用户名: 密码: 验证码:
碳基薄膜材料的制备与场发射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前场发射冷阴极材料的研究与应用主要集中在碳基材料包括金刚石、非晶碳和碳纳米管等领域。其中非晶碳和碳纳米管制备温度较低且场发射性能更加优异,这使它们成为理想的场发射材料。然而对于他们的商业化应用,发射的强度和发射密度仍是一个主要问题。因此寻找能够提高和改善非晶碳和碳纳米管场发射性能的方法是十分重要和必要的。针对目前非晶碳及碳纳米管的场发射特性研究中的存在的问题。本文采用等离子体增强化学气相沉积方法(PECVD),合成了多壁碳纳米管薄膜,系统研究了催化剂(Fe,Co,Ni)、金属过渡层(Nb、Ni、Al、Ti)对碳纳米管结构及场发射性能的影响。结果表明,Fe,Co,Ni不同催化剂对合成碳纳米管的场发射性能有较大影响,由于Fe在三种催化剂中具有最低的功函数,因此由Fe合成的碳纳米管有最好的场发射性能;在Nb,Ti上生长的碳纳米管与过渡层金属可以形成稳定的共价键,这有利于碳纳米管场发射性质的提高。利用PECVD合成了内壁结晶、外壁非晶的碳纳米管薄膜并研究了其场发射特性,由于非晶的外壁可以引入大量缺陷,因此这种新型新型碳纳米管的场发射性能优于纯结晶碳纳米管与非晶碳纳米管。采用磁控溅射方法在硅衬底上沉积了非晶碳薄膜,研究了沉积条件、过渡层(Nb、NbC)及退火对其结构及场发射性能的影响。铌过渡层的引入增大了非晶碳薄膜的几何增强因子,高温退火可以使铌层与非晶碳层的界面处形成碳化铌,这都有利于提高非晶碳薄膜的场发射性能。立方相的碳化铌比六方相的碳化铌更有利于非晶碳薄膜场发射性能的提高,碳化铌过渡层内的Nb-C键与Nb-Nb键含量的比值越大,越有利于提高非晶碳薄膜的场发射性能。本论文对碳纳米管与非晶碳的场发射性质做了很好的基础研究,对合成和制备碳纳米管和非晶碳场发射材料有重要的理论指导意义。
Field electron emission from carbon related materials such as diamond, carbon nanotubes (CNTs), and amorphous carbon (a-C) films has been widely studied. These carbon-based emitters have been reported to show good electron field emission properties with a moderately low electric field because of their unique properties such as low work function and outstanding chemical inertness. a-C films is a promising field emitter that is very favorable to enhancing field emission. Some efforts have been made to improve the emission properties of a-C films and most work has focused on the surface treatment, doping and the quality of the films in order to improve their field emission properties. However, so far, there have been only a few reports about how buffer layer between a-C film and substrate does influence the field emission of carbon films. Even though a few mechanisms have been proposed, the influence of buffer layer on the field emission for a-C film is not well understood and the phenomena that are widely observed experimentally are not well explained yet. Nanotube production involves the widespread use of transition metal (TM) catalysts such as Ni, Co, or Fe, and also, many papers about electron field emission properties of carbon nanotubes have been published, in which carbon nanotubes demonstrated various excellent field-emission characteristics such as a low turn-on field, threshold field and field enhancement factor. However, there is no systematic study and comparison of electron field emission from carbon nanotubes prepared using different catalysts. Many reports have only attributed the field-emission performance of carbon nanotubes to their high aspect ratio (size effect). Aside from the size effect, there is still relatively little known about the other factors affecting the emission properties of carbon nanotubes. Catalytic metal residue on nanotube may cause the change of the electronic states at the nanotube tips and then affect the field emission property of CNTs. In addition, the introduction of buffer layer may be a effective method to enhance the field emission properties of CNTs.
     In this work, we carry out the following investigation in order to improve the field emission properties of CNTs and a-C films.
     1. Synthesis and field emission properties of CNTs films
     We have synthesized multi-walled carbon nanotubes on silicon substrates using plasma-enhanced chemical vapor deposition (PECVD) via decomposing methane using Fe, Co and Ni as the catalyst, and explore their field electron emission properties. It is found that the nanotubes synthesized using Fe catalyst have better field emission properties, compared with those synthesized using Ni and Co catalyst, which can be due to that the Fe catalyst has the lower work function than either Ni or Co catalyst. Futhermore, we find that the Ti or Nb buffer layer can substantially improve the electron field emission properties of CNTs, which is attributed to the formation of conductive Ti-C or Nb-C bonds, decreasing the interface barrier and improving the back contact between buffer layer and CNTs. This investigation suggests that the contact between buffer layer and CNTs plays an important role in the field emission properties of CNTs. In addition, the well-aligned CNTs growth on Ti buffer layer has the best field emission properties due to the high value ofβ.
     2. Synthesis and field emission properties of CNTs with cystalline inner and amorphous outer walls (C/A-CNTs).
     we synthesize the carbon nanotubes with cystalline inner and amorphous outer walls (C/A-CNTs) on nickel catalyst using PECVD in a mixture of H_2 and CH_4 discharge gas, and find that that the structures of CNTs are strongly dependent on the gas flow rate ratio (R) of H_2/CH_4, in which lower R favors the formation of crystalline CNTs, whereas higher R promotes the growth of C/A-CNTs due to the larger size and lower activity for nickel catalyst as R is higher. The C/A-CNTs exhibits better field emission properties, compared to those amorphous or crystalline ones, which can be ascribed to lowering the work function by defect states induced by amorphous outer walls grown on the crystalline inner walls.
     3. Synthesis and field emission properties of a-C films
     We have prepared amorphous carbon (a-C) films on Si (100) substrates by radio frequent (RF) magnetron sputtering and investigated their field electron emission. We find that RF power can significantly affect the field emission of a-C films, in which the proper RF power (~200W) is more favourable to the enhancement in the field emission due to the higher disordered in the a-C films grown under 200W RF power.
     Nb buffer layer can substantially improve the electron field emission properties of the a-C films, which can be attributed to an increase in the enhancement factorβon the surface of the a-C films after insertion of the Nb layer. Moreover, the electron field emission can be further enhanced by annealing a-C/Nb/Si, which can be ascribed to the formation of NbC phase at the interface between a-C and Nb layer, revealed by X-ray diffraction for annealed a-C/Nb/Si. The first-principles calculated results show that the formation of NbC can lower the interface barrier and improve the back contact between Nb and a-C films, enhancing the field electron emission of a-C.
     NbC buffer layer with different phase structures and chemical bonding can substantially change the electron field emission properties of a-C films. The work function of NbC is lower than that of Nb_2C, which favors enhancing the electron emission properties of a-C. Moreover, the high ratio of Nb-C/Nb-Nb bonds in the NbC buffer layer is good for the field emission enhancement of a-C films, which is attributed to the lower work function of NbC than that of Nb.
引文
[1]Correges F,Parameters in FED product design.Information Display 1996,12:10.
    [2]Vandaine P,Meyer R,'Microtips' fluorescent display.IEDM 1991,197.
    [3]Spindt C A,Brodie I,Humphrey L,and Westerberg E R,Physical properties of thin-film field emission cathodes with molybdenum cones.J.Appl.Phys.1976,47:5248.
    [4]Liao M Y,Zhang Z G,Wang W L,et al.Field Emission Current from Diamond Film Deposited on Molybdenum.J.Appl.Phys.1998,84:1081.
    [5]Spindt C A,A Thin-Film Field-Emission Cathode.J.Appl.Phys.1968,39:3504.
    [6]王保平,雷威,真空微电子学及其应用,东南大学出版社,2002。
    [7]王秀峰,程冰,现代显示材料与技术,化学工业出版社,2007。
    [8]陈献忠,姚汉民,陈旭南等,纳米光刻技术的现状和未来,物理,2002,31:691。
    [9]Spallas J P,Hawryluk A M,Kania D R,Field Emiter Array Mask Patering Using Laser Interference Lithography.J.Vac.Sci.Technol.B 1995,13:1973.
    [10]Brodie I,Spindt C A,Advances in electronics and electron physics:microelectronics and microscopy[M].New York:Academic Press,1992,83(Chapter2):126.
    [11]Tang Y H,Sun X H,Au F C K,et al.Microstructure and field emission characteristics of boron doped Si nanoparticle chains [J]. Appl Phys Lett. 2001, 79:1673.
    
    [12] Zhu W, Bower C, Kochanski G P, et al. Electron field emission from nanostructured diamond and carbon nanotubes [J]. Solid-State Electronics 2001, 45:921.
    [13] Zhu W, Kochanski G P, Jin S, Low-field electron emission from undoped nanostructured diamond [J]. Science, 1998, 282:1471.
    [14] Pan Z W, Au F C K, Lai H L, et al. Very low-field emission from aligned and opened carbon nanotube arrays [J]. J. Phys. Chem. B 2001, 105:1519.
    [15] Chen C F, Lin C L, Wang C M, Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor desposition [J]. Appl. Phys. Lett. 2003, 82:2515.
    [16] Smith R C, Carey J D, Poa C H P, et al. Electron field emission from room temperature grown carbon nanofibers [J]. J. Appl. Phys. 2004, 95:3153.
    [17] Zhu W, Kochaneki G P, Jin S, et al. Electron field emission from ion-implanted diamond [J]. Appl. Phys Lett. 1995, 67:1157.
    [18] Kang H K, Kim T H, Enhancement of emission characteristics for field emitters by N_2 doped hydrogen free diamond like carbon coation [J]. J. Vac. Sci. Technol. B 1999, 17:246.
    [19] Talin A A. Pan Ls, McCarty K F, et al. The relationship between the spatially resolved field emission characteristics and the raman spectra of a nanocrystalline diamond cold cathode. Appl. Phys. Lett. 1996, 69:3842.
    [20] Satyanarayana B S, Hart A, Milne W I, et al. Field emission from tetrahedral amorphous carbon. J. Appl. Phys. Lett. 1997, 71:1430.
    [21] Chen Y , Patel S, Ye Y, et al. Field emission from aligned high-density graphitic nanofibers. Appl. Phys. Lett. 1998, 73:2119.
    [22] De Heer W A, Chatelain A, and Ugarte D, A carbon nanotube field emission electron source. Science 1995, 270:1179.
    [23] Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, and Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties Science 1999.283:512.
    [24] Bonard J M, Salvetat J P, and Stockli T, Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 1998, 73:918.
    [25] Chung D S, Choi W B, Kang J H, et al. Field emission from 4.5 in. single-walled and multiwalled carbon nanotube films. J. Vac. Sci. Technol. B 2000, 18:1054.
    [26] Kwo J L, Tsou C C, Yokoyama M E, Lin I N, Lee C C, Wang W C, and Chuang F Y, Field emission characteristics of carbon nanotube emitters synthesized by arc discharge. J. Vac. Sci. Technol. B 2001, 19:23.
    [27] Shon J I, Lee S H, Song Y H, Choi S Y, et al. Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl. Phys. Lett. 2001, 78:901.
    [28] Cho Y R, Lee J H, Song Y H, Kang S Y, Jung M Y, Hwang C S, and Cho K I, Patterning technology of carbon nanotubes for field emission displays. J. Vac. Sci. Technol. B 2001, 19:1012.
    [29] Powers M J, Benjamin M C, Porter L M, et al. Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 1995, 67:3912.
    [30] Kimura C, Yamamoto T, Sugino T, Field emission characteristics of boron nitride films deposited on Si substrates with cubic boron nitride crystal grains. J. Vac. Sci. Tech. B 2001, 19:1051.
    [31] Tang C C, Fan S S, Li P, et al. Synthesis of boron nitride in tubular form. Mater Lett. 2001,51:315.
    [32] Sugino T, Tanioka K, Kawasaki S and Shirafuji J, Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition. Jpn. J. Appl. Phys. 1997, 36:L463.
    [33] Wan Q, Yu K, Wang T H, et al. Low- field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation [J]. Appl. Phys. Lett. 2003. 83:2253.
    [34] 刘学葱, 阴极电子学, 科学出版社, 1980,224.
    [35]薛增泉,吴全德,电子发射与电子能谱,北京大学出版社,1993,60.
    [36]Straton R,Field Emission from Semiconductors.Proc.Phys.Soc.B 1955,68:746.
    [37]Chynoweth A G,Internal Field Emission.Progress in Semiconductors 1960,4:95.
    [38]Chernozatonskii L A,Gulyaev Y V,Kosakovskaja Z J,et al.Electron Field Emission from Nanofiliament Carbon Films[J].Chem.Phys.Lett.1995,233:63.
    [39]De Heer W A,Chatelain A,Ugrate D,A Carbon Nanotube Field emission Electron Source[J].Science 1995,270:1179.
    [40]Wang Q H,Corrigan T D,Dai J Y,et al.Field Emission from Nanotube Bundle Emitters at Low Fields[J].Appl.Phys.Lett.1997,70:33080.
    [41]Bonard J M,Salvetat J P,St(O|¨)ckli T,et al.Field Emission from Single wall Carbon Nanotube Films[J].Appl.Phys.Lett.1998,73:918.
    [42]Choi J H,Choi S H,Han J H,et al.Enhanced Electron Emission from Carbon Nanotubes through Density Control Using in Situ Plasma Treatment of Catalyst Metal[J].Appl.Phys.2003,94:487.
    [43]Jo S H,Tu Y,Huang Z P,et al.Effect of Length and Spacing of Vertically Aligned Carbon Nanotubes on Field Emission Properties[J].Appl.Phys.Lett.2003,82:3520.
    [44]Wang Q H,Setlur A A,Lauerhaas J M,et al.A Nanotube based Field emission Flat Panel Display[J].Appl.Phys.Lett.1998,72:2912.
    [45]Zhu W,Bower C,Zhou O,et al.Large Current Density from Carbon Nanotube Field Emitters[J].Appl.Phys.Lett.1999,75:873.
    [46]Saito Y,Hamaguchi K,Mizushima R,et al.Field Emission from Carbon Nanotubes and Its Application to Cathode Ray Tube Lighting Elements[J].Appl.Surf.Sci.1999,146:305.
    [47]Feng Y T,Deng S Z,Chen J,et al.Effect of Carbon Nanotube Strucrural Parameters on Field Emission Properties[J].Ultramicroscopy 2003,95:93.
    [48]Wei Y,Xie C,Dean KA,et al.Stability of Carbon Nanotubes under Electric Field Studied by Scanning Electron Microscopy[J].Appl.Phys.Lett.2001, 79:4527.
    [49] Wang Z L, Gao R P, De Heer W A, In Situ Imaging of Field Emission from Individual Carbon Nanotubes and Their Structural Damage [J].Appl. Phys. Lett. 2002, 80:856.
    [50] Chen Y, Shaw D T, Guo L P, Field Emission of Different Oriented Carbon Nanotubes [J]. Appl. Phys. Lett. 2000, 76:2469.
    [51] Jang Y T, Choi C H, Ju B K, et al. Fabrication and Characteristics of Field Emitter Using Carbon Nanotubes Directly Grown by Thermal Chemical Vapor Deposition [J]. Thin Solid Films 2003, 436:298.
    [52] Zhang W D, Thong J T L, Tjiu W C, et al. Fabrication of Vertically Aligned Carbon Nanotubes Patterns by Chemical Vapor Deposition for Field Emitters [J]. Diamond Relat. Mater. 2002, 11:1638.
    [53] Yen J H, Leu IC, Lin C C, et al. Effect of Catalyst Pretreament on the Growth of Carbon Nanotubes [J]. Diamond Relat. Mater. 2004, 13:1237.
    [54] Dong C K, Field Emission Based Sensors Using Carbon Nanotubes [D]. USA, A Dissertation of Old Dominion University, 2003.
    [55] Dean K A, Chalamala B R, The Environmental Stability of Field Emission from Single walled Carbon Nanotubes [J]. Appl. Phys. Lett. 1999, 75:3017.
    [56] Dean K A, Chalamala B R, Current Saturation Mechanisms in Carbon Nanotub- e Field Emitters [J]. Appl. Phys. Lett. 2000, 76:375.
    [57] Maiti A, Andzelm J, Tanpipat N, et al. Effect of Adsorbates on Field Emission from Carbon Nanotubes [J]. Phys. Rev. Lett. 2001, 87:155502.
    [58] Tian J S, Li J, Li Y, et al. The Influence of Relative Height between Cathode and Gate on Electron Transmission Efficiency [J]. Acta Photonica Sinica 2003, 32: 928.
    [59] 成会明,碳纳米管制备、结构、物性及其应用[M],化学工业出版社,2002。
    
    [60] Chen Y, Shaw D T, Field emission of oriented carbon nanotubes [J]. Appled Phys. Lett. 2000, 76:2469.
    [61] Jung Y S, Jeon D Y, Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition Appl. Surf. Sci. 2002, 193:129.
    [62] Chuang F Y, et al. Local electron field em ission characteristics of pulsed laser deposited diamond like carbon films. Appl. Phys. Lett. 1996, 69:3504.
    [63] Talin A A, et al. Electron fielde mission from a-tC and a-tC:N. J. Vac. Sci. T echnol.A1996, 14:1720.
    [64] Okano K, Koizumi S, Low threshold cold cathodes made of nitrogen vapor deposited diamond. Nature 1996, 381:140.
    [65] Lee J K, Cho E. S., et al. Characteristics of phosphorus implanted MPCVD diamond films. Proceedings of the 14~(th) international vacuum microelectronics conference, Davis, USA, Aug 12-16,2001, 281.
    [66] Takatoshi Y, Atsuhito S, Temperature dependence on dlectron emission of boron-doped diamond. Proceedings of the 14~(th) international vacuummicroelectronic-s conference, Davis, USA, Aug 12-16, 2001, 299.
    [67] Hsu T, Lin G M, Lin I N, Electron field emission of nanocrystalline diamond films co-doped with boron and nitrogen. Proceedings of the 14~(th) international vacuum microelectronics conference, Davis, USA, Aug 12-16, 200, 273.
    [68] Robertson J, Amorphous carbon cathodes for field emission display. Thin Solid Films 1997,296:61.
    [69] Bulir J, et al. Study of nitrogen pressure effect on the laser deposited amorphou-s carbon films. Thin Solid Films 1997, 292:318.
    [70] Silva S R P, Amaratunga G A J, Okano F, Modelling of the electron field emission process in polycrystalline diamond like carbon thin films. Techanical Digest of IVMC98, 1998, 176.
    [1]Zhu H,Formation of carbon nanotubes in water by the electric-arc technique.Chem.Phys.Lett.2002,366:664.
    [2]Lijima,Helical microtubules of graphitic carbon.Nature,1991,354:56.
    [3]Jonmet C,Maser W K,Bemier P,et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature 1997,388:756.
    [4]GaoT,Nikolaev P,Thess A,et al.Catalytic growth of single-walled nanotubes by laser vaporization[J].Chem.Phys.Lett.1995,243:49.
    [5]Thess A,Lee R,Nikolaev P,et al.Crystalline ropes of metallic carbon nanotubes.Science 1996,273:483.
    [6]Toshifumi Y,Sung Y M,RF PECVD characteristics for the Growth of Carbon Nanotubes in a CH_4-N_2 Mixed Gas.IEEE Transactions on Plasma Sciences 2007,35:1027.
    [7]Journet C,Alvarez L,Micholet V,et al.Single wall carbon nanotubes:Two ways of production.Synth.Metal 1999,103:2488.
    [8]Laplaze D,Bemier P,Maser W K,et al.Carbon nanotubes:the solar approach.Carbon 1998,36:685.
    [9]Nikolaev P,Bronikowski M J,Bradley R K,et al.Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,Chem.Phys.Lett.1999,313:91.
    [10]Yacaman M J,Yoshida M M,Rendon L,et al.Catalytic growth of carbon microtubules with fullerene structure.Appl.Phys.Lett.1993,62:202.
    [11]Wilson M A,Patney H K,Kolman J,New developments in the formation of nanotubes from coal[J].Fuel 2002,81:5.
    [12]Colomer J F,Stephan C,Lefrant S,Van Tendeloo G,et al.Large-scale Synthesis of Single-Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition(CCVD) Method. Chem. Phys. Lett. 2000, 317:83.
    [13] Cheng H M, Li F, Su G, et al. Large scale and low cost synthesis of single walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 1998, 72:3282.
    [14] Cheng H M, Li F, SunX, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 1998,289:602.
    [15] Hata N, Murata K, Very long graphitic nanotubules synthesized by plasma decomposition of benzene. Chem. Phys. Lett. 1994,217:398.
    [16] Ren Z F ,Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282:1105.
    [17] Choi Y C, ShinY M, LeeY H, et al. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2000, 76:2367.
    [18] Choi W S, Hamada E, KondoY, et al. Synthesis of carbon nanotubes from bulk polymer. Appl. Phys. Lett. 1996, 69:278.
    [19] 白石壮志, 大谷朝男, 化学工业(日), 2001,14:182.
    [20] Ji L ,Lin J ,Zeng H C, Formation Route of Carbon Nanotubes in a Gel Matrix. Chem. Mater. 2000, 12:3466.
    [21] Libera J, Gogotsi Y, Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon, 2001, 39:1307.
    [22] MaksimovaN I, Krivoruchko O P, Churilin A L, et al. Preparation of nanoscale thin walled carbon tubules from a polyethylene precursor. Carbon 1999, 37:1657.
    [23] Schliter R R, Seo J W, Gimzewski J K, et al. Carbon Nanotubes Formed by Self Assembly. Science 2000, 292:1136.
    [24] Hsu W K, Hare J P, Terrones M, et al. Condensed-phase nanotubes. Nature 1995, 377:687.
    [25] Kawase N, In-situ observation of formation of nanoscale carbon tubules. Carbon, 1998,36:1864.
    [26] Matveev A T, Golberg D, Novikov V P, et al. Synthesis of carbon nanotubes below room temperature.Carbon 2001,39:155.
    [27]楠美智子,铃木敏之,平山司等,电子显微镜(日),1999,34:113.
    [28]Palmer G J,Bowles D M,Landis C,et al.Cycloaromatization approach to planar and cylindrical carbon oligomers.Carbon 2000,38:1671.
    [29]Vander Wal R L,Ticich T M,Curtis V E,et al.Diffusion flame synthesis of single walled carbon nanotubes.Chem.Phys.Lett.2000,323:217.
    [30]Richter H,Hernadi K,Caudano R,et al.Formation of nanotubes in low pressure hydrocarbon flames Carbon 1996,34:427.
    [31]Cheol J L,Jeunghee P and Jeong A Y et al.Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition.Chem.Phys.Lett.2002,360:250.
    [32]Jason H H,Michael J and Bobak R et al.Catalytic growth of single wall carbon nanotubes from metal particles,Chem.Phys.Lett.1998,296:195.
    [33]Li Z Q,Chen J L and Zhang X X et al.Catalytic synthesized carbon nanostructures from methane using nanocrystalline Ni.Carbon 2002,40:409.
    [34]Meyyappan M,Delzeit L,Cassell A,Hash D,Carbon nanotube growth by PECVD:a review.Plasma Sources Sci.Technol.2003,12:205.
    [35]Hash D B,Bell M S,Teo K B K.,Cruden B A,Milne W I,Meyyappan M,An investigation of plasma chemistry for dc-plasma enhanced chemical vapor deposition of carbon nanotubes and nanofibres.Nanotechnology 2005,16:925.
    [36]Yabe Y,Ohtake Y,Ishitobi T,Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method.Diamond Relat.Mater.2004,13:1292.
    [37]Choi Y C,Bae D J,Lee Y H,Lee B S,Han I K,Choi W B,et al.Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition.Synthetic Metals 2000,108:159.
    [38]Iijima S,Helical microtubules of graphite carbon.Nature 1991,354:56.
    [39]成会明,碳纳米管—制备、结构、物性及应用,化学工业出版社,2002。
    [40]Hiura H,Ebbesen T W,Tanigaki K,Takahashi H,Raman studies of carbon nanotubes.Chem.Phys.Lett.1993,202:509.
    [41]Rao A M,Richter E,Bandow S,Chase B,Eklund P C,Williams K A,et al. Diameter-Selective Raman.Scattering from Vibrational Modes in Carbon Nanotubes.Science 1997,275:187.
    [42]Ferrari A C,Robertson J,Interpretion of Raman spectra of disordered and amorphous carbon.Phys.Rev.B 2000,61:14095.
    [43]汪兆平,韩和相,李国华,碳纳米管的拉曼散射研究,光散射学报,1999,11:1。
    [44]Hiura,Ebbesen T W,Tanigaki K,Dresselhaus G,Phonon modes in carbon nanotubules.Chem.Phys.Lett.1993,209:77.
    [45]高本辉,崔素言,真空,科学出版社,1983.
    [46]Amelinckx S,Zhang X B,Bernaerts D,et al.A formation mechanism for catalytically grown helix-shaped graphite nanotubes.Science 1994,265:635.
    [47]Prawer S,Nugent K W,Lifshitz Y,Lempert G D,Grossman E,Kulik J,Avigal I,and Kalish R,Systematic variation of the Raman spectra of DLC films as a function of sp~2:sp~3 composition.Diamond Relat.Mater.1996,5:433.
    [48]Ding F,Larsson P,Larsson A J,Ahuja R,Duan H M,Rosen A,and Bolton K,The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes.Nano.lett.2008,8:463.
    [49]Shern C S,Application of a MEM-LEED apparatus to the study of the melting of lead particles CHINESE JOURNAL OF PHYSICS 1988,26:34.
    [50]Xu G,Feng Z C,Popovic Z,Lin J Y,Vittal J J,Nanotube Structure Revealed by High-Resolution X-ray Diffraction.Advanced Materials 2001,13:264.
    [51]陈丽芳,刘咏,汤慧萍,刘海彦,黄愿平,原位生成TiC颗粒增强Ti基复合材料的显微组织,稀有金属材料与工程,2005,10.
    [52]孔德军,张永康,冯爱新,鲁金忠,基于XRD的Al_2O_3纳米薄膜残余应力测试,仪器仪表学报,2006,12。
    [1] Zhao T K, Liu Y N, Zhu J W, Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 2005, 43:2907.
    [2] Zhao N Q, He C N, Du X W, Shi C S, Li J J, Cui L, Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 2006, 44:1859.
    [3] Liu BY, Jia D C, Zhou Y, Feng H B, Meng Q C, Low temperature synthesis of amorphous carbon nanotubes in air. Carbon 2007,45:1696.
    [4] Ci L J, Wei BQ, Xu C L, Liang J, Wu D H, Xie S S, et al. Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. Journal of Crystal Growth. 2001, 233:823.
    [5] Prawer S, Nugent K W, Lifshitz Y, Lempert G D, Grossman E, Kulik J, Avigal I, and Kalish R, Systematic variation of the Raman spectra of DLC films as a function of sp~2.sp~3 composition. Diamond Relat. Mater. 1996, 5:433.
    [6] Okita A, Suda Y, Oda A, Nakamura J, Ozeki A, Bhattacharyya K, et al. Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas. Carbon 2007, 45:1518.
    [7] Ho Y M, Yang G M, Zheng W T, Wang X, Tian H W, Xu Q, et al. Synthesis and field electron emission properties of hybrid carbon nanotubes and nanoparticles. Nanotechnology 2008, 19:065710.
    [8] Lu A H, Schmidt W, Tatar S D, Spliethoff B, Popp J, Kiefer W, et al. Formation of amorphous carbon nanotubes on ordered mesoporous silica support. Carbon 2005, 43:1811.
    [9] Chen Y S, Huang J H, Hu J L, Yang C C, Kang W P, Synthesis of single-walled carbon nanotubes produced using a three layer Al/Fe/Mo metal catalyst and their field emission properties. Carbon 2007, 45:3007.
    [10] Yan X B, Tay B K, Miele P, Field emission from ordered carbon nanotube ZnO heterojunction arrays. Carbon 2008, 46:753.
    [11] Chen Y, Sun Z, Chen J, Xu N S, Tay B K, Field emission properties from aligned carbon nanotube films with tetrahedral amorphous carbon coatings. Diamond Relat. Mater. 2006,15:1462.
    [12] Hsu C H, Chen C F, Chen C C, Chan S Y, Density-controlled carbon nanotubes. Diamond Relat. Mater. 2005,14:739.
    [13]Zhou G, Duan W H, Gu B L, Kawazoe Y, Qualitative and quantitative descriptions on the localized electronic structure in single walled carbon nanotubes. J. Chem. Phys. 2002, 116:2284.
    [14] Zheng B, Zheng W T, Zhang K, Wen Q B, Zhu J Q, Meng S H, et al. First-principle study of nitrogen incorporation in amorphous carbon. Carbon 2006, 44:962.
    [15] Xu N S, She J C, Huq S E, Chen J, Deng S Z, Enhancing electron emission from silicon tip arrays by using thin amorphous diamond coating. Appl. Phys. Letts. 1998, 73:3668.
    [1] Chuang F Y, et al. Local electron field em ission characteristics of pulsed laser deposited diamond like carbon films. Appl. Phys. Lett. 1996, 69:3504.
    [2] Robertson J, Mechanisms of electron field emission from diamond-like carbon and nanostructured carbon. J. Vac. Sci. Technol. B 1999, 17:659.
    [3] Okano K, Koiznmi S, silva S R P, et al. Low threshold cold cathodes made of nitrogen doped chemical vapor deposited diamond. Nature 1996, 381:140.
    [4] Macaulay J M, Brodie I, Spindt C A, et al. Cesiated thin film field emission microcathode arrays. Appl. Phys. Lett. 1992, 61:997.
    [5] Amaratunga G A J, Silva S R P, Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes. Appl. Phys. Lett. 1996, 68:2529.
    [6] Mao D S, Wang X, Li W, and Liu X H, Electron field emission from a patterned diamond-like carbon flat thin film using a Ti interfacial layer. J. Vac. Sci. Technol. B 2000, 18:2420.
    [7] Normand, F L, Hommet J, Szorenyi T, Fuchs C, and Fogarassy E, XPS study of pulsed laser deposited CNx films. Phys. Rev. B 64:235416.
    [8] Filik J, May P W, Pearce S R J, Wild R K, Hallam K R, XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diamond Relat. Mater. 2003, 12:974
    [9] Vesaghi M A and Nazari M, XPS and IR study of carbon thin films prepared under negative substrate DC voltage bias. Journal of Superhard Materials 2007, 29:40.
    [10] Wang L Y, Wang X P, Wang L J, Zhang L, Field emission characteristics of nano-structured carbon films deposited on differently pretreated Mo films. Appl. Sur. Sci. 2008, 255:3257.
    [11] Leroy W P, Detavernier C, and Van Meirhaeghe R L, Thin film solid state reactions forming carbides as contact materials for carbon containing semiconductors. J. Appl. Phys. 2007, 101:053714.
    [12] Prawer S, Nugent K W, Lifshitz Y, Lempert G D, Grossman E, Kulik J, Avigal I, and Kalish R, Systematic variation of the Raman spectra of DLC films as a function of sp~2:sp~3 composition. Diamond Relat. Mater. 1996, 5:433.
    [13] Ballutaud D, Jomard F, Kociniewski T, Rzepka E, Girard H and Saada S, sp~3/sp~2 character of the carbon and hydrogen configuration in micro and nanocrystalline diamond. Diamond Relat. Mater. 2008, 17:451.
    [14] Kalish R, Lifshitz Y, Nugent K, and Prawer S, Thermal stability and relaxation in diamond-like-carbon. A raman study of films with different sp~3 fractions (ta-C to a-C). Appl. Phys. Lett. 1999, 74:2936.
    [15] Ristein J, Schafer J, and Ley L, Effective correlation energies for defects in a-C:H from a comparison of photelectron yield and electron spin resonance experiments. Diamond Relat. Mater. 1995, 4:508.
    [16] Gupta S, Weiner B R, and Morell G, Role of sp~2 C cluster size on the field emission properties of sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 2002, 80:1471.
    [17] Zheng W T, Li J J, and Wang X, Electron emission of carbon nitride films and mechanism for the nitrogen-lowered threshold in cold cathode. J. Appl. Phys. 2003, 94:2741.
    [18] Li Y J, Lau S P, Tay B K, Sun Z, Chen G Y, and Chen J S, Annealing effects on field emission properties of tetrahedral amorphous carbon films. Appl. Surf. Sci. 2001, 174:283.
    [19] Li J J, Gu C Z, Peng H Y, Wu H H, Zheng W T, and Jin Z S, Field emission properties of diamond-like carbon films annealed at different temperatures. Appl. Surf. Sci. 2005,251:236.
    [20] Delley B, An all electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92:508.
    [21] Delley B, From molecules to solids with the DMol~3 approach. J. Chem Phys. 2000,113:7756.
    [22] Perdew J P and Wang Y, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992, 45:13244.
    [23] Yeh C L and Chen W H, A comparative study on combustion synthesis of Nb-Si compounds. J. Alloy Compd. 2006,425:216.
    [24] Rao A P, Sunandana C S, Growth and surface morphology of ion-beam sputtered Ti-Ni thin films. Nuclear Instruments and Methods in Physics Research B 2008, 266:1517.
    [25] Delley B, Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66:155125.
    [26] Pack J D and Monkhorst H J, "Special points for Brillouin-zone integrations"-a reply. Phys. Rev. B 1977, 16:1748.
    [27] Liao M Y, Gotoh Y, Tsuji H, Ishikawa J, Compound-target sputtering for niobium carbide thin-film deposition. J. Vac. Sci. Technol. B 2004, 22:L24.
    [28] Talyzin A, Hogberg H, Jansson U, Deposition and characterisation of Nb_xC_(60) films. Thin Solid Films 2002, 405:42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700