用户名: 密码: 验证码:
糖基固体酸催化剂制备生物柴油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油是指利用植物油、动物脂肪或废油脂等与短链醇进行酯交换或脂化反应而形成脂肪酸烷基酯混和物,与常规石化柴油相比,生物柴油是环保、可再生的“绿色”燃料,是优质的石化柴油替代品。而制约生物柴油发展的关键因素就是原料油的价格问题以及催化剂的选择,寻找一种廉价的原料并将其转化也是研究的主要方向。
     餐饮废油质量极差、极不卫生,食用后对人体危害极大。但餐饮废油重返餐桌事情屡禁不止,其原因为高利润驱使。目前生物柴油商业化生产最大的障碍是成本问题(包括原料和工艺路线、催化剂的选择),其中原料价格高是主要因素,它占整个制造成本的70%左右,利用餐饮废油生产生物柴油同时它在食品安全,能源开发,以及环境保护方面,都具有积极的意义。
     餐饮废油脂肪酸含量过高,传统的碱法催化要经过更精细的预处理才可使用,酸催化中传统的金属固体酸催化剂成本较高,本文所采用的糖基固体酸催化剂是一种成本低的固体酸催化剂。
     本文研究了一种成本低、适合以高酸值的废弃食用油脂为原料油合成生物柴油的催化剂。这种催化剂以葡萄糖为原料,是一种新型的碳基催化剂,通过负载磺酸基制备而成。制备催化剂碳基的方法为直接加热法以及水热法。研究发现,直接加热法制备的碳材料呈块状,尺寸较大,分布不均匀;而水热法制备的碳材料呈球形,粒径较均匀。直接燃烧法催化剂和水热法催化剂均有较高的酸密度值,但燃烧法催化剂稳定性较差,而水热法催化剂具有较好的催化活性及稳定性。
     在合成生物柴油的研究中,先以植物油为原料油合成生物柴油,对两种催化剂的催化剂效果以及稳定性作初步研究。研究发现燃烧法催化剂稳定性较差,而水热法催化剂在使用7次后仍有较高的催化效果。水热法制得的催化剂催化植物油最佳反应条件为醇油摩尔比6:1、反应时间10h、催化剂用量4%、反应温度170℃,此条件下甲酯收率达到89.64%。
     水热法制得的催化剂催化餐饮废油酯交换反应最佳反应条件为醇油摩尔比6:1、反应时间10h、催化剂用量4%、反应温度170℃,此条件下甲酯收率达到83.57%。
Biodiesel consists of fatty acid alkyl esters produced by esterification or transesterification of vegetable oils, animal fats or waste oils with short chain alcohols and is a biodegradable, nontoxic, cleaning and renewable fuel, which is expected as a part of substitute for conventional fossil diesel. The cost problem of material is the key factor that restricts the development of biodiesel line. So seeking one kind of cheap material is one of the direction to study, too. Waste oils and fats will meet the need to synthesize biodiesel because of its sleazy price and broad source. Waste oils and fats used to synthesize biodiesel, are not only able to resolve the problem that the impact of waste oils and fats to safety of food, but also to the problem of exorbitant cost of material. The waste oils and fats are selected and used to produce biodiesel by combining deacid value and esterification technology.
     Waste cooking oil quality was extremely poor and very unhygienic. Its peroxide value, acid value and mowasture were beyond the limit seriously. It was occupied by a lot corruption factor, aspergillus flavus and unclean substances, so it was a great danger to persons after its consumption. Waste cooking oil returning to the table, let people talk with a changed look.
     In this paper, a low cost catalyst which is more suitable for synthesizing biodiesel using waste edible oils and fats with high acid value is studied. This catalyst which using glucose as raw materials, is a new type of carbon-based catalyst, loaded with sulfonate groups. The methods of preparation of carbon-based catalyst are direct heating method and hydrothermal method. My study shows that direct heating of the carbon material prepared bulk, large size, unevenly distributed catalyst; while spherical catalystes with uniform particle size are synthesized by hydrothermal preparation. Both catalyst prepared by direct heating and hydrothermal method have high acid density values, but the catalyst prepared by direct heating is less stable, while the catalyst prepared by hydrothermal synthesis has better catalytic activity and stability.
     In the study of biodiesel synthesis, vegetable oil as the raw material for biodiesel is firstly considered. At the same time, the catalytic activity and stability of these two kinds of catalyst are studied. We found that the catalyst prepared by direct heating is less stable, while the catalyst prepared through hydrothermal process is still in high catalytic activity even after seven times uses. The best conditions for biodiesel preparation from vegetable oil using catalyst through hydrothermal process are as follows: methanol to oil molar ratio equals 6, 10 hours for reaction, 4% of oil mass use for catalyst, reaction temperature 170℃. Under this condition of preparation, the yield of methyl ester reaches to 89.64%.
     The best conditions for biodiesel preparation from waste cooking oil using catalyst through hydrothermal process are as follows: methanol to oil molar ratio equals 6, 10 hours for reaction, 4% of oil mass use for catalyst, reaction temperature 170℃. Under this condition of preparation, the yield of methyl ester reaches to 83.57%.
引文
[1]侯侠.石油替代产品一新型车用燃料的研究与发展.甘肃科技.2005,21(6):97~99
    [2]中国能源发展报告.2003
    [3] Schafer A. Vegetable oil fatty acid methyl esters as alternative diesel fuels for commercial vehicles engines. Plant Oil Fuel.1997,17(4):29~46
    [4] Sukumar Pihan, N.vedaraman, Boppana V.B.Ram. Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characterstics. Biomass and Bioenergy,2005(28):87~93
    [5] Stephen. Stimulating the biodegradation of Crude Oil with Biodiesel Preliminary Results. Spill Science and Technology Bulletin,1999 (5): 353~355
    [6] Shay E G. Diesel fuel from vegetable oils: status and opportunities. Biomass and bioenergy.2003(4):227~242
    [7] Chang David. Determination of particulate and unburned hydrocarbon emissions from diesel engines fueled with biodiesel. Ames: IOWA STATE UNIVERSITY,lowa,USA,2007
    [8]魏名山,马朝臣.生物柴油的研究和应用进展.能源研究与信2003,19(1):10~13
    [9] Freeman B,Pryde EH, Mounts TL. Variables Affecting the Yields of Faty Esters from Transesterified Vegetable Oils.JAOCS,2005(61):163~164
    [10]江清阳,孙平.生物柴油对能源和环境影响的研究.江苏大学学报(自然科学版),2006,23(4):8~11
    [11] Agarwal A K. Biodiesel development and chatacterization for use as a fuel in compression ignition engines.Eng Gas Turbines Power,2001,123:440~447
    [12]冀星,孔林河等。生物柴油技术进展与产业前景.中国工程科学,2002,4(9):86~93
    [13]朱建良,张冠杰.国内外生物柴油研究生产现状及发展趋势.化工时刊,2004(1):23~27
    [14]尹红.欧盟生物柴油生产现状.国外环保动态,2004(6):41
    [15]中国农业大学生物质工程中心汇编,中国生物质产业的先声,2004年10月农林生物质工程座谈会
    [16]陈秀,袁银南.生物柴油的酯交换法制备技术.粮油加工, 2006,11:47~50
    [17] Jitputti J, Kitiyanan B, RangsunvigitP, et al. Transes-terification of crude palmkernel oil and crude coconutoilby differentsolid catalysts. Chemical Engineering Journal,2006, 116: 61~66
    [18] Xie Wenlei, Peng Hong, Chen Ligong. Calcined Mg-Al hydrotalcites as solid base catalysts form ethanolysis of soybean oil. Journal of Molecular Catalysis: Chemical, 2006, 246: 24~32
    [19] Suppes G J, Dasari M A. Tansesterification of soybean oil with zeolite and metal catalysts. Appl Catal A: Gen,2004, 257~213
    [20] Kim H J, Kang B S, Kim M J. Tansesterification of vegetable oil to biodiesel using heterogeneous base catalyst.Catal,Today,2004, 315: 93~95
    [21] Cantrell D G, Gillie L J, Lee A F. Structure-reactivity correlations in Mg Al hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General, 2005, 287:183~190
    [22] Venkat Reddy C R, Oshel R, Verkade JG.Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides.Energy& Fuels,2006,20(3):1310~1314
    [23] Ebiura T, Echizen T, Ishikawa A. Selective transesterification of triolein with methanol tomethyl oleate andglycerol using alumina loaded with alkalimetal salt as a solid-base catalyst.Applied Catalysis A: General,2005, 283: 111~116
    [24] Jitputti J, Kitiyanan B, Rangsunvigit P.Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts[J]·Chemical Engineering Journal, 2006, 116: 61~66
    [25]阂恩泽,唐忠,杜泽学,吴巍.发展我国生物柴油的探讨.中国工程科学,2005,7(4):1~4
    [26]聂开立,王芳,邓利,谭天伟.间歇及连续式固定化酶反应生产生物柴油.生物加工过程,2005,3(1):58~62
    [27]盛梅,杨文伟,郭等峰.固定化脂肪酶催化合成生物柴油.应用化学,2005,22(7):788~791
    [28] Biofuels for your state-USA department of energy ,Produced for the U.S Department of Energy(DOE) by the National Renewale Energy Laboratory
    [29] M.A Kalam, H.H.Masjuki. Biodiesel from palmoil-an analysis of its properties and potential.Biomass and Bioenergy,2002,23:471~479
    [30] B.K.Barnwal. Prospects of biodiesel production from vegetable oils in India. Renewable and sustainable Reviews,2004,1~16
    [31]朱长江.一种用动物油制取的生物柴油及制取方法.中国,专利审定公,CN1400281A
    [32]白松.餐饮废油制备生物柴油.南昌大学生物质转化工程技术研究中心,2006
    [33]王永红.餐饮废油制取生物柴油的研究.天津大学环境科学与工程学院,2004
    [34] Mittclbach M,Pelkmans L.Waste oils and fats as biodiesel feed stocks:an assessment of their potential in the EU.Altener Program NTB-NETT,Phase IV, Task Final Report,2000
    [35]刘展鹏.利用湘水油生产生物柴油的研究.暨南大学,2006
    [36]李长秀,唐忠,杨海鹰.气相色谱法测定生物柴油样品中脂肪酸甲酯和脂肪酸甘油纸的含量。分析测试学报,2005,25(5):66~68
    [37]李长秀,杨海鹰,王丽琴等.气相色谱法在生物柴油生产工艺研究中的应用.色谱,2006,4(5):524~528
    [38] Trathnigg B,Mittelbach M.Analysis of triglyceride methanolysis mixtures using isocratic HPLC with density detection.J Liq Chromatogr,1990;13(1):95~105
    [39] Darnoko D, Cheryan M, Perkins EG·Analysis of vegetable oil transesterification products by gel permeation chromatography.Lip Chrom Rel Technol,2000,23(15):27~35
    [40] Gerhard Knothe. ZRapid Monitoring of Transesterification and Assessing Biodiesel ZFuel Quality by Near-infrared Spectroscopy Using a Fiber-Optic Probe.JAOCS,1999,76(7):795~800
    [41]张呈平,杨建明,吕剑.生物柴油的合成和使用研究进展.工业催化,2005,13(5):9~14
    [42]倪蓓.生物柴油欧美发展动态及在我国的前景.当代石油石化,2005,13(6):21~23
    [43]方芳,余剑,曾虹燕.生物柴油的研究与应用.交通环保,2004,25(5):45~46
    [44]阂恩泽.以植物油为原料发展我国生物柴油炼油厂的探讨.石油学报(石油加工),2005,21(3):25~28
    [45] Sun X M , Li Y D. A ngew Chem . Int Ed , 2004 , 43 (5) :597
    [46] Boehm H P. Some Aspects of The Surface Chemistry of Carbon Blacks and Others Carbons. Carbon,1994,32(5):759~768
    [47]刘守新,陈孝云,陈曦,等.表面酸碱2步对活性炭吸附Cr(Ⅵ)的影响.环境科学,2005,26(6):89
    [48] Toda M , Takagaki A , Okamura M , et al. Green chemist ry : Bio-diesel made with sugar catalyst. Nature, 2005, 438(382): 178~178
    [49]苑丽,张晓丽,髙文艺,等.固体酸催化大豆油与乙醇酯交换制备生物柴油.辽宁石油化工大学学报,2008,28(2):4~7
    [50]高珊,梁学正,王雯娟.新型碳基固体强酸高效催化羰基化合物与乙二醇的缩合反应.科学通报,2007,52(13):1506~1508
    [51] Takagaki A , Toda M , Okamura M , et al. Esterificationof higher fatty acids by a novel st rong solid acid . Catalysias today ,2006,116(2):157~161
    [52]曲振平,唐小兰,李新勇等.磺化碳材料固载Fe2 +催化甲基橙降解反应.催化学报,2009,30(2)142~146
    [53]刘心武,杨蒸,戴小安等.植物油制备生物柴油的研究.河南化工,2005,22(6):19~21
    [54] M. Di Serio,R.tesser,M.dimieeoli.Synthesis of biodiesel via homogeneous Lewis acid catalyst.Joumal of Molecular Catalysis A:Chemical,2003,239: 111~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700