用户名: 密码: 验证码:
中国北方针叶林生态系统碳通量及其影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北方针叶林生态系统是地球上第二大陆地生物群区,位于北半球中高纬度地区,增温剧烈,对气候变化敏感,在全球碳平衡和气候系统中起着至关重要的作用。本研究以中国北方针叶林生态系统为研究对象,以涡动相关法为主要技术手段,利用北方针叶林生态系统定位观测站2007年和2008年生长季(6月~10月)碳通量和气象观测数据,采用EdiRe (Eddy Reprocessing)软件将10HZ原始通量数据转化为30 min数据并进行质量控制,分析了北方针叶林总生态系统生产力(GEP)、生态系统呼吸(Re)和净生态系统C02交换(NEE)的日、季节动态变化特征及其影响因子,研究结果表明:
     (1)总生态系统生产力的日、季动态均呈单峰型曲线,日高峰值出现在上午9:00-10:00左右,6月-10月生态系统碳吸收持续时间随着白天日照长度的减少呈逐渐缩短趋势,变动于11个小时(10月)~16个小时(6月)之间;整个生长季节,7月气温最高,降雨量最多,总生态系统生产力最大,2007年和2008年整个生长季节总生态系统生产力日均值分别为19.45g CO2·m-2·d-1和17.67g CO2·m-2·d-1。北方针叶林总生态系统生产力与温度和光合有效辐射具有很好的线性关系,其中与5cm土壤温度的相关系数达到0.55左右。这表明,温度是北方针叶林生长的主要限制因子,而太阳辐射是植物进行光合作用的前提条件。北方针叶林生态系统雨水充沛,水分并不是一个主要的限制因子,土壤含水量和水汽压差与总生态系统生产力相关性均不明显。
     (2)北方针叶林生态系统呼吸日动态变化呈单峰型曲线,高峰值均出现在下午15:30~16:30,白天生态系统呼吸量及变动幅度均明显大于夜间。整个生长季节,7月和8月生长旺盛期生态系统呼吸达到最大,2007年和2008年生长季节生态系统呼吸日均值分别为15.15 g CO2·m-2·d-1和14.11 g CO2·m-2·d-1。温度是北方针叶林生态系统呼吸的主要影响因子,夜间生态系统呼吸与土壤温度的相关性(R2平均值为0.492)高于气温(R2平均值为0.369),温度可以解释北方针叶林夜间生态系统呼吸34%~57%的动态变化。
     (3)北方针叶林净生态系统CO2日交换呈单峰型曲线,最大值出现在上午9:00~10:00。6月~10月北方针叶林生态系统生长季每天的固碳时间从14小时(5:00-19:00)逐渐缩短为9小时(7:30-16:30)。北方针叶林生态系统的NEE在生长季前期(6月~8月)呈净碳吸收,生长季末期(9月~10月)呈碳排放。2007年和2008年整个生长季节净生态系统碳交换日均值分别为-1.45 g CO2·m-2·d-1和-1.37 g CO2·m-2·d-1。北方针叶林白天净生态系统CO2日交换与各环境因子的相关性从大到小依次为:光合有效辐射、1.5 m气温、5 cm土壤温度、水汽压差。2007年和2008年北方针叶林的NEE与光合有效辐射相关性最大,两者呈明显的正相关性,相关系数分别为0.558和0.494。
     (4)2007年碳通量各组分均大于2008年,可能与2007年生长季平均气温(12.46℃)高于2008年(11.04℃)以及2007年生长季平均光合有效辐射(697.17μmol·m~(-2)·S~(-1)高于2008年(638.55μmol·m~(-2)·S~(-1))有关。
Boreal forest is the second largest biome on the earth, which lies in middle-high latitude of the northern hemisphere and where temperature increases strongly. Thus, boreal forest is an important research object in global climate change and carbon cycle. Larix gmelinii forest in Daxing'an Mountains of Northeast China is an important component of boreal forest. Long-term measurement of the CO2 fluxes between the vegetation and the atmosphere has facilitated the research on carbon cycle and its controlling mechanisms in boreal forest ecosystem and its response to global climatic change in the future. Based on two-year continuous CO2 exchange observation during growing seasons from 2007 to 2008 over Chinese boreal forest by eddy covariance method in northeast China, we analyzed diurnal and seasonal dynamics of gross ecosystem productivity(GEP), ecosystem respiration(Re) and net ecosystem CO2 exchange(NEE) and their controls. Major conclusions are summarized as follows:
     (1) The diurnal pattern of GEP could be expressed as one-humped curves with the maximum appeared at 9:00-10:00. The daily length of carbon sequestration from the atmosphere was reduced from 16 hours in June to 1.1 hours in October. GEP was the largest in July with the highest air temperature and precipitation during the whole growing seasons. Mean daily GEP in 2007 and 2008 were 19.45 g CO2·m-2·d-1 and 17.67g CO2·m-2·d-1, respectively. GEP had close linear relationship with both temperature and photosynthetically active radiation (PAR), and especially, the correlative coefficient for soil temperature at 5 cm depth was around 0.55. It indicated that temperature was a major limited factor in boreal forest ecosystem, and PAR was the basis of photosynthesis. Precipitation was enough in boreal forest ecosystem, which was not a limited factor.
     (2) The diurnal pattern of Re could be expressed as one-humped curves with the maximum appeared at 15:30-16:30. Re and its range in daytime were both larger than those in nighttime. Re was the largest in July and August during the whole growing seasons. Mean daily Re in 2007 and 2008 were 15.15 g CO2·m-2·d-1 and 14.11 g CO2·m-2·d-1. Re was mainly influenced by temperature, and the correlative coefficients with soil temperature (average R=0.492) were higher than those with air temperature (average R2=0.369). Temperature could explain about 34%-51% of seasonal dynamics of Re in Chinese boreal forest ecosystem.
     (3) The diurnal patterns of NEE could be expressed as one-humped curves with the maximum appeared at 9:00-10:00. The daily length of carbon sequestration from the atmosphere was reduced from 14 hours (5:00-19:00) in June to 9 hours (7:30-16:30) in October. Chinese boreal forest ecosystem was a carbon sink in June, July and August, while a carbon source appeared in September and October. Mean daily NEE in 2007 and 2008 were-1.45 g CO2·m-2·d-1 and-1.37 g CO2·m-2·d-1. NEE was mainly influenced by PAR, and the correlative coefficients were 0.558 and 0.494 in 2007 and 2008, respectively.
     (4) The intensity of carbon dioxide exchange during growing season in 2007 was stronger than that in 2008. The reason might result from higher mean air temperature (12.46℃in 2007 and 11.04℃in 2008) and higher mean photosynthetically active radiation (697μmol·m-2·s-1 in 2007 and 639μmol·m-2·s-1 in 2008).
引文
1. 鲍春生,白艳,青梅.兴安落叶松天然林生物生产力及碳储量研究.内蒙古农业大学学报,2010,31:77-82.
    2. 蔡承侠.植被净第一性生产力及其对气候变化响应研究进展.新疆气象,2003,26(6):1-7.
    3. 崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展.生态学报,2001,21(2):315-325.
    4. 丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3-8.
    5. 范晶,张玉红.黑龙江省次生林主要组成树种光合能力与叶片含氮量研究.植物研究,2005,25:344-347.
    6. 方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报,2000,24(5):635-638.
    7. 方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594-602.
    8. 冯林,杨玉珙.兴安落叶松原始林三种林型生物产量的研究.林业科学,1985,21(1):86-92.
    9. 冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社.1999.
    10.关德新,吴家兵,金昌杰,等.长白山红松针阔混交林CO2通量的日变化与季节变化.林业科学,2006,42(10):123-128.
    11.韩铭哲,冯林.兴安落叶松基本林型的探讨.见:林业部科技司编,中国森林生态系统定位研究.哈尔滨:东北林业大学出版社.1994.590-597.
    12.贺庆堂,刘祚昌.森林的热量平衡.林业科学,1980,16(1):24-33.
    13.黄志宏,周国逸,Morris J,等.桉树人工林冠层气象因子对雨季土壤水分的影响.热带亚热带植物学报,2003,11(3):197-204.
    14.姜丽芬.兴安落叶松人工林光合与呼吸作用机理的研究.哈尔滨:东北林业大学博士学位论文,2003,17-37.
    15.蒋延玲.全球变化的中国北方林生态系统生产力及其生态系统公益.北京:中国科学院博士学位研究生学位论文.2001.
    16.蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究.应用生态学报,2001,12(4):481-484.
    17.焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报,2005,16(12):2248-2252.
    18.康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计.应用生态学报,1996,7(3):230-234.
    19.李春,何洪林,刘敏,等ChinaFLUX CO2通量数据处理系统与应用.地球信息科学,2008,10(5):557-565.
    20.李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究.植物生态学报,2000,24(6):680-686.
    21.李玉娥,林而达,谢军飞,等.我国东部样带土地利用方式对温室气体排放通量的影响.中国生态农业学报,2005,13:152-154.
    22.李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价.中国科学D辑:地球科学,2004,34(增刊Ⅱ):46-56.
    23.林而达,许吟隆,蒋金荷,等.气候变化国家评估报告(Ⅱ):气候变化的影响与适应.气候变化研究进展,2006,2(2):51-56.
    24.林心雄.中国土壤有机质状况及其管理.见:沈善敏主编.中国土壤肥力.北京:中国农业出社,1998,111-153.
    25.刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林C02通量季节变化及其环境因子的影响.中国科学D辑,2004,34(增刊Ⅱ):109-117.
    26.彭少麟,赵平,任海,等.全球变化压力下中国东部样带植被与农业生态系统格局的可能性变化.地学前缘,2002,9(1):217-226.
    27.朴世龙,方精云,郭庆华.1928-1999年我国植被净第一性生产力及其时空变化.北京大学学报,2001,37(4):563-569.
    28.孙凤华,杨修群,路爽,等.东北地区平均、最高、最低气温时空变化特征及对比分析.气象 科学,2006,26(2):157-163.
    29.宋彩玲,赵鹏武,苏日娜,等.兴安落叶松光合特性的动态研究.内蒙古农业大学学报,2008,29:49-54.
    30.宋清海,张一平,于贵瑞,等.热带季节雨林优势树种叶片和冠层尺度二氧化碳交换特征.应用生态学报,2008,19(4):723-728.
    31.宋霞,刘允芬,徐小锋,等.红壤丘陵区人工林冬春时段碳、水、热通量的观测与分析.资源科学,2004,26(3):96-104.
    32.陶波,李克让,邵雪梅,等.中国陆地净初级生产力时空特征模拟.地理学报,2003,58(3):372-380.
    33.王春林,周国逸,王旭,等.鼎湖山针阔叶混交林冠层下方CO2通量及其环境响应.生态学报,2007,27(3):846-854.
    34.王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析.地理学报,2001,56(4):390-400.
    35.王文杰,祖元刚,王辉民,等.基于涡度协方差法和生理生态法对落叶松林CO2通量的初步研究.植物生态学报,2007,31(1):118-128.
    36.王秀伟.兴安落叶松人工林碳循环关键过程的研究.哈尔滨:东北林业大学硕士学位论文,2006,12-43.
    37.王秀伟,毛子军.兴安落叶松人工林冠层气体交换的时空特性.林业科学,2007,43:43-49.
    38.王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展.世界林业研究,2006,19:12-17.
    39.王宇,周广胜,贾丙瑞,等.1954-2005年中国北方针叶林分布区的气候变化特征.应用生态学报,2008,19(5):942-948.
    40.温学发,于贵瑞,孙晓敏,等.复杂地形条件下森林植被湍流通量测定分析.中国科学D辑,2004,34(增刊Ⅱ):57-66.
    41.吴家兵,关德新,孙晓敏,等.长白山阔叶林红松林CO2交换的涡动通量修订.中国科学D辑,2004,34(增刊Ⅱ):95-102.
    42.吴家兵,关德新,孙晓敏,等.长白山阔叶红松林二氧化碳湍流交换特征.应用生态学报, 2007,18(5):951-956.
    43.吴旭东,周梅,张慧东.兴安落叶松林冠截留与降雨量及降雨强度的关系.内蒙古农业大学学报,2006,27(4):83-86.
    44.徐德应.中国森林与全球气候变化的关系.林业科技管理,2002,4:19-23.
    45.徐自为,刘绍民,宫丽娟,等.涡动相关仪观测数据的处理与质量评价研究.地球科学进展,2008,23:357-370.
    46.杨金艳,赵惠勋,王传宽.森林对氮饱和的响应.应用与环境生物学报,2004,10(4):507-511.
    47.杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报,2005,25(11):2875-2882.
    48.杨金艳,王传宽.土壤水热条件对东北森林土壤表面CO2通量的影响.植物生态学报,2006,30(2):286-294.
    49.于贵瑞,温学发,李庆康,等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征.中国科学D辑,2004,34(增刊Ⅱ):84-94.
    50.于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.北京:高等教育出版.2006.
    51.于贵瑞,伏玉玲,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路.中国科学D辑,2006,36(增刊Ⅰ):1-21.
    52.查同刚,张志强,朱金兆,等.森林生态系统碳蓄积与碳循环.中国水土保持科学,2008,6(6):112-119.
    53.张纪兰,陶忠玉,付纪建,等.呼中自然保护区的价值与意义.内蒙古林业调查设计,2004,27(3):62-63.
    54.张金屯.全球气候变化对自然土壤碳、氮循环的影响.地理科学,1998,18(5):463-471.
    55.张弥,于贵瑞,张雷明,等.太阳辐射对长白山阔叶红松林净生态系统碳交换的影响.植物生态学报,2009,33(2):270-282.
    56.张齐兵.大兴安岭北部植被对高胁迫冻土环境及干扰的响应.冰川冻土,1994,16(2):97-103.
    57.张新时.研究全球变化的植被-气候分类系统.第四纪研究,1993,2:157-169.
    58.张一平,窦军霞,孙晓敏,等.热带季节雨林林冠碳通量不同校正方法的比较分析.应用生态 学报,2005,16(12):2253-2258.
    59.赵敏,周广胜.中国北方林生产力变化趋势及其影响因子分析.西北植物学报,2005,25(3):466-471.
    60.赵溪竹,姜海凤,毛子军.长白落叶松、日本落叶松和兴安落叶松幼苗光合作用特性比较研究.植物研究,2007,27:361-366.
    61.赵晓松,关德新,吴家兵,等.长白山阔叶林红松林CO2通量与温度的关系.生态学报,2006,26(4):1088-1095.
    62.赵晓焱,王传宽,霍宏.兴安落叶松(Larix gmelinii)光合能力及相关因子的种源差异.生态学报,2008,28:3798-3807.
    63.赵育民,牛数奎,王军邦,等.植被光能利用率研究进展.生态学杂志,2007,26:1471-1477.
    64.郑泽梅,张弥,温学发,等.长白山温带混交林林冠下层CO2通量对生态系统碳收支的贡献.生态学报,2009,28:1-8.
    65.中华人民共和国林业部.全国森林资源统计(1989-1993).北京:中国林业出版社.1996.
    66.周存宇,周国逸,张德强,等.鼎湖山森林地表CO2通量及其影响因子的研究.中国科学D辑,2004,34(增刊Ⅱ):175-182.
    67.周广胜.全球碳循环.北京:气象出版社,2003,17-20.
    68.周以良.中国大兴安岭植被.北京:科学出版社,1991,44-144.
    69.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522.
    70.朱治林,孙晓敏,温学发,等.中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究.中国科学D辑,2006,36(增刊Ⅰ):34-44.
    71. Alton PB, North PR, Los SO. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 2007,13:776-787.
    72. Aubinet M, Chermanne B, Vandenhaute M, et al. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology,2001,108(4):293-315.
    73. Baldocchi DD, Hicks BB, Meyers TP. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology,1988,69:1331-1340.
    74. Baldocchi DD & Meyers TP. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and gaseous deposition fluxes over vegetation. Agricultural and Forest Meteorology,1998,90:1-26.
    75. Baldocchi D, Valentini R, Running S, et al. Strategies for measuring and modelling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Global Change Biology,1996,2:159-168.
    76. Baldocchi D & Falge E. A report from the Polson FLUXNET workshop. http://cdiac.esd.orn1.gov/nigec/fluxnet/polson.html.1998.
    77. Baldocchi DD & Meyers TP. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and gaseous deposition fluxes over vegetation. Agricultural and Forest Meteorology,1998,90:1-26.
    78. Baldocchi DD, Falge E, Gu LH, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bulletin of the American Meteorological Society,2001,82:2415-2434.
    79. Berry JA & Raison JK. Responses of macrophytes to temperature. In:Lange OL, Nobel PS, Osmond CB, Ziegler H (eds), Physiological Plant Ecology Ⅰ. Respones to the Physical Environment. Springer-Verlag, New York.1981.
    80. Bousquet P, Peylin P, Ciais P, et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science,2000,290:1342-1346.
    81. Bouwmann AF & Germon JC. Special issue:Soils and climate change:introduction. Biology and Fertility of Soils,1998,27:219.
    82. Brach EJ, Desjardins RL, St Amour GT. Open path CO2 analyser. Journal of Physics and Earth Science Instrumentation,1981,14:1415-1419.
    83. Brown SL, Schroeder PE. Spatial patterns of above ground production and mortality of woody biomass for eastern US forests. Ecological Applications,1999,9:968-980.
    84. Chimner RA. Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands,2004, 24:51-56
    85. Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature,2005,437(7058):529-533.
    86. Cihlar J, Denning AS, Gosz J. Global terrestrial carbon observation:requirements, present status, and next steps. TCO Synthesis Workshop, Ottawa, Canada.2000.
    87. Cramer W, Kicklighter DW, Bondeau A, et al. Comparing global models of terrestrial net primary productivity (NPP):Overview and key results. Global Change Biology,1999,5(Suppl.1):1-15.
    88. Davidson EA, Verchot LV, Cattanio JH, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry,2000,48:53-69.
    89. Davis MB. Lags in vegetation response to global warming. Climatic Change,1989,15:75-82.
    90. Desjardins RL. A technique to measure CO2 exchange under field conditions. International Journal of Biometeorology,1974,18:76-83.
    91. Dixon RK, Brown S, Houghton RA, et al. Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190.
    92. Dunn AL, Barford CC, Wofsy SC, et al. A long-term record of carbon exchange in a boreal black spruce forest:means, responses to interannual variability, and decadal trends. Global Change Biology,2006,12:1-14.
    93. Emanuel WR, Shugart HH, Stevenson MP. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change,1985,7:29-43.
    94. Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology,2001,107:43-69.
    95. Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science,1998,282:442-446.
    96. Fang C & Moncrieff JB. The dependence of soil CO2 efflux on temperature. Soil Biology Biochemistry,2001,33:155-165.
    97. Friedlingstein P, Dufresne JL, Cox PM, et al. How positive is the feedback between climate change and the carbon cycle? Tellus,2003,55B:692-700.
    98. Garratt JR. Limitations of the eddy-correlation technique for the determination of turbulent fluxes near the surface. Boundary-Layer Meteorology,1975,8:255-259.
    99. Garrett HE & Cox GS. Carbon dioxide evolution from the floor of an oak-hickory forest. Soil Science Society America Proceedings,1973,37:641-644.
    100. Giardina CP & Ryan MG. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature,2000,404:858-861.
    101. Gilmanov TG, Soussana JF, Aires L, et al. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment,2007,121:93-120.
    102. Goulden ML, Daube BC, Fan SM, et al. Physiological responses of a black spruce forest to weather. Journal of Geophysical Research,1997,102:28987-28996.
    103. Gower ST & Richards JH. Larches:deciduous conifers in an evergreen world. Bioscience,1990, 40:818-826.
    104. Gu LH, Baldocchi D, Verma SB, et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research,2002,107:5-6.
    105. Guan DX, Wu JB, Zhao XS, et al. CO2 fluxes over an old, temperate mixed forest in northeastern China. Agricultural and Forest Meteorology,2006,137:138-149.
    106. Hammerle A, Haslwanter A, Schmitt M, et al. Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-layer meteorology,2007,122(2):397-416.
    107. Harden JW, O'Neill KP, Trumbore SE, et al. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. Journal of Geophysical Research,1997,102(D24):28805-28816.
    108. Hollinger DY, Kelliher FM, Schulze ED, et al. Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agricultural and Forest Meteorology,1998,90:291-306.
    109. Houghton RA. Terrestrial carbon sinks-uncertain explanations. Biologist,2002,49(4):155-160.
    110. Houghton RA. Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences,2007,35:313-347.
    111.Hulme M. A 1951-80 global land precipitation climatology for the evaluation of general Circulation Models. Climate Dynamics,1992,7:57-72.
    112. llvesniemi H, Levula J, Ojansuu R, et al. Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem, Boreal Environment Research,2009,14:731-753.
    113. IPCC. "Climate change 2001:The Scientific Basis", Intergovernmental Panel on Climate Change, http://www.grida.no/climate/ipcc_tar/wgl/index.htm.2001.
    114. IPCC. Good practice guidance for land use, land-use change and forestry..Penman J, Gytarsky M, Hiraishi T, et al.(Eds). Intergovernmental Panel on Climate Change (IPCC), http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_contents.html.2003.
    115. IPCC. "Climate Change 2007:The Physical Science Basis", Intergovernmental Panel on Climate Change, http://www.ipcc.ch/SPM2feb07.pdf.2007.
    116. Janssens IA, Lankreijer H, Matteucci G, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology,2001, 7:269-278
    117. Jones EP, Ward TV, Zwick HH. A fast response atmospheric CO2 sensor for eddy correlation flux measurements. Atmospheric Environment,1978,12(4):845-851.
    118. Kang S, Doh S, Lee D S, et al. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology,2003,9:1427-1437.
    119. Keetch JJ & Byram GM. A drought index for forest fire control. U.S.D.A. Forest Service Research Paper SE-38(revised 1988). Asheville, NC.1968.32pp.
    120. Keith H, Jacobsen KL, Raison RJ. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil,1997,190:127-141.
    121. Kirill YK, Vladimir FK, Victor PS, et al. Global ecodynamics:A multidimensional analysis. Berlin: Springer,2004,78-89.
    122. Kirschbaum MUF. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry,2000,48:21-51.
    123. Kurz WA, Apps MJ, Webb TM, et al.. The Carbon Budget of the Canadian Forest Sector:Phase I. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta, Information Report NOR-X-326.1992.
    124. Landsberg JJ & Gower ST. Applications of Physiological Ecology to Forest Management. San Diego:Academic Press.1997.1-20.
    125. Lavigne MB, Ryan MG, Anderson DE, et al.. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. Journal of Geophysical Research,1997,102(D24):28977-28985.
    126. Law BE, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology,2002,113:97-120.
    127. Lenton TM, Held H, Kriegler E, et al.. Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences,2008,105(6):1786-1793.
    128. Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment,1995,18(4):339-355.
    129. Li ZQ, Yu GR, Wen XF, et al.. Energy balance closure at ChinaFLUX sites. Science in China Ser. D,2005,48(Supp.I):51-62.
    130. Lindroth A, Grelle A, Moren A. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biology,1998,4:443-450.
    131. Linn DM & Doran JW. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Science Society of America Journal,1984,48: 1267-1272.
    132. Lloyd J & Taylor JA. On the temperature dependence of soil respiration. Functional Ecology,1994, 8:315-323.
    133. Lloyd J, Shibistova O, Tchebokova N, et al. The carbon balance of a central Siberian forest. In: CGER (eds). Proceedings of International Workshop for Advanced Flux Network and Flux Evaluation. Sapporo, Japan:Hokkaido University,2001,39-45.
    134. Liideke MKB, Badeck FW, Otto RD, et al.. The Frankfurt Biosphere Model:a global process-oriented model of seasonal and long-term CO2 exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests. Climate Research,1994,4:143-166.
    135. Luo YQ, Field CB, Jackson RB. Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling? Ecology,2006,87(1):3-4.
    136. Mathes K & Schriefer Th. Soil respiration during secondary succession influences of temperature and moisture. Soil Biology and Biochemistry,1985,17:205-211.
    137. Mauder M, Liebethal C, Gockede M, et al. Processing and quality control of flux data during LITFASS-2003. Boundary-layer meteorology,2006,121(1):67-88.
    138. Mauder M, Foken T, Clement R, et al. Quality control of CarboEurope flux data-Part II: Inter-comparison of eddy-covariance software. Biogeosciences Discussions,2007,4:4067-4099.
    139. McCaughey JH, Pejam MR, Arain MA, et al. Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agricultural and Forest Meteorology,2006,140: 79-96.
    140. Michaelis L & Menten ML. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift,1913,49: 333-369.
    141. Milyukova IM, Kolle O, Varlagin AV, et al. Carbon balance of a southern taiga spruce stand in European Russia. Tellus,2002,54B:429-442.
    142. Nakane K, Tsubota H, Yamamoto M. Cycling of soil carbon in a Japanese Red Pine Forest I. Before a clear-felling. Botanical Magazine,1984,97:39-60.
    143. Noss RF. Beyond Kyoto:forest management in a time of rapid climate change. Conservation Biology,2001,15:578-590.
    144. Olson JS, Watts JA, Allison LJ. Carbon in live vegetation of major world ecosystems. Report ORNL-5862. Oak Ridge, Tenn:Oak Ridge National Laboratory.1983.
    145. Pacala SW, Hurtt GC, Baker D, et al. Consistent Land-and atmosphere-based U.S. carbon sink estimates. Science,2001,292:2316-2320.
    146. Parmesan C & Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature,2003,421:37-42.
    147. Peterson KM & Billings WD. Carbon dioxide flux from tundra soils and vegetation as related to temperature at Barrow, Alaska. American Midland Naturalist,1975,94:88-98
    148. Piovesan G & S Adams JM. Carbon balance gradient in European forests:interpreting Euroflux. Journal of Vegetation Science,2000,11:923-926.
    149. Post WM, Emanuel WR, Zinke PJ, et al.. Soil carbon pools and world life zones. Nature,1982,298: 156-159.
    150. Raich JW & Potter CS. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles,1995,9:23-36.
    151. Raich JW, Potter CS, Bhagawati D. Interannual variability in global soil respiration,1980-94. Global Change Biology,2002,8:800-812.
    152. Randerson JT, Liu H, Flanner MG, et al. The Impact of boreal forest fire on climate warming. Science,2006,314:1130-1132.
    153. Reichstein M, Tenhunen JD, Roupsard O, et al. Ecosystem respiration ia two Mediterranean evergreen Holm Oak forests:drought effects and decomposition dynamics. Functional Ecology, 2002,16:27-39.
    154. Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London.1895,186:123-164.
    155. Robert KD. Carbon pools and flux of global forest ecosystems. In:Proceedings of the Tsukuba global carbon cycle workshop-global environment Tsukuba,1995,95:117-119.
    156. Rosacker LL & Kieft TL. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biology and Biochemistry,1991,22:1121-1127.
    157. Running SW, Nemani RR, Hungerford RD. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Canadian Journal of Forest Research,1987,17:472-183.
    158. Saigusa N, Yamamoto S, Murayama S, et al. Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agricultural and Forest Meteorology,2005,134:4-16.
    159. Schimel DS. Terrestrial ecosystems and the carbon cycle. Global Change Biology,1995,1:77-91.
    160. Schimel DS, House JI, Hibbard KA. et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature,2001,414:169-172.
    161. Schlesinger WH. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature,1990,348:232-234.
    162. Scrase FJ. Some characteristics of eddy motion in the atmosphere. Geophysical Memoirs, Meteorological Office, London.1930.
    163. Tans PP, Fung IY, Takahaski T. Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438.
    164. Urban O, Janous D, Acosta M, et al., Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology,2007,13(1):157-168.
    165. Valentini R, Matteucci G, Dolman AJ, et al. Respiration as the main determinant of carbon balance in European forests, Nature,2000,404:861-865
    166. Van Dijk A, Moene AF, De Bruin HAR.2004. The principles of surface flux physics:theory, practice and description of the ECPACK library. Meteorology and Air Quality Group, Wageningen University, pp.1-97
    167. Verma SB, Baldocchi DD, Anderson DE, et al.. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary Layer Meteorology,1986,36:71-91.
    168. Verstraeten WW, Veroustraete F, Feyen J. On temperature and water limitation of net ecosystem productivity:Implementation in the C-Fix model. Ecological modeling,2006,199:4-22.
    169. Vukicevic T, Braswell BH, Schimel DS. A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus,2001,53B:150-170.
    170. Wang CK, Gower ST, Wang YH, et al. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology,2001,7: 719-730.
    171. Wang CK, Yang JY, Zhang QZ. Soil respiration in six temperate forests in China. Global Change Biology,2006,12:2103-2114.
    172. Wang CK & Yang JY. Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology,2007,13:123-131.
    173. Waring RH & Schlesinger WH. Forest ecosystems:concepts and management. San Diego: Academic Press.1985.
    174. Webb EK, Pearman GI, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society,1980,106(447): 85-100.
    175. Wen XF, Yu GR, Sun XM, et al. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Forest Meteorology,2006,137:166-175.
    176. Weng ES & Zhou GS. Modeling distribution changes of vegetation in China under future climate change. Environmental Modeling and Assessment,2006,11:45-58.
    177. Wildung RE, Garland TR, Buschbom RL. The interdependent effect of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biology & Biochemistry,1975,7:373-378.
    178. Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology,2002,113(1-4):223-243.
    179. Whittaker RH & Likens GE. Carbon in the biota. In:Woodell GM & Pecan EV (eds.), Carbon and the biosphere. CONF-720510. Technical Information Service, Springfield, VA.1973. pp.281-302
    180. Wofsy SC, Goulden ML, Munger JW et al. Net exchange of CO2 in a mid-latitude forest. Science, 1993,260:1314-1317.
    181.Yamamoto S, Saigusa N, Murayama S, et al. Long-term results of flux measurement from a temperate deciduous forest site (Takeyama). In:CGER(eds). Proceedings of International Workshop for Advanced Flux Network and Flux Evaluation. Sapporo, Japan:Hokkaido University, 2001.5-10.
    182. Yang X, Wang MX, Huang Y. The climatic-induced net carbon sink by terrestrial biosphere over 1901-1995. Advances in Atmospheric Sciences,2001,18(6):1192-1206.
    183. Zhang JH, Han SJ, Yu GR. Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agricultural and Forest Meteorology,2006a,137: 150-165.
    184. Zhang LM, Yu GR, Sun XM, et al.. Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Science in China Ser. D,2006b,49 (Supp.Ⅱ): 47-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700