiO2为载体的燃煤烟气脱硝SCR催化剂的研究[博士学位论文].南京:东南大学,2006.
    [5]H. Wang, J. Wang, Z. Wu, Y. Liu. NO Catalytic oxidation behaviors over CoOx/TiO2 catalysts synthesized by Sol-Gel method. Catal. Lett.,2010,134:295-302.
    [6]Z. Wu, H. Wang, Y. Liu, B. Jiang, Z. Sheng. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides. Chem. Eng. J.,2008,144:221-226.
    [7]Y. Liu, J. Zhang, C. Sheng, Y. Zhang, L. Zhao. Wet removal of sulfur dioxide and nitric oxide from simulated coal-fired flue gas by UV/H2O2 advanced oxidation process. Energy Fuels,2010, 24,4931-4936.
    [8]N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa. The new concept three-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal. Today,1996,27:63-69.
    [9]Q. Wang, J.S. Chung. NOx storage and reduction over Cu/K2Ti2O5 in a wide temperature range:Activity, characterization, and mechanism. Appl. Catal. A-Gen.,2009,358:59-64.
    [10]T. Nanba, K. Sugawara, S. Masukawa, J. Uchisawa, A. Obuchi. Optimization of Physical Mixtures of Pt/ZrO2 and H-Form Zeolites for Catalysis of the NO-H2-O2 Reaction, lnd. Eng. Chem. Res.,2005,44:3426-3431.
    [11]A. Fritz, V. Pitchon. The current state of research on automotive lean NOx catalysis. Appl. Catal. B-Environ.,1997,13:1-25.
    [12]X. Zhang, A.B. Walters, M.A. Vannice. NO adsorption, decomposition, and reduction by methane over rare earth oxides. J. Catal.,1995,155:290-302.
    [13]李胜利,程国宏.高压脉冲等离子体催化还原NO的研究.环境科学与技术,2006.28:1-2.
    [14]于刚.等离子体NOx脱除机理及特性研究[博士学位论文].南京:东南大学.2003.
    [15]S. Mahmoudi, J. Baeyens. J.P.K.. Seville. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy,2010,34:1393-1409.
    [16]R.K. Lyon. Thermal DeNOx Controlling nitrogen oxides emissions by a noncatalytic process. Environ. Sci. Technol..1987,21:231-236.
    [17]M. Ayoub, M.F. Irfan, K.S. Yoo. Surfactants as additives for NOx reduction during SNCR process with urea solution as reducing agent. Energy Conversion and Management,2011.52: 3083-3088.
    [18]GW. Lee, B.H. Shon, J.G. Yoo, J.H. Jung, K.J. Oh. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. Journal of Industrial and Engineering Chemistry, 2008,14:457-467.
    [19]吴忠标,蒋新,赵伟荣,环境催化原理及应用,化学工业出版社,2006.
    [20]M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo, N. Mizuno. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites. Shokubai,1990, 32:430-433.
    [21]W. Held, A. Koenig, T. Richter, L. Puppe. Catalytic NOx reduction in net oxidizing exhaust gas. SAE Special Publications,1990,13-20.
    [22]E. Lombardo, G. Sill, J. d'ltri, W. Hall. The Possible Role of Nitromethane in the SCR of NOx with CH4over M-ZSM-5 (M= Co, H, Fe, Cu). J. Catal.,1998,173:440-449.
    [23]N. Okazaki, Y. Shiina, H. Itoh, A. Tada, M. Iwamoto. Marked difference in activity of alumina catalysts for selective catalytic reduction of nitrogen monoxide by ethene in excess oxygen. Catal. Lett.,1997,49:169-174.
    [24]J.H. Lee, S.J. Schmieg, S.H. Oh. Improved NOx reduction over the staged Ag/Al2O3 catalyst system. Appl. Catal. A:Gen.,2008,342:78-86.
    [25]S. Sumiya, M. Saito, H. He, Q.C. Feng, N. Takezawa, K. Yoshida. Reduction of lean NOx by ethanol over Ag/Al2O3 catalysts in the presence of H 2 O and SO2. Catal. Lett.,1998,50:87-91.
    [26]M. Itoh, M. Saito, M. Takehara, K. Motoki, J. Iwamoto, K. Machida. Influence of supported-metal characteristics on DeNOx catalytic activity over Pt/CeO2. J. Mol. Catal. A:Chem., 2009,304:159-165.
    [27]L. Li, F. Zhang, N. Guan, E. Schreier, M. Richter. NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catal. Commun.,2008,9:1827-1832.
    [28]P. Courty, B. Raynal, B. Rebours, M. Prigent, A. Sugler. Exhaust gas catalytic reduction of nitrogen oxides over NiFe2O4-NiCr2O4 solid solutions. Industrial& Engineering Chemistry Product Research and Development,1980,19:226-231.
    [29]黄妍.新型锰基钒基低温选择性催化还原NOx催化剂研究[博士学位论文].湘潭:湘潭大学,2008.
    [30]黄鹏.国外车用柴油机SCR技术的应用研究.车用发动机,2005,5-7.
    [31]闫志勇.Ti、Al基SCR催化剂及其脱硝性能研究[博士学位论文].杭州:浙江大学,2006.
    [32]H. Bosch, F. Janssen. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology. Catal. Today,1988,2.
    [33]C.Z. Sun, J. Zhu, Y.Y. Lv, L. Qi, B. Liu, F. Gao, K.Q. Sun, L. Dong, Y. Chen. Dispersion, reduction and catalytic performance of CuO supported on ZrO2-doped TiO2 for NO removal by CO. Appl. Catal. B-Environ.,2011,103:206-220.
    [34]G. Qi, R.T. Yang. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. J. Catal.,2003,217:434-441.
    [35]R.Q. Long, R.T. Yang. Reaction Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe-ZSM-5 Catalyst. J. Catal.,2002,207:224-231.
    [36]J.H. Li, R.H. Zhu, Y.S. Cheng, C.K. Lambert, R.T. Yang. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOX with ammonia. Environ. Sci. Technol.,2010, 44:1799-1805.
    [37]Y.L. Wang, Z.Y. Liu, L.A. Zhan. Z.G. Huang, Q.Y. Liu, J.R. Ma. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal. Chem. Eng. Sci.,2004,59:5283-5290.
    [38]S. Xu, J. Li, D. Yang, J. Hao. Promotional Mechanism of Sulfation on Selective Catalytic Reduction of NO by Methane in Excess Oxygen:A Comparative Study of Rh/Al2O3 and Rh/Al2O3/SO42-. J. Phys. Chem. C,2008,112:16052-16059.
    [39]D. Niakolas, C. Andronikou, C. Papadopoulou, H. Matralis. Influence of metal oxides on the catalytic behavior of Au/Al2O3 for the selective reduction of NOx by hydrocarbons. Catal. Today. 2006,112:184-187.
    [40]朱景利,张金昌,马润宇,王艳辉.改性贵金属催化剂催化还原脱除NO.环境科学,2006,27:1508-1511.
    [41]A.A. Rubert, C.E. Quincoces, A.S. Mamede, D. Gazzoli, C. Cabello, M. Gloria Gonzalez. Preparation and characterization of Pd-Co/sulfated zirconia catalysts for no selective reduction by methane. Catal. Commun.,2008,9:1096-1100.
    [42]A. Kotsifa, D.I. Kondarides, X.E. Verykios. A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts. Appl. Catal. B-Environ.,2008, 80:260-270.
    [43]C.N. Costa, A.M. Efstathiou. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl. Catal. B-Environ.,2007,72:240-252.
    [44]J. Garcia-Cortes, J. Perez-Ramirez, M. Illan-Gomez, F. Kapteijn, J. Moulijn, C. Salinas-Martinez de Lecea. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Appl. Catal. B-Environ.,2001,30:399-408.
    [45]C. Costa, V. Stathopoulos, V. Belessi, A. Efstathiou. An investigation of the NO/H2/O2 (Lean-deNOx) reaction on a highly active and selective Pt/La0.5Ce0.5MnO3 catalyst. J. Catal., 2001,197:350-364.
    [46]G. Qi, R.T. Yang, L.T. Thompson. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays. Appl. Catal. A:Gen.,2004,259:261-267.
    [47]N. Macleod, R.M. Lambert. Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl. Catal. B-Environ.,2002,35:269-279.
    [48]R. Burch, M. Coleman. An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions. Appl. Catal. B-Environ.,1999,23:115-121.
    [49]A. Salker, W. Weisweiler. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions. Appl. Catal. A:Gen..2000,203:221-229.
    [50]G. Qi, R.T. Yang. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B-Environ.,2005,60:13-22.
    [51]M. Devadas, O. Krocher, M. Elsener, A. Wokaun, N. Soger, M. Pfeifer, Y. Demel, L. Mussmann. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5. Appl. Catal. B-Environ..2006,67:187-196.
    [52]L. Ren, T. Zhang, D. Liang, C. Xu, J. Tang, L. Lin. Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4. Appl. Catal. B-Environ..2002, 35:317-321.
    [53]Z. Li, M. Flytzani-Stephanopoulos. On the Promotion of Ag-ZSM-5 by Cerium for the SCR of NO by Methane. J. Catal.,1999,182:313-327.
    [54]C. Shi, M. Cheng, Z. Qu, X. Yang, X. Bao. On the selectively catalytic reduction of NOx with methane over Ag-ZSM-5 catalysts. Appl. Catal. B-Environ.,2002,36:173-182.
    [55]R.Q. Long, R.T. Yang. Characterization of Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia. J. Catal..2000,194:80-90.
    [56]M. Richter, A. Trunschke, U. Bentrup, K.W. Brzezinka, E. Schreier, M. Schneider, M.M. Pohl, R. Fricke. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts. J. Catal..2002,206:98-113.
    [57]伍斌,童志权,黄妍.MnO2/NaY催化剂上NH3低温选择催化还原NOx.石油化工,2006,35:178-182.
    [58]徐青,郑章靖,凌长明,李军.低温选择性催化还原脱除NOx的催化剂的研究进展.环境污染与防治,2011,33:81-85.
    [59]W. Libby. Promising catalyst for auto exhaust. Science.1971,171:499.
    [60]杨遇春.稀土在汽车尾气净化中的应用.稀有金属,1998,22:361-368.
    [61]R. Zhang, A. Villanueva, H. Alamdari, S. Kaliaguine. SCR of NO by propene over nanoscale LaMnl-xCuxO3 perovskites. Appl. Catal. A:Gen.,2006,307:85-97.
    [62]S. Furfori, N. Russo, D. Fino, G. Saracco, V. Specchia. NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment. Chem. Eng. Sci.,2010,65:120-127.
    [63]S. Djerad, L. Tifouti, M. Crocoll, W. Weisweiler. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts. J. Mol. Catal. A:Chem., 2004,208:257-265.
    [64]S.T. Choo, S.D. Yim, I.S. Nam, S.W. Ham, J.B. Lee. Effect of promoters including WO, and BaO on the activity and durability of VSOs/sulfated T\O2 catalyst for NO reduction by NH3. Appl. Catal. B-Environ.,2003,44:237-252.
    [65]唐晓龙,郝吉明,徐文国,李俊华.固定源低温选择性催化还原NOx技术研究进展.环境科学学报,2005,25:1297-1305.
    [66]M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima. TiO2-SiO2 and V2O/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Appl. Catal. B-Environ..2005,60:173-179.
    [67]M.D. Amiridis, R.V. Duevel, I.E. Wachs. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Appl. Catal. B-Environ..1999,20:111-122.
    [68]H.H. Phil, M.P. Reddy, P.A. Kumar. L.K. Ju. J.S. Hyo. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Appl. Catal. B-Environ.,2008,78: 301-308.
    [69]N. Macleod, R. Cropley, R.M. Lambert. Efficient Reduction of NO x by H 2 Under Oxygen-Rich Conditions over Pd/TiO2 Catalysts:An in situ DRIFTS Study. Catal. Lett.,2003.86: 69-75.
    [70]A. Ueda, T. Nakao, M. Azuma, T. Kobayashi. Two conversion maxima at 373 and 573 K in the reduction of nitrogen monoxide with hydrogen over Pd/TiO2 catalyst. Catal. Today,1998,45: 135-138.
    [71]N. Macleod, R.M. Lambert. Selective NO x Reduction During the H 2+NO+O2 Reaction Under Oxygen-Rich Conditions Over Pd/V2O5/Al2O3:Evidence for In Situ Ammonia Generation. Catal. Lett.,2003,90:111-115.
    [72]F. Kapteijn, L. Singoredjo, A. Andreini, J. Moulijn. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B-Environ.,1994,3:173-189.
    [73]T.S. Park, S.K. Jeong, S.H. Hong, S.C. Hong. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Ind. Eng. Chem. Res.,2001,40: 4491-4495.
    [74]X. Tang, J. Hao, W. Xu, J. Li. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal. Commun.,2007,8: 329-334.
    [75]M. Kang, E.D. Park, J.M. Kim, J.E. Yie. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A:Gen.,2007,327:261-269.
    [76]M. Kang, T.H. Yeon, E.D. Park, J.E. Yie, J.M. Kim. Novel MnO x catalysts for NO reduction at low temperature with ammonia. Catal. Lett.,2006,106:77-80.
    [77]P.G. Smirniotis, P.M. Sreekanth, D.A. Pena, R.G. Jenkins. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A comparison for low-temperature SCR of NO with NH3. Ind. Eng. Chem. Res.,2006,45:6436-6443.
    [78]P.G. Smirniotis, D.A. Pena, B.S. Uphade. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. Angew. Chem. Int. Ed.,2001,40:2479-2482.
    [79]D.A. Pena, B.S. Uphade, P.G.Smirniotis. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:Ⅰ. Evaluation and characterization of first row transition metals. J. Catal.,2004,221:421-431.
    [80]A. Kato, S. Matsuda, F. Nakajima, M. Imanari, Y. Watanabe. Reduction of nitric oxide with ammonia on iron oxide-titanium oxide catalyst. The J. Phys. Chem.,1981,85:1710-1713.
    [81]A. Kato, S. Matsuda, T. Kamo, F. Nakajima, H. Kuroda, T. Narita. Reaction between nitrogen oxide (NOx) and ammonia on iron oxide-titanium oxide catalyst. The J. Phys. Chem.,1981.85: 4099-4102.
    [82]J. Chen, M. Hausladen, R. Yang. Delaminated Fe2O3-pillared clay:Its preparation, characterization, and activities for selective catalytic reduction of NO by NH3. J. Catal.,1995,151: 135-146.
    [83]R. Yang, J. Chen, E. Kikkinides. L. Cheng, J. Cichanowicz. Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia. Ind. Eng. Chem. Res.. 1992,31:1440-1445.
    [84]P. Fabrizioli, T. Buergi, A. Baiker. Environmental catalysis on iron oxide-silica aerogels: Selective oxidation of NH3 and reduction of NO by NH3. J. Catal..2002,206:143-154.
    [85]Z. Zhu, Z. Liu, S. Liu, H. Niu, T. Hu, T. Liu. Y. Xie. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl. Catal. B-Environ.,2000,26: 25-35.
    [86]G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J. Ge, Z.G. Huang. Simultaneous removal of SO? and NOx from flue gas using a CUO/AI2O3 catalyst sorbent II. Promotion of SCR activity by SO:at high temperatures. J. Catal.,2004,224:42-49.
    [87]G Ramis, L. Yi, G Busca, M. Turco, E. Kotur, R.J. Willey. Adsorption, activation, and oxidation of ammonia over SCR catalysts. J. Catal.,1995,157:523-535.
    [88]S. Suarez, J. Martin, M. Yates, P. Avila, J. Blanco. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts. J. Catal., 2005,229:227-236.
    [89]Z. Si, D. Weng, X. Wu, J. Li, G. Li. Structure, acidity and activity of CuOx/WOx-ZrO2 catalyst for selective catalytic reduction of NO by NH3. J. Catal.,2010,271:43-51.
    [90]赵清森,孙路石,向军,石金明,苏胜,胡松,王乐乐.CuO/y-Al2O3催化剂选择性催化还原NO.燃烧科学与技术,2009,15:429-434.
    [91]孙路石,向军,赵清森,石金明,王乐乐,谢天,胡松CuO-CeO2-MnOz/r-Al2O3催化剂选择性催化脱除NO机理研究.工程热物理学报,2009,1415-1418.
    [92]M. Yoshikawa, A. Yasutake, I. Mochida. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers. Appl. Catal. A:Gen.,1998,173:239-245.
    [93]J. Pasel, P. KaBner, B. Montanari, M. Gazzano, A. Vaccari, W. Makowski, T. Lojewski, R. Dziembaj, H. Papp. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Appl. Catal. B-Environ., 1998,18:199-213.
    [94]N. Shirahama, I. Mochida, Y. Korai, K.H. Choi, T. Enjoji, T. Shimohara. A. Yasutake. Reaction of NO2 in air at room temperature with urea supported on pitch based activated carbon fiber. Appl. Catal. B-Environ.,2004,52:173-179.
    [95]Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures. Appl. Catal. B-Environ.,1999,23:L229-L233.
    [96]Z. Zhu, Z. Liu, H. Niu, S. Liu. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures. J. Catal.,1999,187:245-248.
    [97]Z. Zhu, Z. Liu, S. Liu, H. Niu. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts:effect of metal oxides addition and SO2. Appl. Catal. B-Environ..2001,30: 267-276.
    [98]B. Huang, R. Huang, D. Jin, D. Ye. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catal. Today,2007,126:279-283.
    [99]E. Santillan-Jimenez, V. Miljkovic-Kocic, M. Crocker, K. Wilson. Carbon nanotube-supported metal catalysts for NOx reduction using hydrocarbon reductants. Part 1: Catalyst preparation, characterization and NOx reduction characteristics. Appl. Catal. B-Environ., 2011,102:1-8.
    [100]G.Marban, R. Antuna, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides. Appl. Catal. B-Environ.,2003,41:323-338.
    [101]G. Marban, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over Nomex (TM) rejects-based activated carbon fibre composite-supported manganese oxides::Part Ⅱ. Effect of procedures for impregnation and active phase formation. Appl. Catal. B-Environ.,2001,34:55-71.
    [102]T. Valdes-Solis, G. Marban, A.B. Fuertes. Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. Appl. Catal. B-Environ.,2003,46:261-271.
    [103]E. Garcia-Bordeje, J. Pinilla, M. Lazaro, R. Moliner. NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths:Effect of H2O and SO2 traces in the gas feed. Appl. Catal. B-Environ.,2006,66:281-287.
    [104]E. Garcia-Bordeje, M.J. Lazaro, R. Moliner, J.F. Galindo, J. Sotres, A.M. Baro. Structure of vanadium oxide supported on mesoporous carbon-coated monoliths and relationship with its catalytic performance in the SCR of NO at low temperatures. J. Catal.,2004,223:395-403.
    [105]E. Garcia-Bordeje, A. Monzon, M.J. Lazaro, R. Moliner. Promotion by a second metal or SO2 over vanadium supported on mesoporous carbon-coated monoliths for the SCR of NO at low temperature. Catal. Today,2005,102:177-182.
    [106]韦正乐,黄碧纯,叶代启,徐雪梅.烟气NOx低温选择性催化还原催化剂研究进展.化工进展,2007,26.
    [107]Q.S. Zhao, J. Xiang, L.S. Sun, S. Su, S. Hu. Adsorption and Oxidation of NH3 and NO over Sol-Gel-Derived CuO-CeO2-MnOx/gamma-Al2O3 Catalysts. Energy Fuels,2009,23:1539-1544.
    [108]P. Braos-Garcia, J. Santamaria-Gonzalez, P. Maireles-Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez. Copper supported on mixed alumina/gallium oxide pillared alpha-tin phosphate for De-NOx applications. Green Chem.,2001,3:289-295.
    [109]S. Bennici, P. Carniti, A. Gervasini. Bulk and surface properties of dispersed CuO phases in relation with activity of NOx reduction. Catal. Lett.,2004,98:187-194.
    [110]G. Busca, L. Lietti, G.Ramis, F. Berti. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review. Appl. Catal. B-Environ., 1998,18:1-36.
    [111]R.B. Jin, Y. Liu, Z.B. Wu, H.Q. Wang, T.T. Gu. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3:A comparative study. Chemosphere,2010,78:1160-1166.
    [112]N.-Y.T. J.A. Dumesic, T. Slabiak, P. Morsing, B.S. Clausen, E. ToErnqvist, H. Topsue, Proceedings of the 10th International Congress on Catalysis,1993,1325.
    [113]N. Topsoe, J. Dumesic, H. Topsoe. Vanadia-Titania catalysts for selective catalytic reduction of nitric-oxide by ammonia Ⅱ:Studies of active sites and formulation of catalytic cycles. J. Catal., 1995,151:241-252.
    [114]R. Long, R. Yang. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites. J. Catal.,2001,201:145-152.
    [115]H. Huang, R. Long, R. Yang. Kinetics of selective catalytic reduction of NO with NH-, on Fe-ZSM-5 catalyst. Appl. Catal. A:Gen.,2002,235:241-251.
    [116]V. Parvulescu, P. Grange, B. Delmon. Catalytic removal of NO. Catal. Today,1998.46: 233-316.
    [117]H. Wang, J. Wang, Z. Wu, Y. Liu. NO Catalytic oxidation behaviors over CoOx/TiO: catalysts synthesized by Sol-Gel method. Catal. Lett.,2010,134:295-302.
    [118]L. Casagrande, L. Lietti, I. Nova, P. Forzatti, A. Baiker. SCR of NO by NH:, over TiO2-supported V2O5-MOO3 catalysts:reactivity and redox behavior. Appl. Catal. B-Environ., 1999,22:63-77.
    [119]Z. Wu, B. Jiang, Y. Liu, H. Wang, R. Jin. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environ. Sci. Technol..2007, 41:5812-5817.
    [120]O. Krocher, M. Elsener. Combination of V2O5/WO3-TiO2, Fe-ZSM5, and Cu-ZSM5 Catalysts for the selective catalytic reduction of nitric oxide with ammonia. Ind. Eng. Chem. Res., 2008,47:8588-8593.
    [121]J. Li, R. Zhu, Y. Cheng, C.K. Lambert, R.T. Yang. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOx with ammonia. Environ. Sci. Technol.,2010, 44:1799-1805.
    [122]K. Everaert, J. Baeyens. Catalytic combustion of volatile organic compounds. J. Hazard. Mater.,2004,109:113-139.
    [123]K. Everaert, M. Mathieu, J. Baeyens, E. Vansant. Combustion of chlorinated hydrocarbons in catalyst-coated sintered metal fleece reactors. J. Chem. Technol. Biotechnol.,2003.78: 167-172.
    [124]W.L.J. Ben, J.J. Spivey, M.C. Kung, H.H. Kung. Low-temperature NOx removal for flue Gas Clean up. Energy Fuels,1997,11:299-306.
    [125]R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu. Low-temperature selective catalytic reduction of NO with NH3 over MnCe oxides supported on TiO2 and ALO3:A comparative study. Chemosphere, 2010,78:1160-1166.
    [126]J.H. Li, J.J. Chen, R. Ke, C.K. Luo, J.M. Hao. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiOi catalysts. Catal. Commun.,2007,8: 1896-1900.
    [127]G. Qi, R.T. Yang. Characterization and FTIR Studies of MnOx-CeO2 Catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. B,2004.108: 15738-15747.
    [128]N.M. Rodriguez, M.S. Kim. R.T.K. Baker. Carbon nanofibers:A unique catalyst support medium. J. Phys. Chem.,1994,98:13108-13111.
    [129]J. Planeix, N. Coustel, B. Coq. V. Brotons. P. Kumbhar, R. Dutartre. P. Geneste, P. Bernier. P. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Amer. Chem. Soc,1994,116:7935-7936.
    [130]W. Tian, H. Yang, X. Fan, X. Zhang. Low-temperature catalytic oxidation of chlorobenzene over MnOx/TiO2-CNTs nano-composites prepared by wet synthesis methods. Catal. Commun.. 2010,11:1185-1188.
    [131]X. Fan, H. Yang, W. Tian, A. Nie, T. Hou, F. Qiu, X. Zhang. Catalytic oxidation of chlorobenzene over MnOx/Al2Oj-carbon Nanotubes Composites. Catal. Lett.,2011,141:158-162.
    [132]S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. Kenny, B. Delley. NO and CO gas adsorption on carbon nanotubes:Experiment and theory. J. chem. phys., 2003,119:10904.
    [133]WJ. Guan, Y. Li, Y.Q. Chen, X.B. Zhang, GQ. Hu. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens. Bioelectron.,2005,21:508-512.
    [134]Y. Li, X. Zhang, X. Tao, J. Xu, F. Chen, W. Huang, F. Liu. Growth mechanism of multi-walled carbon nanotubes with or without bundles by catalytic deposition of methane on Mo/MgO. Chem. Phys. Lett.,2004,386:105-110.
    [135]Z. Huang, Z. Zhu, Z. Liu, Q. Liu. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. J. Catal.,2003,214:213-219.
    [136]J.H. Goo, M.F. Irfan, S.D. Kim, S.C. Hong. Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia. Chemosphere,2007,67:718-723.
    [137]X. Guo, C. Bartholomew, W. Hecker, L.L. Baxter. Effects of sulfate species on V2O5/Ti02 SCR catalysts in coal and biomass-fired systems. Appl. Catal. B-Environ.,2009,92:30-40.
    [138]M. Colombo, I. Nova, E. Tronconi. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal. Today,2010,151:223-230.
    [139]Z. Huang, Z. Zhu, Z. Liu. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl. Catal. B-Environ.,2002,39:361-368.
    [140]Z.G. Huang, Z.Y. Liu, X.L. Zhang, Q.Y. Liu. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Appl. Catal. B-Environ.,2006,63: 260-265.
    [141]S. Wang, L.J. Ji, B. Wu, Q. Gong, Y. Zhu, J. Liang. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes. Appl. Surf. Sci.,2008,255:3263-3266.
    [142]J.A. Martin, M. Yates, P. Avila, S. Suarez, J. Blanco. Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Appl. Catal. B-Environ.,2007,70:330-334.
    [143]X. Tao, X. Zhang, J. Cheng, F. Liu. Synthesis and characterization of Cu filled carbon nanohorns. Mater. Chem. Phys.,2007,104:210-214.
    [144]L. Chen, J.H. Li, M.F. Ge. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C,2009,113: 21177-21184.
    [145]N.V. Economidis. D.A. Pena, P.G. Smirniotis. Comparison of TiO2-based oxide catalysts for the selective catalytic reduction of NO:effect of aging the vanadium precursor solution. Appl. Catal. B-Environ.,1999,23:123-134.
    [146]W. Tian. H. Yang, X. Fan, X. Zhang. Catalytic reduction of NOx with NH:, over different-shaped MnO2 at low temperature. J. Hazard. Mater.,2011.188:105-109.
    [147]M. Reiche, E. Ortelli, A. Baiker. Vanadia grafted on TiO2-SiO2, TiO2 and SiO2 aerogels: Structural properties and catalytic behaviour in selective reduction of NO by NHv Appl. Catal. B: Environ.,1999,23:187-203.
    [148]P. Lin, Q. She. B. Hong, X. Liu, Y. Shi, Z. Shi, M. Zheng, Q. Dong. The nickel oxide/CNT composites with high capacitance for supercapacitor. J. Electrochem. Soc,2010,157:818.
    [149]A. Misra, P.K. Tyagi, M.K. Singh, D. Misra. FT1R studies of nitrogen doped carbon nanotubes. Diamond. Relat. Mater..2006,15:385-388.
    [150]L. Lietti, P. Forzatti, F. Bregani. Steady-State and transient reactivity study of TiO2-Supported V2O5-WO3 De-NOx catalysts:Relevance of the vanadium-tungsten interaction on the catalytic activity. Ind. Eng. Chem. Res.,1996,35:3884-3892.
    [151]M. Casapu, O. KrOcher, M. Elsener. Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR. Appl. Catal. B-Environ.,2009.88:413-419.
    [152]M. Galvez, A. Boyano. M. Lazaro, R. Moliner. A study of the mechanisms of NO reduction over vanadium loaded activated carbon catalysts. Chem. Eng. J.,2008,144:10-20.
    [153]M. Casapu, O. KrOcher. M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche, D. Grolimund. Characterization of Nb-Containing MnOx-CeO2 Catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. C,2010,114:9791-9801.
    [154]A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy. Synthesis and characterization of carbon nanotubes-Ti02 nanocomposites. Carbon,2004,42:1147-1151.
    [155]B.M. Weckhuysen, D.E. Keller. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today,2003,78:25-46.
    [156]J. Huang, Z. Tong, Y. Huang, J. Zhang. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal. B-Environ.,2008,78:309-314.
    [157]L. Lietti, J. Svachula, P. Forzatti, G. Ramis, P. Bregani. Surface and catalytic properties of vanadia-titania and tungsta-titania systems in the selective catalytic reduction of nitrogen oxides. Catal. Today,1993,17:131-139.
    [158]A. Baiker, P. Dollenmeier. M. Glinski, A. Reller. Selective catalytic reduction of nitric oxide with ammonia:I. Monolayer and multilayers of vanadia supported on titania. Appl. Catal.,1987, 35:351-364.
    [159]P. Liljelind, J. Unsworth, O. Maaskant, S. Marklund. Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. Chemosphere.2001.42:615-623.
    [160]F. Bertinchamps, C. Gregoire, E. Gaigneaux. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics:Part I:Identification of the optimal main active phases and supports. Appl. Catal. B-Environ.,2006,66:1-9.
    [161]Z.L. Liu. Y.L. Fu, J. Tu, M. Meng. Effect of CeO2 on supported Pd catalyst in the SCR of NO:A DRIFT study. Catal. Lett.2002,81:285-291.
    [162]B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.C. Volta. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J. Phys. Chem. B,2003,107:5162-5167.
    [163]Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun.,2008,9:2217-2220.
    [164]Z.B. Wu, R.B. Jin, H.Q. Wang, Y. Liu. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catal. Commun.,2009.10: 935-939.
    [165]K. Krishna, G. Seijger, C. Van den Bleek, H. Calis. Very active CeO2-zeolite catalysts for NOx reduction with NH3. Chem. Commun.,2002,2030-2031.
    [166]L.A. Chen, J.H. Li, M.F. Ge, R.H. Zhu. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catal. Today,2010,153:77-83.
    [167]S. Lefrant, M. Baibarac, I. Baltog. Raman and FTIR spectroscopy as valuable tools for the characterization of polymer and carbon nanotube based composites. J. Mater. Chem.,2009,19: 5690-5704.
    [168]Q. Zhong, Y.T. Li. The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures. J. Hazard. Mater.,2009,172: 635-640.
    [169]L.A. Chen, J.H. Li, M.F. Ge. DRIFT study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3. Environ. Sci.Technol.,2010,44:9590-9596.
    [170]Q. Li, H. Yang. F. Qiu, X. Zhang. Promotional effects of carbon nanotubes on V2O5/TiO2for NOx removal. J. Hazard. Mater.,2011.
    [171]S. Xu, X. Wang. Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane. Fuel,2005.84:563-567.
    [172]J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc,1994,116:7935-7936.
    [173]N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Carbon nanofibers-a unique catalyst support medium. J. Phys. Chem.,1994,98:13108-13111.
    [174]S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini. L. Valentini. J.M. Kenny, B. Delley. NO2 and CO gas adsorption on carbon nanotubes:Experiment and theory. J. Chem. Phys.. 2003,119:10904-10910.
    [175]M. Yoshikawa, A. Yasutake, I. Mochida. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers. Appl. Catal. A-Gen.,1998,173:239-245.
    [176]Q.C. Lin, J.M. Hao, J.H. Li, Z.F. Ma, W.M. Lin. Copper-impregnated Al-Ce-pillared clay for selective catalytic reduction of NO by C3H6. Catal. Today,2007,126:351-358.
    [177]Y. Wan. J.X. Ma. Z. Wang, W. Zhou, S. Kaliaguine. Selective catalytic reduction of NO over Cu-Al-MCM-41. J. Catal.,2004,227:242-252.
    [178]F. Dorado, A. de Lucas, P.B. Garcia, A. Romero, J.L. Valverde. Copper ion-exchanged and impregnated Fe-pillared clays-Study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6. Appl. Catal. A-Gen..2006,305:189-196.
    [179]L. Chmielarz, R. Dziembaj, T. Grzybek, J. Klinik, T. ojewski, D. Olszewska, A. W grzyn. Pillared smectite modified with carbon and manganese as catalyst for SCR of NO x with NH3. Part 11. Temperature-programmed studies. Catal. Lett.,2000.70:51-56.
    [180]B.S. Kim, S.H. Lee, Y.T. Park, S.W. Ham, H.J. Chae, I.S. Nam. Selective catalytic reduction of NOx by propene over copper-exchanged pillared clays. Korean J. Chem. Eng.,2001,18: 704-710.
    [181]A. Sultana, T. Nanba, M. Haneda, M. Sasaki, H. Hamada. Influence of co-cations on the formation of CuT species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3. Appl. Catal. B-Environ.,2010,101:61-67.
    [182]A. Sultana, T. Nanba, M. Haneda, H. Hamada. SCR of NOx with NH3 over Cu/NaZSM-5 and Cu/HZSM-5 in the presence of decane. Catal. Commun..2009,10:1859-1863.
    [183]D.J. Liu, H.J. Robota. On the mechanism of NO selective catalytic reduction by hydrocarbons over Cu-ZSM-5 via X-ray absorption spectroscopic study. J. Phys. Chem. B,1999, 103:2755-2765.
    [184]L.D. Li, J.X. Chen, S.J. Zhang, N.J. Guan, T.Y. Wang. S.L. Liu. Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in situ synthesized monolithic Cu-TS-1/cordierite. Catal. Today,2004,90:207-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700