用户名: 密码: 验证码:
低温氨选择还原NO催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NOx是氮氧化合物的总称,通常包括NO和NO2等,大气中的NOx来源于自然和人为活动的排放。人类活动产生的NOx每年约一亿吨,主要是由于燃烧所致,而在燃烧排出的氮氧化物中约90%以上为NO。NOx对大气环境以及人的生产生活环境都有直接或者间接的影响,如臭氧层的破坏、酸雨、森林及植被的衰减等,都认为与NOx排放有关。有些学者认为,NOx对于人类健康以及环境的危害比SOx的更大。
     本文主要采用低温浸渍法制备了以MnOx为主活性组分的分子筛负载金属氧化物催化剂,采用了SEM、TG-DSC-MS、XRD、H2-TPR、NH3-TPD等手段对催化剂的物理性能和化学性能进行了表征。考察了载体、主活性组分负载量、助剂种类及添加量对催化剂活性的影响,也考察了催化剂的抗硫抗水性能。主要得到以下结论:
     (1)以MnOx为活性组分,以HY、NaY、NH4Y、REY、RPSY, Hβ、HZSM-5、HTS等分子筛为载体催化剂的NH3选择还原NO的催化活性,实验结果表明,载体种类影响活性组分在对催化剂催化剂的活性影响较大,其中Hp、ZRP或REY为载体的催化剂表现出较好的低温活性,在210-220℃,NO的转化率可以达85%;以NaY、NH4Y或HTS为载体的催化剂活性差。在本实验研究范围内,以Hp和REY分子筛为载体催化剂的抗硫性能较好。
     (2)MnOx/Hp体系催化剂抗硫性能研究表明,金属助剂种类及其添加量影响催化剂的抗硫能力。以稀土金属为助剂可以明显改善催化剂的抗硫性能,反应温度为150-160℃,反应气体中SO2含量为100μL/L时,NO转化率可以达到85%,0.1Pr15%Mn/Hβ为催化剂,T85=144℃,T95=161℃。
     (3)MnOx/REY体系催化剂抗硫性能研究表明,Cu助剂的加入大大改善了催化剂的抗硫性能,助剂Cu加入量为0.6(即Cu/Mn摩尔比为0.6)时,催化剂的抗硫性能较优,反应气体中SO2含量为100μL/L,T85=137℃,T95=154℃。助剂Cu加入量为高于0.4(即Cu/Mn摩尔比大于0.4)时,催化剂的抗水性能较优。在反应体系中SO2和H2O共存时,Cu-Mn/REY催化剂表现出一定的抗硫抗水性能。
NOx is a general term for nitrogen oxides, usually including NO and NO2, etc. The main source of the NOx in the atmosphere comes from natural and human activities, NOx generated by human activities is about 100 million tons per year, which caused by burning. But 90% of the NOx in flue gas is NO. NOx has a direct or indirect influence to the atmosphere and human living environment. Such as destruction of the ozone layer, acid rain, forest reduce and so on. Some scholars believe that NOx does more harm to the human health and environmental than SOx.
     The text supported MnOx/zeolite catalyts prepared by low temperature impregnation. Physical and chemical properties of the catalysts were characterized by SEM, TG-DSC-MS, XRD, H2-TPR and NH3-TPD methods. The activities of catalyst were investigated in detail from factors of vector, loading, cocatalyst. The main results were summarized as follows:
     (1)The 5% content of the MnOx/zeolite prepared by low-temperature impregnation method was prepared, which zeolites contains HY, NaY, NH4Y, REY, RPSY, Hβ, HZSM-5, HTS. It was found that zeolites influenced the catalyst activity, and the catalysts carried by ZRP, Hβand REY has the best Low temperature activity. The NO conversion reaches almost 85% at 210-220℃. The catalysts carried by NaY, NH4Y and HTS have the worst conversion. In our test, Mn/RE Y and Mn/Hβhave better activity when added SO2.
     (2)MnOx supported on the Hβ. By the activity test system, It found that almost all the metal additives improve the catalyst activity. And the Rare-earth mental acts the better activity than the other catalysts, for example, 0.1La5%Mn/REY catalysts has an NO conversion of 85% in 144℃, and the conversion of 95% in 161℃.
     (3) MnOx supported on the REY, catalysts which added Cu cocatalyst have better activities even though SO2 was added. The catalyst which molar ratio Cu/Mn is 0.6 has the best activities when 100μL/L SO2 was added, T85 is 137℃, and T95 is 154℃. The catalyst which molar ratio Cu/Mn greater than 0.4 has the best activities when 0.01mL/min H2O was added. Cu-Mn/REY catalysts have better activity when added SO2 and H2O at the same time.
引文
[1]王政宏.火电机组SO2、NOx的产生、危害及治理.甘肃电力技术,2001,25(7):44-46
    [2]Lopez G J, Polupan G, M. Velazquez T, Leyte R L. Analytical and experimental research for decreasing nitrogen oxides emissions. Applied thermal engineering,2008, 29(17):1614-1621
    [3]第一次全国污染源普查公报,中华人氏共和国环境保护局,国家统计局,国家农业部:2010.2.6日
    [4]孙冬梅.机动车尾气污染状况及其控制技术.“中国环境科学”赞会学术年会优秀论文集,2008,1010-1013
    [5]梁翔翔.机动车主要尾气的光化学反应机理.化学工业与工程技术[J],2008,29(4):32-36
    [6]周维,王雪松,张远航,等.我国NOx污染状况与环境效应及综合控制策略.北京大学学报,2008,44(2):323-329
    [7]Francois G. Mechanism of NOx decomposition. Applied Catalysis A:General,2001 222(30):183-219
    [8]Winter E R S.The catalytic decomposition of nitric oxide by metallic oxide. Journal of Catalysis:1971,22(5):158-171
    [9]Iwamoto M. Catalytic decomposition of nitric oxide over Cu(II) exchanged Y-type zeolites. Journal of Chemical Society Faraday Trans,1981,77(19):1629-1637
    [10]Iwamoto M.Copper(Ⅱ)ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continous decomposition of nitrogen monoxide. Journal of Chemical Society Chemical Community,1986(20),1272-1273
    [11]Li Y, Hall W K.Stiochiometricdecomposition of nitric oxide over Cu-ZSM-S catalysts. [J]:Phys Chem,1990,9(12):6145-6155
    [12]Hanna H, Maguus S, Erik F, et al. Influence of the support Pt/aluminum-silicate catalysts on the continuous reduction of NO conditions acidity.Applied Catalysis B: Environ mental,2003,41(12):287-300
    [13]漳州后石电厂三期扩建工程环境影响报告书中日友好环境保护中心2004.10
    [14]大唐国际高井热电厂烟气脱硝示范工程可行性报告书2005.6
    [15]大唐乌沙山发电厂烟气脱硝工程可行性报告书2005.5
    [16]国电谏壁电厂2 X 600WM发电机组环境影响报告书2005.5
    [17]Pena D A, Uphade B S, Smirniotis PG TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3.Evaluation and characterization of first row transition metals. Journal of Catalysis,2004,221(2): 421-431
    [18]Xie G Y, Liu Z Y, Zhu Z P, et al. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent. Deactivation of SCR activity by SO2 at low temperatures. J Catal,2004,224(1):36-41
    [19]Liu I O Y, Cant N W. Isobutane-SCR over Fe-MFI The formation and reactions of drogen cyanide during catalysts. Catalysis Surveys from Asia,2003,7(4):191-202
    [20]Coq B, Mauvezin M, Delahay G, et al. The simultaneous catalytic reduction of NO and NO2 by NH3 using a Fe-zeolite-beta catalyst. Applied Catalysis B-Environmental, 2000,27(3):193-198
    [21]Komatsu T, Nagaicatalytic reduction T, Yashima T. Cu-loaded dealuminated Y zeolites active in selective of nitric oxide with ammonia. Research on Chemical Intermediates 2006,32(3-4):291-304
    [22]Sarria F R, Saussey J, Gallas J P, et al. In situ and operando IR study of adsorption sites for NH3 active species in NOx-SCR via NH3 using a Y zeolite. Molecular Sieves: From Basic Research to Industrial Applications,2005, (158):821-828
    [23]Carja CJ Kameshima Y, Okada K, et al. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NHS. Applied Catalysis B-Environmental.2007.73(1-2)1:60-64
    [24]Stvenson S A, Variuli J C, Sharma S B. The effects of steaming and sodium exchange on the selective catalytic reduction of NO and NO2 by NH3 over HZSM-5. Journal of Catalysis,2002,208(1):106-113
    [25]Wallin M, Karlsson C J, Palmqvist A, et al. Selective catalytic reduction of NOx over H-ZSM-5 under lean conditions using transient NH3 supply. Top Catal,2004, 30-31(1-4):107-113
    [26]Long R Q, Yang R T. Selective catalytic reduction of NO with ammonia over Fe3+ exchanged mordenite (Fe-MOR):Catalytic performance,2002,207(7):274-285
    [27]Broclawik E, Datka J, Gil B, et al. Why Cu+ in ZSM-5 framework is active in DeNOx reaction-quantum chemical calculations and IR studies. Catalysis Today,2002, 75(1-4):353-357
    [28]Wang W, Wang J H, Chen C L, et al. n-Pentane isomerization over promoted Si/MCM-41 catalysts. Catal Today,2004,97(4):307-313
    [29]Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide byammonia over egg-shell MnOx/NaY composite atalysts. J Catal,2002,206(1): 98-113
    [30]黄张根,朱珍平,刘振宇.水对V2O5/AC催化剂低温还原NO的影响.催化学报,2001,22(6):532-536
    [31]Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts. J Catal,2002,206(1): 98-113
    [32]Qi G S, Yang R T, Chang R. Low-temperature SCR of NO with NH3 over USY supported manganese oxide-based catalysts. Catalysis Letters,2003,87(1-2):67-71
    [33]Kijlstra W S, Brands D S, Poels E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3.1. Adsorption and desorption of the single reaction components. Journal of Catalysis,1997,171(1):208-218
    [34]Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Reactivity of adsorbed NH3 and NO complexes. Journal of C'atalvcic 1997,97(4):307-313
    [35]Qi G S, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B-Environmental, 2003,44(3):217-225
    [36]Pena D A, Uphade B S, RedE P, et al. Identification of surface specieson titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. Journalof Pecsical Chemistry B,2004,108(28):9927-9936
    [37]吴碧君,朱林,等.新型低温NH3选择性还原NOx催化剂研究:热力发电2008,37(11):49-53
    [38]伍斌,童志权,黄妍.MnO2/NaY催化剂上NH3低温选择催化还原NOx[J].石油化工,2006,35(2):178-1 82
    [39]吴碧君,朱林,等.新型低温NH3选择性还原NOx催化剂研究.热力发电2008,37(11):49-53
    [40]唐晓龙,郝吉明,徐文国,李俊华.新型MnOx催化剂用于低温NH3选择性催化还原NO催化学报,2006,27(10):843-848
    [41]Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis,2003,217(06):434-441
    [42]Kijlstra W S, et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B:Environmental,1998,16(4):327-337
    [43]韦正乐,黄碧纯,叶代启.烟气NOx低温悬着型催化还原催化剂研究进展[J].化工进展,2007,26(3):321-325
    [44]沈伯雄,郭宾彬.史展亮,等.CeO2/ACF的低温SCR烟气脱硝性能研究[J].燃料化学学报,2007,35(1):125-128
    [45]宣小平,姚强,岳长涛,等.选择性催化还原法脱硝研究进展[J].煤炭转化,2002,25(3):26-31
    [46]中国电力企业联合会.中国电力行业年度发展报告(2000年)[R].北京:2008
    [47]石磊.燃煤锅炉SCR法烟气脱硝技术[J].锅炉技术,2009,02(12):20-31
    [48]匡国强,徐党旗.选择性催化还原(SCR)脱硝装置对锅炉结构的影响[J].热力发电,2006,10(20):33-37
    [49]冯立波,罗钟高,葛春亮.火电厂SCR烟气脱硝工艺系统设计[J].能源工程,2009,1(20):20-25
    [50]Forzatti P.Present Status and Perspectives in de-NO SCR Catalysis[J].Applied Catalysis A:General,2001,2 (22):23-36
    [51]Angeles Larrubia M.An FT-IR Study of the Adsorptionof urea and am mo nia over V 2O 5-M oO 3-T iO2 SCR Catalysts[J].Applied catalysis B;Environmental,2000,2 (7):145-151
    [52]Nova I, Lietti L, Tronconi E.etal. Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta Commer-cial Cataiyst[J]. Catalysis Today,2000, (60):73-82
    [53]杨思娅.硝酸盐分解的热力学分析[J].曲靖师专学报,1995,6(14)51-54
    [54]王致勇编著.无机化学原理.北京:清华大学出版社,1983,321-324
    [55]G SManku. Inorganic Chemistry. Tatu McGraw-U Pubic,1984,322-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700