用户名: 密码: 验证码:
微生物燃料电池产电性能及处理偶氮染料废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来兴起和快速发展的微生物燃料电池(Microbial fuel cell, MFC)技术能直接利用废水中多种有机物作为燃料,在降解污染物的同时直接收获电能,是一种革命性的废水处理工艺,受到国内外学者的广泛关注。目前限制MFC实际应用的一个关键问题就是输出功率较低。在影响其功率输出的诸多因素中,阳极因为影响微生物的吸附和生长代谢,以及电子从微生物到电极之间的传递而被认为是一个关键因素。目前广泛采用的商业化的碳基材料存在比表面积有限,电化学活性较小等不利因素。利用能增加电极比表面积和促进电子传递的某种电活性材料对碳材料表面进行修饰是一种行之有效的解决方法。
     本文从产电和废水处理两方面着手,探索借助阳极修饰的方法提高MFC产电性能的可行性;并以典型偶氮染料甲基橙为目标污染物,考察甲基橙在MFC中的脱色效果及同步产电性能。论文主要研究内容和成果如下:
     (1)用柠檬酸盐还原氯金酸的方法制备粒径约为20nm的金纳米粒子。首次利用层层组装技术将金纳米粒子修饰到碳纸电极表面,并利用紫外-可见光谱监测了薄膜的规律生长。循环伏安和电化学交流阻抗实验表明:纳米金修饰碳纸电极较空白碳纸电极表现出更好的电化学行为,包括更大的电活性表面积,更快的电子转移速率及更小的界面电子传递阻力。相比空白碳纸阳极组装的MFC,利用纳米金修饰碳纸阳极组装的MFC达到最大输出功率346mW m-2,提高了50%,启动时间为175h,缩短了36%。实验结果表明:层层组装技术是将纳米金修饰到碳纸电极上的一种简单有效的方法,而且利用该修饰电极能够有效提高微生物燃料电池的产电性能。
     (2)利用化学还原氧化石墨烯(Graphene Oxide, GO)的方法制备并表征了石墨烯(Graphene, GR)。采用层层组装技术将石墨烯修饰到碳纸电极表面,并探讨该方法能否有效提高MFC的电能输出和对甲基橙的高效去除。循环伏安和电化学交流阻抗实验表明:石墨烯修饰碳纸电极较空白碳纸电极表现出更好的电化学行为。扫描电子显微镜结果显示:修饰电极表面的粗糙度增加,有利于更多的细菌附着在阳极表面。相比空白碳纸阳极组装的MFC,利用石墨烯修饰电极作为阳极的MFC达到最大输出功率368mWm-2,提高了51%,启动时间为180h,缩短了31%。阳极和阴极极化曲线表明:两种反应器的阴极电压之间没有明显区别,而阳极电压存在明显区别,这说明提高微生物燃料电池能量输出的关键是石墨烯修饰阳极,而不是阴极。同时,相比于空白阳极MFC,石墨烯修饰阳极MFC在实现更高能量输出的同时,还实现了更高效的甲基橙去除,脱色率提高11%,COD去除率提高16%。该研究为提高微生物燃料电池的产电性能和甲基橙同步脱色提供了一种简单有效的方法。
     (3)采用所构建的双室方形微生物燃料电池处理甲基橙模拟废水。在进水甲基橙浓度为50-800mg L1、共基质(葡萄糖)浓度为0-2.0mg L1的条件下,系统考察了MFC对甲基橙的脱色效果和同步产电的影响。在MFC以甲基橙-葡萄糖为混合燃料连续工作6个月后,通过生物多样性分析揭示了阳极生物膜微生物组成的基本信息。结果发现:在一定浓度范围内,阳极室中加入的甲基橙对微生物燃料电池产电有积极的促进作用。当使用1g L-1葡萄糖为单一燃料时,MFC的最大输出电压为565mV,当在阳极液中添加甲基橙浓度分别为50、100、200、300和500mg L1时,MFC的最大输出电压分别提高至658、640、629、617和605mV。从脱色方面看,甲基橙在MFC中可以实现加速脱色,相比于开路情况(相当于普通厌氧反应器),反应8h后甲基橙在MFC中的脱色率提高了57%;在葡萄糖浓度一定的条件下,随着甲基橙负荷的增加,脱色效率随之下降。另外,研究发现共基质的存在对甲基橙的高效脱色和同步产电是必须的。在所研究共基质浓度范围内,共基质浓度越大,脱色效率和COD去除效率越高,同时输出电压也越大。而在无共基质存在的条件下,8h内MFC对300mg L-1甲基橙的脱色率仅为7.5%,最大输出电压仅为140mV。454-高通量测序揭示了阳极生物膜的微生物种群基本信息,经NCBI网站比对的测序结果表明:经过长时间的驯化,阳极生物膜已经优化出了对甲基橙具有降解能力的Bacteroidia、Desulfovibrio和Trichococcus及其适合产电的Geobacter两大菌群。
In recent years, microbial fuel cell (MFC) is a rapidly developed technology that can generateelectricity with simultaneous organic matter removal from domestic and industrial wastewaters. As a kindof revolutionary way for wastewater treatment, MFC has become the focus of researchers all over the world.However, the relatively low power output was considered as one of the main obstacles for its furtherapplication. Amongst many factors affecting the performance of MFC, the anode, which had greatinfluence on the growth and activities of microbes as well as on the electron transfer rates, was consideredas one of the key limiting factors. Traditionally, carbon materials which have been widely used as anodehave their drawbacks such as limited surface area and relatively small electrocatalytic activity. To increasethe anode performance, one promising approach is the modification of anode surface with certainelectroactive materials that can enhance the actual accessible area for bacteria to anchor and affect theinterfacial electron transfer resistance and subsequently improve the anode performance. The mainconclusions in the paper are as follows:
     (1) The gold colloids with20nm diameter were prepared via the reduction of HAuCl4by trisodiumcitrate. The gold nanoparticles (Au NPs) modified carbon paper electrode was successfully constructed bylayer-by-layer assembly technique for the first time. UV-vis spectroscopy was used to monitor the regularlayer growth of the {PEI/Au}10multilayer. The results of cyclic voltammetry (CV) and electrochemicalimpedance spectroscopy (EIS) in Fe(CN)63-/4-solution demonstrated that the Au NPs modified carbon paperelectrode exhibited better electrochemical behavior than the bare carbon paper electrode, includingrealtively high electroactive surface areas, increased electron transfer rate and decreased interfacial electron transfer resistance. A two-chambered MFC equipped with the modified anode achieved a maximum powerdensity of346mW m-2and a start time for the initial maximum stable voltage of175hours, which wererespectively50%higher and36%shorter than the corresponding values of the MFC with the unmodifiedanode. All the results indicated that the LBL assembly Au NPs-based modification on the anode was asimple but efficient method to incorporate Au NPs onto carbon paper electrodes and promoted theelectricity generation of MFC.
     (2) Graphene was synthesized by chemically reduction of graphene oxide (GO) to grapheme (GR). Weaimed to investigate whether modification of carbon paper (CP) anode with graphene (GR) vialayer-by-layer assembly technique is an effective approach to promote the electricity generation and methylorange (MO) removal in MFC. Using cyclic voltammetry (CV) and electrochemical impedancespectroscopy (EIS), the GR/CP electrode exhibited better electrochemical behavior. SEM results revealedthat the surface roughness of GR/CP increased, which was favorable for more bacterial to attach to theanode surface. The MFC equipped with GR/CP anode achieved a stable maximum power density of368mW m-2under1000external resistance and a start time for the initial maximum voltage of180hours,which were respectively51%higher and31%shorter than the corresponding values of the MFC with blankanode. The anode and cathode polarization curves revealed negligible difference in cathode potentials butobviously difference in anode potentials, indicating that the GR modified anode other than the cathode wasresponsible for the performance improvement of MFC. Meanwhile, compared with MFC with blank anode,11%higher decolorization efficiency and16%higher the COD removal rate were achieved in MFC withGR modified anode during electricity generation. This study might provide an effective way to modify theanode for enhanced electricity generation and efficient removal of azo dye in MFC.
     (3) Research on the decolorization of methyl orange (MO) simulated wastewater in the two-chambered cubic microbial fuel cells. Systemly studied the bioelectricity generation and decolorizationof MO in the anode chamber of MFC in wide concentration ranges of MO (from50to800mg L1) and ofco-substrate glucose (from0to2.0g L1). The microbial communities on the anode were revealed after theMFC was operated continuously for more than6months using MO-glucose mixtures as fuel. The resultsshowed that the added MO played an active role in production of electricity. The maximum voltage outputswere565,658,640,629,617and605mV for the1g L-1glucose with0,50,100,200,300and500mg L1MO, respectively. Moreover, accelerated decolorization efficiency of MO realized in MFC, increased57%compared to the open-circuit control during8hours. Co-substrate was necessary for the simultaneouselectricity generation and azo dye decolorization. Decolorization efficiency and COD removal rate bothincreased with the increase of the co-substrate concentration. The decolorization efficiency of300mg L-1MO in MFC without co-substrate was only7.5%,the maximum voltage output was only140mV。454high-throughput pyrosequencing revealed the microbial communities. Geobacter genus known to generateelectricity was detected. Bacteroidia class, Desulfovibrio and Trichococcus genus, which were most likelyresponsible for degrading methyl orange, were also detected.
引文
[1]谢晴,杨嘉伟,王彬,等,用于污水处理的微生物燃料电池研究最新进展[J],水处理技术2010,36(3):10-16.
    [2] Habermann W., Pommer E.H., Biological fuel cells with sulphide storage capacity [J], Appl. Microbiol.Biotechnol.1991,35(1):128-133.
    [3] Logan B.E., Hamelers B., Rozendal R.A., et al, Microbial fuel cells: Methodology and technology [J],Environ. Sci. Technol.2006,40(17):5181-5192.
    [4] Allen R.M., Bennetto H.P., Microbial fuel-cells: electricity production from carbohydrates [J], Appl.Biochem. Biotech.1993,39-40(1):27-40.
    [5] Rabaey K., Verstraete W., Microbial fuel cells: novel biotechnology for energy generation [J], TrendsBiotechnol.2005,23(6):291-298
    [6]曹效鑫,梁鹏,黄霞,“三合一”微生物燃料电池的产电特性研究[J],环境科学学报2006,26(8):1252-1257.
    [7]黄霞,梁鹏,曹效鑫,等,无介体微生物燃料电池的研究进展[J],中国给水排水2007,23(4),1-6.
    [8] Liu H., Logan B.E, Electricity generation using an air-cathode single chamber microbial fuel cell in thepresence and absence of a proton exchange membrane [J], Environ. Sci. Technol.2004,38(14):4040-4046.
    [9] Liu H., Ramnarayanan R., Logan B.E., Production of electricity during wastewater treatment using asingle chamber microbial fuel cell [J], Environ. Sci. Technol.2004,38(7):2281-2285.
    [10] Rabaey K., Clauwaert P., Aelterman P., et al, Tubular microbial fuel cells for efficient electricitygeneration [J], Environ. Sci. Technol.2005,39(20):8077-8082.
    [11] He Z., Minteer S.D., Angenent L.T., Electricity generation from artificial wastewater using an upflowmicrobial fuel cell [J], Environ. Sci. Technol.2005,39(14):5262-5267.
    [12] Aelterman P., Rabaey K., Pham T.H., et al, Continuous electricity generation at high voltages andcurrents using stacked microbial fuel cells [J], Environ. Sci. Technol.2006,40(10):3388-3394.
    [13] Beliaev A.S., Saffarini D.A., McLaughlin J.L., et al, MtrC, an outer membrane decahaem ccytochrome required for metal reduction in Shewanella putrefaciens MR-1[J], Mol. Microbiol.2001,39(3):722-730.
    [14] Magnuson T.S., Isoyama N., Hodges-Myerson A.L., et al, Isolation, characterization and genesequence analysis of a membrane-associated89kda Fe(III) reducing cytochrome c from Geobactersulfurreducens [J], Biochem. J.2001,359:147-152.
    [15] Rabaey K., Boon N., Verstraete W., Microbial phenazine production enhances electron transfer inbiofuel cells [J], Environ. Sci. Technol.2005,39(9):3401-3408.
    [16] Rabaey K., Boon N., Siciliano S.D., Biofuel cells select for microbial consortia that self-mediateelectron transfer [J], Appl. Environ. Microb.2004,70(9):5373-5382.
    [17] Turick C.E., Tisa L. S., Caccavo F., Melanin production and use as a soluble electron shuttle for Fe(III)oxide reduction and as a terminal electron acceptor by Shewanella algae BrY [J], Appl. Environ.Microb.2002,68(5):2436-2444.
    [18] Hernandez M.E., Kappler A., Newman D.K., Phenazines and other redox-active antibiotics promotemicrobial mineral reduction [J], Appl. Environ. Microb.2004,70(2):921-928.
    [19] Von C.H., Ogawa J., Shimizu S., et al, Secretion of flavins by Shewanella species and their role inextracellular electron transfer [J], Appl. Environ. Microb.2008,74(3):615-623.
    [20] Newman D.K., Kolter R., A role for excreted quinones in extracellular electron transfer [J], Nature2000,405(6782):94-97.
    [21] Reguera G., McCarthy K.D., Mehta T., et al,Extracellular electron transfer via microbial nanowires [J],Nature2005,435(7045):1098-1101.
    [22] C′esar I.T., Andrew K.M., Hyung-Sool L., et al, A kinetic perspective on extracellular electron transferby anode-respiring bacteria [J], FEMS Microbiol. Rev.2010,34(1):3-17.
    [23] Marsili E., Baron D.B., Shikhare I.D., et al, Shewanella secretes flavins that mediate extracellularelectron transfer [J], P Natl Acad Sci USA2008,105(10):3968-3973.
    [24] Gorby Y. A., Yanina S., McLean J. S., et al, Electrically conductive bacterial nanowires produced byShewanella oneidensis strain MR-1and other microorganisms [J], P Natl Acad Sci USA2006,103(30):11358-11363.
    [25]刘宏芳,郑碧娟,微生物燃料电池[J],化学进展2009,21(6):1349-1355.
    [26]温青,孙茜,赵立新,等,微生物燃料电池对废水中对硝基苯酚的去除[J],现代化工2009,29(4):40-42.
    [27] Mohan S.V., Mohanakrishna G., Reddy B.P., et a1, Bioelectricity generation from chemical wastewatertreatment in mediator-less (anode) microbial fuel cell (MFC) using selectively enriched hydrogenproducing mixed culture under acidophilic microenvironment [J], Biochem. Eng. J.2008,39(1):121-130.
    [28]丁巍巍,汪家权,吕剑,等,微生物燃料电池处理苯酚废水[J],合肥工业大学学报:自然科学版2010,33(1):94-96,142.
    [29] Li H., Ni J., Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroidhormones in a microbial fuel cell [J], Bioresource Technol.2011,102(3):2731-2735.
    [30] Min B., Kim J.R., Oh S.E., et al, Electricity generation from swine wastewater using microbial fuelcells [J], Water Res.2005,39(20):4961-4968.
    [31] Wen Q., Wu Y., Zhao L., et al, Production of electricity from the treatment of continuous brewerywastewater using a microbial fuel cell [J], Fuel2010,89(7):1381-1385.
    [32]蔡小波,杨毅,孙彦平,等,生物燃料电池利用甘薯燃料乙醇废水产电的研究[J],环境科学2010,31(10):2512-2517.
    [33] Patil S. A., Surakasi V. P., Koul S, et al, Electricity generation using chocolate industry wastewater andits treatment In activated sludge based microbial fuel cell and analysis of developed Microbialcommunity in the anode chamber [J], Bioresour Technol.2009,100(21):5132-5139.
    [34] Cheng S., Liu H., Logan B.E., Power densities using different cathode catalysts (Pt and CoTMPP) andpolymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J], Environ. Sci. Technol.2006,40(1):364-369.
    [35] Zhao F., Hamisch F., Schroder U., etal, Application of pyrolysed iron (2+) phthalocyanine andCoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells [J],Electrochem. Commun.2005,7(12):1405-1410.
    [36] Turkevitch J., Stevenson P.C., Hillier J., Nucleation and growth process in the systhesis of colloidalgold [J], Discuss. Faraday Soc.1951,11:55-75.
    [37] Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold [J], Nature:Phys. Sci.1973,241(105):20-22.
    [38] Shipway A.N., Katz E., Willner I., Nanoparticle Arrays on Surfaces for Electronic, Optical, and SensorApplications [J], Phys. Chem. Chem. Phys.2000,1(1):18-52.
    [39] Liu S., Leech D., Ju H.X., Application of colloidal gold in protein immobilization, electron transfer,and biosensing [J], Anal. Lett.2003,36(1):1-19.
    [40] Ana N.R., Gearheart L., Murphy C.J., Evidence for seed-mediated nucleation in the chemicalreduction of gold salts to gold nanoparticles [J], Chem. Mater.2001,13(7):2313-2322.
    [41] Zhou Y., Wang C.Y., Zhu Y.R., et al, A Novel Ultraviolet Irradiation Technique for Shape-ControlledSynthesis of Gold Nanoparticles at Room Temperature [J], Chem. Mater.1999,11(9):2310-2312.
    [42] Chen W., Cai W., Zhang L., et al, Sonochemical Processes and Formation of Gold Nanoparticleswithin Pores of Mesoporous Silica [J], J. Colloid Interf. Sci.2001,238(2):291-295.
    [43] Daniel M.C., Astruc D., Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J],Chem. Rev.2004,104(1):293-346.
    [44] Zhang H., Lu H.Y., Hu N.F., Fabrication of electroactive layer-by-layer films of myoglobin with goldnanoparticles of different sizes [J], J. Phys. Chem. B2006,110(5):2171-2179.
    [45] Bolotin K. I., Sikes K. J., Jiang Z., et al, Ultrahigh electron mobility in suspended graphene [J], SolidState Commun.2008,146(9):351-355.
    [46] Balandin A.A., Ghosh S., Bao W., etal, Superior thermal conductivity of single-layer graphene [J],Nano Lett.2008,8(3):902-907.
    [47] Stoller M. D., Park S., Zhu Y., et al, Graphene-based ultracapacitors [J], Nano. Lett.2008,8(10):3498-3502.
    [48] Lee C., Wei X.D., Kysar J.W., et al, Measurement of the elastic properties and intrinsic strength ofmonolayer graphene [J], Science2008,321(5887):385-388.
    [49] Rao C.N.R., Biswas K., Subrahmanyam K.S., et al, Graphene, the new nanocarbon [J], J. Mater. Chem.2009,19(17):2457-2469.
    [50] Geim A.K., Novoselov K.S., The rise of graphene [J], Nat. Mater.2007,6(3):183-191.
    [51] Novoselov K. S., Geim A. K., Morozov S. V., et al, Electric Field Effect in Atomically Thin CarbonFilms [J], Science2004,306(5696):666-669.
    [52] He H.Y., Klinowski J., Forster M., et al, A new structural model for graphite oxide [J], Chem. Phys.Lett.1998,287(1-2):53-56.
    [53] Owen C.C., SonBinh T.N., Graphene oxide, highly reduced graphene oxide, and graphene: versatilebuilding blocks for carbon-based materials [J], Small2010,6(6):711-723.
    [54]莫光权:功能化碳纳米管材料在微生物燃料电池中的应用研究(D).广州:华南理工大学,2010.
    [55] Ci S.Q., Wen Z.H., Chen J.H., etal, Decorating anode with bamboo-like nitrogen-doped carbonnanotubes for microbial fuel cells [J], Electrochem. Commun.2012,14(1):71-74.
    [56] Cheng S.A., Logan B.E., Ammonia treatment of carbon cloth anodes to enhance power generation ofmicrobial fuel cells [J], Electrochem. Commun.2007,9(3):492-496.
    [57] Feng Y.J., Yang Q., Wang X., et al, Treatment of carbon fiber brush anodes for improving powergeneration in air-cathode microbial fuel cells [J], J. Power Sources2010,195(7):1841-1844.
    [58] Park D.H., Zeikus J.G., Electricity generation in microbial fuel cells using neutral red as anelectronophore [J], Appl. Environ. Microb.2000,66(4):1292-1297.
    [59] Feng C.H., Ma L., Li F.B., et al, A polypyrrole/anthraquinone-2,6-disulphonic disodium salt(PPy/AQDS)-modified anode to improve performance of microbial fuel cells [J], Biosens. Bioelectron.2010,25(6):1516-1520.
    [60] Qiao Y.C Bao S.J., Li C.M., et al, Nanostructured polyanifine/titanium dioxide composite anode formicrobial fuel cells [J], Acs Nano2008,2(1):113-119.
    [61] Lai B., Tang X.H., Li H.R., et al, Power production enhancement with a polyaniline modified anode inmicrobial fuel cells [J], Biosens. Bioelectron.2011,28(1):373-377.
    [62] Yuan Y., Kim S., Improved performance of a microbial fuel cell with polypyrrole/carbon blackcomposite coated carbon paper anodes [J], B. Korean Chem. Soc.2008,29(7):1344-1348.
    [63] Yuan Y., Jeon Y., Ahmed J., et al, Use of Carbon Nanoparticles for Bacteria Immobilization inMicrobial Fuel Cells for High Power Output [J], J. Electrochem. Soc.2009,156(10):B1238-B1241.
    [64]李泉,曾广斌,席时权,纳米粒子[J],化学通报1995,(6):29-34.
    [65] Khairutdinov R.F., Physical chemistry of nanocrystalline semiconductors [J], Colloid J.1997,59(5):535-548.
    [66] Houten H.V., Beenakker C.W.J., Staring A.A.M., Coulomb-blockade oscillations in semiconductornanostructures [J], NATO ASI Series1992,294:167-216.
    [67] Mulvaney P., Surface plasmon spectroscopy of nanosized metal particles [J], Langmuir1996,12(3):788-800.
    [68] Alvarez M.M., Khoury J.T., Schaaff T.G., et al, Optical absorption spectra of nanocrystal goldmolecules [J], J. Phys. Chem. B1997,101(19):3706-3712.
    [69] Lewis L.N., Chemical catalysis by colloids and clusters [J], Chem. Rev.1993,93(8):2693-2730.
    [70] Kesavan V., Sivanand P.S., Chandrasekaran S., et al, Catalytic aerobic oxidation of cycloalkanes withnanostructrured amorphous metals and alloys [J], Angew. Chem. Int. Ed.1999,38:3521-3523.
    [71] Ji J.Y., Jia Y.J., Wu W.G., A layer-by-layer self-assembled Fe2O3nanorod-based composite multilayerfilm on ITO anode in microbial fuel cell [J], Colloid. Surface. A2011,390(1):56-61.
    [72] Sun M., Zhang F., Tong Z.H., et al, A gold-sputtered carbon paper as an anode for improved electricitygeneration from a microbial fuel cell inoculated with Shewanella oneidensis MR-1[J], Biosens.Bioelectron.2010,26(2):338-343.
    [73] Zhang Y.P., Sun J., Hou B., Performance improvement of air-cathode single-chamber microbial fuelcell using a mesoporous carbon modified anode [J], J. Power Sources2011,196(18):7458-7464.
    [74] Peng X. H., Yu H. B., Wang X., et al, Enhanced performance and capacitance behavior of anode byrolling Fe3O4into activated carbon in microbial fuel cells [J], Bioresource Technology2012,121:450-453.
    [75] Yolina H., Rashko R., Vasil B.,Nanomodified NiFe-and NiFeP-carbon felt as anode electrocatalystsin yeast-biofuel cell [J],J. Mater. Sci.2011,46(22):7074-7081.
    [76] Sharma T., Reddy A.L.M., Chandra T.S., Development of carbon nanotubes and nanofluids basedmicrobial fuel cell [J],Int. J. Hydrogen Energ.2008,33(22):6749-6754.
    [77] Ci S.Q., Wen Z.H., Chen J.H., Decorating anode with bamboo-like nitrogen-doped carbon nanotubesfor microbial fuel cells [J], Electrochem. Commun.2012,14(1):71-74.
    [78] Xie X., Hu L.B., Pasta M., et al, Three-dimensional carbon nanotube-textile anode forhigh-performance microbial fuel cells [J], Nano Lett.2011,11(1):291-296.
    [79] Mohanakrishna G., Mohan S.K., Mohan S.V., Carbon based nanotubes and nanopowder asimpregnated electrode structures for enhanced power generation: Evaluation with real field wastewater[J], Appl. Energ.2012,95(7):31-37.
    [80] Sun J.J., Zhao H.Z., Yang Q.Z., et al, A novel layer-by-layer self-assembled carbon nanotube-basedanode: Preparation, characterization, and application in microbial fuel cell [J], Electrochim Acta2010,55:3041-3047.
    [81] Zhang Y. Z., Mo G.Q., Li X.W., et al, A graphene modified anode to improve the performance ofmicrobial fuel cells [J], J. Power Sources2011,196(13):5402-5407.
    [82] Liu J., Qiao Y., Guo C.X., et al, Graphene/carbon cloth anode for high-performance mediatorlessmicrobial fuel cells [J], Bioresource Technol.2012,114:275-280.
    [83] Yong Y.C., Dong X.C., Chan-Park M.B., et al, Macroporous and Monolithic Anode Based onPolyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells [J],ACS nano2012,6(3):2394-2400.
    [84] Xiao L., Damiena J., Luo J.Y., et al, Crumpled graphene particles for microbial fuel cell electrodes[J],J. Power Sources2012,208(12):187-192.
    [85] Xie X., Yu G.H., Cui Y., et al, Graphene–sponges as high-performance low-cost anodes for microbialfuel cells [J], Energ. Environ. Sci.2012,5(5):6862-6866.
    [86] Pandey A., Singh P., Iyengar L., Bacterial decolorization and degradation of azo dyes [J], Int. Biodeter.Biodegr.2007,59(2):73-84.
    [87] Umbuzeiro G.D.A., Freeman H.S., Warren S.H., etal, The contribution of azo dyes to the mutagenicactivity of the Cristais river [J]. Chemosphere2005,60(1):55-64.
    [88] Frijters C.T.M.J., Vos R.H., Scheffer G., etal, Decolorizing and detoxifying textile wastewater,containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system [J].Water Res.2006,40(6):1249-1257.
    [89] Sun J., Bi Z., Hou B., et al, Further treatment of decolorization liquid of azo dye coupled withincreased power production using microbial fuel cell equipped with an aerobic biocathode [J], WaterRes.2011,45(1):283-291.
    [90] Hou B., Sun J., Hu Y., Effect of enrichment procedures on performance and microbial diversity ofmicrobial fuel cell for Congo red decolorization and electricity generation [J], Appl. Microbiol.Biotechnol.2011,90(5):1563-1572.
    [91] Li Z., Zhang X., Lin J., et al, Azo dye treatment with simultaneous electricity production in ananaerobic–aerobic sequential reactor and microbial fuel cell coupled system [J], Bioresource Technol.2010,101(12):4440-4445.
    [92] Cao Y., Hu Y., Sun, J., et al, Explore various co-substrates for simultaneous electricity generation andCongo red degradation in air-cathode single-chamber microbial fuel cell [J], Bioelectrochemistry2010,79(1):71-76.
    [93] Chen B.Y., Zhang M.M., Ding Y.T., et al, Feasibility study of simultaneous bioelectricity generationand dye decolorization using naturally occurring decolorizers [J], J. Taiwan Inst. Chem. Eng.2010,41(6):682-688.
    [94] Chen B.Y., Zhang M.M., Chang C.T., et al, Assessment upon azo dye decolorization and bioelectricitygeneration by Proteus hauseri [J], Bioresource Technol.2010,101(12):4737-4741.
    [95] Fu L., You S.J., Zhang G.Q., et al, Degradation of azo dyes using in-situ Fenton reaction incorporatedinto H2O2-producing microbial fuel cell [J], Chem. Eng. J.2010,160(1):164-169.
    [96] Ding H., Li Y., Lu A., et al, Photo catalytically improved azo dye reduction in a microbial fuel cellwith rutile-cathode [J], Bioresource Technol.2010,101(10):3500-3505.
    [97] Sun J., Hu Y., Bi Z., et al, Simultaneous decolorization of azo dye and bioelectricity generation using amicrofiltration membrane air-cathode singlechamber microbial fuel cell [J], Bioresour. Technol.2009,100(13):3185-3192.
    [98] Liu L., Li F.B., Feng C.H., et al, Microbial fuel cell with an azo-dye-feeding cathode [J]. Appl.Microbiol. Biotechnol.2009,85(1):175-183.
    [99] Mu Y., Rabaey K., Rozendal R., et al, Decolorization of azo dyes in bioelectrochemical systems [J],Environ. Sci. Technol.2009,43(13):5137-5143.
    [100] Hsueh C.C., Chen B.Y., Yen C.Y., Understanding effects of chemical structure on azo dyedecolorization characteristics by Aeromonas hydrophila [J], J. Hazard. Mater.2009,167(1-3):995.
    [101] Fu L., You S.J., Zhang, G.Q., etal, Degradation of azo dyes using in-situ Fenton reaction incorporatedinto H2O2-producing microbial fuel cell [J], Chem. Eng. J.2010,160:164-169.
    [102] Nimje V.R., Chen C.Y., Chen H.R., et al, Comparative bioelectricity production from variouswastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis [J],Bioresource Technol.2012,104:315-323.
    [103] Booki M., Logan B., Continuous electricity generation from domestic wastewater and organicsubstrate in a flat plate microbial fuel cell [J], Environ. Sci. Technol.2004,38(21):5809-5814.
    [104] Sun J., Li Y., Hu Y., et al, Enlargement of anode for enhanced simultaneous azo dye decolorizationand power output in air-cathode microbial fuel cell [J], Biotechnol. Lett.2012,34(11):2023-2029.
    [105] Pandey A., Singh P., Iyengar L., Bacterial decolorization and degradation of azo dyes [J], Int.Biodeter. Biodegr.2007,59(2):73-84.
    [106] Yu H.H., Cao T., Zhou L.D., et al, Layer-by-layer assembly and humidity sensitive behavior ofpoly(ethyleneimine)/multiwall carbon nanotube composite films [J], Sens Actuators B: Chem2006,119(2):512-515.
    [107] Kim J.R., Cheng S., Oh S.E., et al, Power generation using different cation, anion, and ultrafiltrationmembranes in microbial fuel cells [J], Environ. Sci. Technol.2007,41(3):1004-1009.
    [108]王鑫:微生物燃料电池中多元生物质产电特性与关键技术研究(D).哈尔滨:哈尔滨工业大学,2010.
    [109] Oh S., Logan B. E., Proton exchange membrane and electrode surface areas as factors that affectpower generation in microbial fuel cells [J], Appl. Microbiol. Biotechnol.2006,70(2):162-169.
    [110] Oh S., Min B., Logan B. E., Cathode Performance as a faetor in eleetrieity generation in microbialfuel cells [J], Environ. Sci. Technol.2004,38(18):4900-4904.
    [111] Decher G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J], Science1997,277(29):1232-1237.
    [112] Castelnovo M., Joanny J.F., Formation of Polyelectrolyte Multilayers [J], Langmuir2000,16(19):7524-7532.
    [113] Ariga K., Hill J. P., Ji Q.M., Layer-by-layer assembly as a versatile bottom-up nanofabricationtechnique for exploratory research and realistic application [J], Phys. Chem. Chem. Phys.2007,9(19):2319-2340.
    [114] Velasquez-Orta S.B., Curtis T.P., Logan B.E., Energy from algae using microbial fuel cells [J],Biotechnol. Bioeng.2009,103(6):1068-1076.
    [115] Bard A.J., Faulkner L.R.著,邵元华等译,电化学方法:原理和应用(第二版)(M),北京:化学工业出版社,2005.
    [116]曹楚南,张鉴清,电化学阻抗谱导论(M),北京:科学出版社,2002.
    [117]国家环境保护总局,水和废水监测分析方法(第四版)(M),北京:中国环境科学出版社,2002.
    [118] Raunkjaer K., Hvitved-Jaclbse T., Neilsen P.H., Measurement of pools of protein, carbohydrate andlipid in domestic wastewater [J], Water Res.1994,28(2):251-262.
    [119] Pham T.H., Aelterman P., Verstraete W., Bioanode performance in bioelectrochemical systems: recentimprovements and prospects [J], Trends Biotechnol.2009,27(3):168-178.
    [120] Qiao Y., Bao S.J., Li C.M., Electrocatalysis in microbial fuel cells-from electrode material to directelectrochemistry [J], Energ. Environ. Sci.2010,3(5):544-553.
    [121] Rabaey K., Clauwaert P., Aelterman P., et al, Tubular microbial fuel cells for efficient electricitygeneration [J], Environ. Sci. Technol.2005,39(20):8077-8082.
    [122] Gnana k. G., Sathiya S.V.G., Kee S.N.,Recent advances and challenges in the anode architecture andtheir modifications for the applications of microbial fuel cells [J], Biosens. Bioelectron.2013,43:461-475.
    [123] Logan B.E., Microbial Fuel Cells[M], New York: John Wiley&Sons,2007.
    [124] Xie X., Hu L.B., Cui Y., et al, Three-dimensional carbon nanotube-textile anode forhigh-performance microbial fuel cells [J], Nano Lett.2011,11(1):291-296.
    [125] Ramasamy R.P., Ren Z.Y., Mench M.M., et al, Impact of initial biofilm growth on the anodeimpedance of microbial fuel cells [J], Biotechnol. Bioeng.2008,101(1):101-108.
    [126] Liu S., Leech D., Ju H., Application of Colloidal Gold in Protein Immobilization, Electron Transfer,and Biosensing [J], Anal. Lett.2003,36(1):1-19.
    [127] Brown K.R., Fox A.P., Natan M.J., Morphology-dependent electrochemistry of cytochrome c at Aucolloid-modified SnO2electrodes [J], J. Am. Chem. Soc.1996,118(5):1154-1157.
    [128] Zhang H., Lu H.Y., Hu N.F., Fabrication of electroactive layer-by-layer films of myoglobin with goldnanoparticles of different sizes [J], J. Phys. Chem. B2006,110(5):2171-2179.
    [129] Gu H.Y., Yu A.M., Chen H.Y., Direct electron transfer and characterization of hemoglobinimmobilized on a Au colloid-cysteamine-modified gold electrode [J], J. Electroanal. Chem.2001,516(1):119-126.
    [130] Zhang J.D., Oyama M., Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobinimmobilization: direct electrochemistry and catalysis to hydrogen peroxide [J], J. Electroanal. Chem.2005,577(2):273-279.
    [131] Liu S.Q., Ju H.X., Renewable reagentless hydrogen peroxide sensor based on direct electron transferof horseradish peroxidase immobilized on colloidal gold-modified electrode [J], Anal. Biochem.2002,307(1):110-116.
    [132] Frens G., Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions [J], Nature Phys. Sci.1973,241(105):20-22.
    [133]姚素薇,邹毅,张卫国,金纳米粒子的特性、制备及应用研究进展,化工进展,2007,26(3):310-319.
    [134] Daniel, M.-C.; Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,Chem. Rev.,2004;104(1);293-346.
    [135] Grabar K.C., Freeman R.G., Hommer M.B., et al, Preparation and characterization of Au colloidmonolayers [J], Anal. Chem.1995,67(4):735-743.
    [136] Lu C.H., Donch I., Nolte M., et al, Au Nanoparticle-based multilayer ultrathin films with covalentlylinked nanostructures: spraying layer-by-layer assembly and mechanical property characterization [J],Chem. Mater.2006,18(26):6204-6210.
    [137] Bard A.J., Faulkner L.R., Electrochemical methods: fundamentals and applications,2nd ed., JohnWiley&Sons, New York,2001.
    [138] Cheng S.A., Liu H., Logan B.E., Increased power generation in a continuous flow MFC withadvective flow through the porous anode and reduced electrode spacing [J], Environ. Sci. Technol.2006,40(7):2426-2432.
    [139] Katuri K., Ferrer M.L., Gutierrez M.C., et al, Three-dimensional microchanelled electrodes inflow-through configuration for bioanode formation and current generation [J], Energ. Environ. Sci.2011,4(10):4201-4210.
    [141] Wang X., Cheng S.A., Feng Y.J., et al, Use of carbon mesh anodes and the effect of differentpretreatment methods on power production in microbial fuel cells [J], Environ. Sci. Technol.2009,43(17):6870-6874.
    [142] Cai H., Wang J., Bu Y.F., et al, Treatment of carbon cloth anodes for improving power generation in adual-chamber microbial fuel cell [J], J. Chem. Technol. Biotechnol.2013,88(4):623-628.
    [143] Ci S.Q., Wen Z.H., Chen J.H., et al, Decorating anode with bamboo-like nitrogen-doped carbonnanotubes for microbial fuel cells [J], Electrochem. Commun.2012,14(1):71-74.
    [144] Luo J.M., Chi M.L., Wang H.Y., et al, Electrochemical surface modification of carbon mesh anode toimprove the performance of air-cathode microbial fuel cells [J], Bioprocess Biosyst. Eng.2013,36(12):1889-1896.
    [145] Chen D., Tang L.H., Li J.H., Graphene-based materials in electrochemistry [J], Chem. Soc. Rev.2010,39(8):3157-3180.
    [146] Gan T., Hu S.S., Electrochemical sensors based on graphene materials [J], Microchim. Acta2011,175(1-2):1-19.
    [147] Liu J., Qiao Y., Guo C.X., et al, Graphene/carbon cloth anode for high-performance mediatorlessmicrobial fuel cells [J], Bioresource Technol.2012,114:275-280.
    [148] Zhao C., Wang Y., Shi F.J., et al, High biocurrent generation in Shewanella-inoculated microbial fuelcells using ionic liquid functionalized graphene nanosheets as an anode [J], Chem. Commun.2013,49(59):6668-6670.
    [149] Xiao L., Damiena J., Luo J.Y., et al, Crumpled graphene particles for microbial fuel cell electrodes [J],J. Power Sources2012,208:187-192.
    [150] Zhang Y.Z., Mo G.Q., Li X.W., et al, A graphene modified anode to improve the performance ofmicrobial fuel cells [J], J. Power Sources2011,196(13):5402-5407.
    [151] Hou J.X., Liu Z.L., Zhang P.Y., A new method for fabrication of graphene/polyaniline nanocomplexmodified microbial fuel cell anodes [J], J. Power Sources2013,224:139-144.
    [152] Yong Y.C., Dong X.C., Chan-Park M.B., et al, Macroporous and Monolithic Anode Based onPolyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells [J],ACS nano2012,6(3):2394-2400.
    [153] Fan J., Guo Y.H., Wang J.J., etal, Rapid decolorization of azo dye methyl orange in aqueous solutionby nanoscale zerovalent iron particles [J], J. Hazard. Mater.2009,166(2):904-910.
    [154] Solanki K., Subramanian S., Basu S., Microbial fuel cells for azo dye treatment with electricitygeneration: A review [J], Bioresource Technol.2013,131:564-571.
    [155] Sun J., Li Y. M., Hu Y. Y., et al, Understanding the degradation of Congo red and bacterial diversityin an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal fromwastewater and bioelectricity generation [J], Appl. Microbiol. Biotechnol.2013,97(8):3711-3719.
    [156]刘士垣,汪世龙,孙晓宇,等,脉冲辐解技术研究偶氮染料甲基橙水相降解的微观机理[J],化学学报2004,62(8):818-822.
    [157] Dong S.Y., Sun J.Y., Li Y.K., et al, ZnSnO3hollow nanospheres/reduced graphene oxidenanocompositesas high-performance photocatalysts for degradation of metronidazole [J], Appl. Catal.B: Environ.2014,144:386-393.
    [158] Chen J.S., Wang Z.Y., Dong X.C., et al, Graphene-wrapped TiO2hollow structures with enhancedlithium storage capabilities [J], Nanoscale2011,3(5):2158-2161.
    [159] Lv T., Pan L. K., Liu X. J., et al, Enhanced photocatalytic degradation of methylene blue byZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction [J], J. Alloy.Compd.2011,509(41):10086-10091.
    [160] Guo H.L., Wang X.F., Qian Q.Y., et al, A Green Approach to the Synthesis of Graphene Nanosheets[J], ACS Nano2009,3(9):2653-2659.
    [161] Mermoux M., Chabre Y., Rousseau A, FTIR and C-13NMR-Study of Graphite Oxide [J]. Carbon1991,29(3):469-474.
    [162] Yenny H., Valeria N., Jonathan N.C., et al, High-yield production of graphene by liquid-phaseexfoliation of graphite [J], Nat. Nanotechnol.2008,3(9):563-568.
    [163] Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation ofgraphite in surfactant/water solutions [J], J. Am. Chem. Soc.2009,131(10):3611-3620.
    [164] Liu Y., Liu Y., Feng H.B., et al, Layer-by-layer assembly of chemical reduced graphene and carbonnanotubes for sensitive electrochemical immunoassay [J], Biosens. Bioelectron.2012,35(1):63-68.
    [165] Xie L.L., Xu Y.D., Cao X.Y., Hydrogen peroxide biosensor based on hemoglobin immobilized atgraphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbonelectrode [J], Colloids Surf., B2013,107:245-250.
    [166] Li J., Guo S.J., Zhai Y.M., etal, Nafion-graphene nanocomposite film as enhanced sensing platformfor ultrasensitive determination of cadmium [J], Electrochem. Commun.2009,11(5):1085-1088.
    [167] Li M.G., Xu S.D., Tang M., etal, Direct electrochemistry of horseradish peroxidase ongraphene-modified electrode for electrocatalytic reduction towards H2O2[J], Electrochim. Acta2011,56(3):1144-1149.
    [168] Wu P., Shao Q., Hu Y.J., etal, Direct electrochemistry of glucose oxidase assembled on graphene andapplication to glucose detection [J], Electrochim. Acta2010,55(28):8606-8614.
    [169] Sheng K.X., Bai H., Sun Y.Q., et al, Layer-by-layer assembly of graphene/polyaniline multilayerfilms and their application for electrochromic devices [J], Polymer2011,52(24):5567-5572.
    [170] Qiao Y., Li C.M., Bao S.J., et al, Carbon nanotube/polyaniline composite as anode material formicrobial fuel cells [J], J. Power Sources2007,170(1):79-84.
    [171] Feng C.H., Ma L., Li F.B., et al, A polypyrrole/anthraquinone-2,6-disulphonic disodium salt(PPy/AQDS)-modified anode to improve performance of microbial fuel cells [J], Biosens. Bioelectron.2010,25(6):1516-1520.
    [172] Ci S.Q., Wen Z.H., Chen J.H., et al, Decorating anode with bamboo-like nitrogen-doped carbonnanotubes for microbial fuel cells [J], Electrochem. Commun.2012,14(1):71-74.
    [173] Galindo C., Jacques P., Kalt A., Photodegradation of the aminoazobenzene acid orange52by threeadvanced oxidation processes: UV/H2O2, UV/TiO2and VIS/TiO2: comparative mechanistic andkinetic investigations [J], J. Photochem. Photobiol. A: Chem2000,130(1):35-47.
    [174] Cao Y.Q., Hu Y.Y., Sun J., et al, Explore various co-substrates for simultaneous electricity generationand Congo red degradation in air-cathode single-chamber microbial fuel cell [J], Bioelectrochem.2010,79(1):71-76.
    [175] Rajaguru P., Kalaiselvi K., Palanivel M., et al, Biodegradation of azo dyes in a sequentialanaerobic–aerobic system [J], Appl. Microbiol. Biotechnol.2000,54(2):268-273.
    [176] Pandey A., Singh P., Iyengar L., Bacterial decolorization and degradation of azo dyes [J], Int.Biodeter. Biodegr.2007,59(2):73-84.
    [177] Dutta K., Mukhopadhyay S., Bhattacharjee S., et al, Chemical oxidation of methylene blue using aFenton-like reaction [J], J. Hazard. Mater.2001,84(1):57-71.
    [178] Fan J., Guo Y.H., Wang J.J., et al, Rapid decolorization of azo dye methyl orange in aqueous solutionby nanoscale zerovalent iron particles [J], J. Hazard. Mater.2009,166(2):904-910.
    [179] Dos S.A.B., Cervantes F.J., Van L.J.B., Review paper on current technologies for decolourisation oftextile wastewaters: perspectives for anaerobic biotechnology [J], Bioresource Technol.2007,98(12):2369-2385.
    [180] Feng C.H., Li F.B., Mai H.J., et al, Bio-electro-fenton process driven by microbial fuel cell forwastewater treatment [J], Environ. Sci. Technol.2010,44(5):1875-1880.
    [181] Liu R.H., Sheng G.P., Sun M., et al, Enhanced reductive degradation of methyl orange in a microbialfuel cell through cathode modification with redox mediators [J], Appl. Microbiol. Biotechnol.2011,89(1):201-208.
    [182] Cheng S.A., Liu H., Logan B.E., Power densities using different cathode catalysts (Pt and CoTMPP)and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J], Environ. Sci.Technol.2006,40(1):364-369.
    [183] Wang Y.Z., Wan A.J., Liu W.Z., et al, Enhanced azo dye removal through anode biofilm acclimationto toxicity in single-chamber biocatalyzed electrolysis system [J], Bioresource Technol.2013,142:688-692.
    [184] Wang Y.Z., Wan A.J., Liu W.Z., et al, Enhanced azo dye removal through anode biofilm acclimationto toxicity in single-chamber biocatalyzed electrolysis system [J], Bioresource Technol.2013,142:688-692.
    [185]曹云晴:空气阴极单室型微生物燃料电池同步脱色刚果红与产电特性研究(D).广州:华南理工大学,2010.
    [186] Du Z.W., Li H.R., Gu T.Y., A state of the art review on microbial fuel cells: A promising technologyfor wastewater treatment and bioenergy [J], Biotechnol. Adv.2007,25(5):464-482.
    [187] Morris J.M., Jin S., Crimi B., et al, Microbial fuel cell in enhancing anaerobic biodegradation ofdiesel [J], Chem. Eng. J.2009,146(2):161-167.
    [188] Wen Q., Kong F.Y., Zhang H.T., et al, Simultaneous processes of electricity generation andceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell [J], J. PowerSources2011,196(5):2567-2572.
    [189] Stolz A., Basic and applied aspects in the microbial degradation of azo dyes [J], Appl. Microbiol.Biotechnol.2001,56(1-2):69-80.
    [190] Macdonald J.R., Impedance spectroscopy. Ann. Biomed. Eng.1992,20:289-305.
    [191] Ji JY, Jia YJ, Wu WG, et al, A layer-by-layer self-assembled Fe2O3nanorod-based compositemultilayer film on ITO anode in microbial fuel cell, Colloids Surf. A: Physicochem. Eng. Aspects2011,390(1):56-61.
    [192]Park D H, Zeikus J G. Electricity generation in microbial fuel cells using neutral red as anelectronophore. Appl. Environ. Microbiol.,2000,66(4):1292-1297.
    [193] Choi Y., Kim N., Kim S., et al. Dynamic behaviors of redox mediators within the hydrophobic layersas an important factor for effective microbial fuel cell operation. Bull. Korean Chem. Soc.,2003,24(4):437-440.
    [194]Sund C. J., McMasters S., Crittenden S. R., et al. Effect of electron mediators on current generationand fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol.,2007,76(3):561-568.
    [195] Chen B., Meng M., Chang C., et al. Assessment upon azo dye decolorization and bioelectricitygeneration by Proteus hauseri. Bioresour. Technol.2010,101(12):4737-4741.
    [196] Sun J., Hu Y.Y., Hou B., Electrochemical characteriztion of the bioanode during simultaneous azodye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell[J], Electrochim. Acta2011,56(19):6874-6879.
    [197] Hosseini M.G., Ahadzadeh I., Electrochemical impedance study on methyl orange and methyl redas power enhancing electron mediators in glucose fed microbial fuel cell [J], J. Taiwan Inst. Chem. E.2013,44(4):617-621.
    [198] Min B., Kim J.R., Regan J.M., et al, Electricity generation from swine wastewater using microbialfuel cells [J], Water Res.2005,39(20):4961-4968.
    [199] Logan B.E., Microbial Fuel Cells. New York: John Wiley&Sons,2007.
    [200] Wei J., Liang P., Cao X., et al. A new insight into potential regulation on growth and powergeneration of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint [J]. Environ.Sci. Technol.2010,44(8):3187-3191.
    [201] Yi H., Nevin K.P., Kim B.C., et al. Selection of a variant of Geobacter sulfurreducens with enhancedcapacity for current production in microbial fuel cells [J]. Biosens. Bioelectron.2009,24(12):3498-3503.
    [202] Logan B.E., Exoelectrogenic bacteria that power microbial fuel cells [J]. Nat.Rev. Microbiol.2009,7(5):375-381.
    [203] Ryckelynck N., Stecher H.A., Reimers C.E., Understanding the anodic mechanism of a seafloor fuelcell: interactions between geochemistry and microbial activity [J], Biogeochemistry2005,76(1):113-139.
    [204] Yoo E.S., Libra J., Adrian L., Mechanism of decolorization of azo dyes in anaerobic mixed culture [J],J. Environ. Eng.-asce2001,127(9):844-849.
    [205] Nuria G.M., Daniel P., Victor M.M., et al, Anaerobic treatment of wastewater from used industrial oilrecovery [J], J. Chem. Technol. Biot.,2012,87(9):1320-1328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700