用户名: 密码: 验证码:
不同年龄长白落叶松人工林碳储量分布特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业化与城市化的快速发展导致森林植被破坏日益加剧,森林碳循环的平衡状态有所改变,大气中CO2浓度升高已成为公认的事实,由此产生的温室效应成为目前人类面临的最严峻的全球环境问题之一。森林作为陆地生态系统最大的碳库,其生物量与碳储量分布的动态变化是全球碳循环的重要组成部分。本研究以黑龙江东折棱河林场长白落叶松(Larix olgensis)人工林为研究对象,基于22块标准地中的67株标准木树干解析数据及生物量数据,建立长白落叶松单木生物量模型与林分生物量预测模型;利用样方、样圆及样线法,测定长白落叶松林下灌草、木质物残体层生物量;通过测定落叶松不同层次不同组分含碳率,综合分析长白落叶松立地植被(包括乔木、灌木与草本植物)和木质残体的碳储量分布特征。不但可以扩充区域森林生态系统碳循环研究的基础资料,而且对于森林生态系统可持续发展的经营和管理具有一定的现实意义。
     主要结论如下:
     (1)长白落叶松乔木层平均单株木、林分生物量分别为142.374Kg、142.910t·hm-2,乔木各部分生物量均随林龄增大而升高。不同龄级乔木植被主要器官生物量与林分因子之间均存在一定的相关性。
     (2)不同林龄(7、19、24、33、46年生)长白落叶松人工林林下植被层生物量范围为1.757 t·hm-2~10.56 t·hm-2,除7年生外,其他林龄落叶松林下灌木层生物量均高于草本层生物量。森林林下植被生物量主要储存在地下部分。
     (3)7-46年生长白落叶松人工林,CWD的储量范围为0 t·hm-2~13.960 t·hm-2。CWD种类主要为枯立木与倒木。细木质物的储量范围为2.926 t·hm-2-18.562 t·hm-2。木质物残体生物量随林龄增加而增加。
     (4)所测的长白落叶松人工林植被不同层次含碳率中,无论哪一林龄,其含碳率大小均表现为乔木>粗木质物>灌木>细木质物>草本,但各层含碳率在林龄间变化不大。7-46年生落叶松林植被碳密度范围为4.636~176.748 t·hm-2。相同林龄碳密度除7年生外,其余均表现为乔木>木质物>灌木>草本;不同层次碳密度均为46>33>24>19>7年生。
With the rapid development of industrialization and urbanization, forest vegetation deterioration is becomming more and more intensively, which has a strong effect on equilibrium state of forest carbon cycle, And now, the rise of CO2 content in the atmosphere has become an acknowledged fact. Consequently, greenhouse effect is one of the most crucial global environmental issues presently. As the largest carbon pool of terrestrial ecosystem, the allocation dynamics of biomass and carbon stock of forest ecosystem are important components of global carbon cycle. Based on the data of stem analysis and biomass from 67 sample trees in 22 sample plots for the Larix olgensis plantation with different stand ages in Dongzhelenghe forestry centre of Heilingjiang province, the paper developed the biomass predicting models of single larix olgengsis tree and stand biomass prediction models. The biomass of shrub, herbage and woody bebris was measured by the methods of quadrat, centre and transect sampling. By the carbon content determined for different layers and different components, this paper synthetically studied the distribution characteristics of carbon stock of standing vegetation(including arbor, brush and herbage) and woody debris of larix olgensis plantation for different stand ages. The study not only can accumulate initial information of forest carbon cycel at the regional scale, but also Can contribute to sustainable development of running and managing forest ecosystem.
     The main results as follows:
     (1)The biomass of mean individual and total biomass of arbor layer was respectively 142.374Kg and 142.910 t·hm-2 for larix olgensis plantation. respectively. Every organ biomass of tree went up with the rise of stand age. There were correlations among main oragn biomass of vegetation in arbor layer and stand factors.
     (2)Undergrowth biomass under larix olgensis plantation ranged from 1.757 t·hm-2 to 10.56 t·hm-2 for different stand ages (including 7,19,24,33 and 46). With the exception of the undergrowth biomass for 7 year, it was in the order brush biomass>herb biomass. And the biomass of undergrowth underground was higher than that of aboveground.
     (3)Stock of CWD and FWD of the Larix olgensis plantation ranged from 0 t·hm-2 to 13.960 t·hm-2 and from 2.926 t·hm-2 to 18.562 t·hm-2 respectively. respectively. CWD was mainly comprised of snags and logs. The biomass of woody debris increased with the stand ages rising.
     (4) Average carbon content rate of larix olgensis plantation at the same stand age was in the order arbor layer>CWD>shrub>FWD>Herb, and average carbon content rate of the same layer fluctuated indistinctively with stand ages. The carbon storage density of larix vegetation for different stand ages ranged from 4.636 t·hm-2 to 176.748 t·hm-2. Vegetation carbon storage density of the same stand age was in the order arbor layer>woody debris>shrub layer>herb layer, with the exception of the vegetation of density in 7 year. In addition, vegetation carbon storage density of the same layer increased dramaticly with the stand age increasing.
引文
1. 陈伴勤,黄耀,于贵瑞.地球系统碳循环.北京:科学出版社,2004
    2. 陈泮勤,王效科,王礼茂.中国陆地生态系统碳收支与增汇对策.北京:科学出版社,2008.
    3. 陈东升.樟子松人工林节子分布和大小预测模型(硕士学位论文).东北林业大学学报,2007
    4. 陈华,Harmon M. E温带森林生态系统粗死木质物动态研究.应用生态学报,1992,3(2):99-104
    5. 陈华,徐振邦.长白山红松针阔混交林死亡的初步研究.应用生态学报,1991,2(1):89-91
    6. 陈灵芝等.中国森林生态系统物质循环.北京:气象出版社,1997
    7. 陈遐林.华北主要森林类型的碳汇功能研究(博士学位论文).北京林业大学,2003
    8. 程堂仁.甘肃小陇山森林生物量与碳储量研究(博士学位论文).北京林业大学,2007
    9. 程堂仁,冯菁,马饮彦,等.甘肃小陇山森林植被碳库及其分配特征.生态学报,2008,28(1):3344
    10.代力民,徐振邦,陈华.阔叶红松林倒木储量的变化规律.生态学报,2000,20(3):412-416.
    11.代力民,徐振邦,杨丽韫,等.红松阔叶林倒木储量动态的研究.应用生态学报,1999,10(5):513-517
    12.董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997.152-153
    13.方海波,田大伦,康文星.杉木人工林间伐后林下植被生物量的研究.中南林学院学报,1998,18(1):5-9
    14.方海波,田大伦,康文星.杉木人工林间伐后林下植被养分动态的研究.中南林学院学报,1998,18(2):1-5
    15.方精云.北半球中高纬度的森林碳库可能远小于目前的估计.植物生态学报,2000,24(5):635-638
    16.方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24(5):513-517
    17.方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973
    18.方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究.广西植物,2002,22(4):116-121
    19.冯林等.兴安落叶松原始林三种林型生物产量的研究.林业科学,1985.21(1):86-92.
    20.冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓.生态学报,2006,26(11);3870-3877
    21.冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述.自然资源学报,2004,19(3):369
    22.冯志立,郑征,张建侯,等.西双版纳热带湿性季节雨林生物量及其分配规律研究.植物生态学报,1998,22(6):481-488
    23.冯宗炜,陈楚莹等.湖南会同地区马尾松林生物量的测定.林业科学,1982,18(2):127-134
    24.高甲荣,王敏,毕利东,等.贡嘎山不同年龄结构峨眉冷杉林粗木质残体的贮存量及其特征.中国水土保持科学,2003,1(2):47-51
    25.杭州大学化学系分析化学教研室.分析化学手册第二分册(化学分析).北京:化学工业出版社,1982,935-941
    26.贺东北,骆期邦,曾伟生.立木生物量线性联立模型研究.浙江林学院学报,1998,15(3);298-303
    27.贺庆棠.森林对地气系统碳素循环的影响.北京林业大学学报,1993,15(3):132-136
    28.何英.森林固碳估算方法综述.世界林业研究,2005,18(1):22-27
    29.郝占庆,吕航.木质物残体在森林生态系统中的功能评述.生态学进展,1989,6(3): 179-183
    30.侯平,潘存德.森林生态系统中的粗死木质残体及其功能.应用生态学报,2001,12(2):309-314
    31.贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究(博士学位论文).东北林业大学,2006
    32.贾炜玮,姜生伟,李凤日.黑龙江东部地区樟子松人工林单木生物量研究.辽宁林业科技,2008,3:5-9
    33.贾炜玮,于爱民.樟子松人工林单木生物量模型研究.林业科技情报,2008,40(2):1-2
    34.江洪.紫果云杉天然中龄林分生物量和生产力的研究.植物生态学与地植物学学报.1986,10(2):146-152
    35.景向欣.樟子松人工林单木动态生长三维可视化模型的研究(硕士学位论文).东北林业大学学报,2007
    36.李贵祥,孟广涛,方向京,等.滇中高原桤木人工林群落特征及生物量分析.浙江林学院学报,2006,23(4):362-366
    37.李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量.生态学报,2007,27(2):693-704.
    38.李克让,陶波,王绍强等.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2002
    39.李凌浩,党高第,王铁军,等.秦岭巴山冷杉林粗死木质残体研究.植物生态学报,1998,22(5):434-440
    40.李凌浩,邢雪荣,黄大明,等.武夷山甜槠林粗死木质残体的贮量、动态及其功能评述.植物生态学报,1996,20(2):132-143
    41.李铭红,于明坚,陈启常等.青冈常绿阔叶林的碳素动态,生态学报,1996,16(6):645-651
    42.李世吉,杨礼攀.森林粗木质残体(CWD)的研究进展.林业调查规划,2009,34(3):37-44
    43.李文华,李飞.中国森林研究.北京:中国林业出版社.1996
    44.李正才,傅懋毅,杨校生.经营干扰对土壤有机碳的影响研究综述.淅江林学院学报,2005,22(4):469-474
    45.林开敏,郭玉硕,俞新妥,等.老龄杉木林下植物成分结构特征.福建林学院学报,1999,19(2):124-128
    46.林开敏,洪伟,俞新妥,等.杉木成熟林林下植物生物量及其取样技术研究.福建林学院学报,2001,21(1):28-31
    47.林开敏,洪伟,俞新妥,等.杉木人工林林下植物生物量的动态特征和预测模型.林业科学,2001,37(1):99-105
    48.林开敏,马祥庆,范少辉,等.杉木人工林林下植被的消长规律.福建林学院学报,2000,20(3):231-234
    49.林开敏,张文富,谢国阳.老龄杉木林下天然更新阔叶植被物种多样性研究.福建林学院学报,1997,17(4):314-317
    50.林伟宏,张福锁,白克智.大气CO2浓度升高对对植物根际微生物量的影响.科学通报,1999,44(16):1690-1696
    51.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5): 733-740
    52.刘文耀,谢寿昌,谢克金,等.哀牢山中山湿性常绿阔叶林凋落物和粗死木质物的初步研究.植物学报,1995,37(10):807-814
    53.刘养江.北京西山地区人土油松栓皮栋混交林生物量和营养元素循环的研究.北京林业人学学报,1987,9(1):1-9
    54.刘玉锋.西天山云杉林生物量遥感监测研究——以尼勒克林区为例(硕士学位论文).福建师范大学,2008
    55.刘煊章.不同年龄马尾松林生物量的研究.林业资源管理,1993,(2):77-80
    56.刘志刚.兴安落叶松林生物量及生产力的研究(硕士论文).北京林业人学,1990
    57.刘志刚.华北落叶松人工林生物量及生产力的研究.北京林业大学学报,1992,增刊(1):114-123
    58.骆期邦,曾伟生,贺东北,等.立木地上部分生物量模型的建立及其应用研究.自然资源学报,1999,14(3):271-277
    59.吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报,2004,28(5):692-703.
    60.吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征.植物生态学报,2007,31(1):11-22
    61.毛子军.森林生态系统碳平衡估测方法及其研究进展.植物生态学报,2002,26(6):731-738
    62.马明东,江洪,罗承德,等.四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究.植物生态学报,2007,31(2):305-312
    63.马钦彦,陈遐林,王娟等.华北主要森林类型建群种的含碳率分析.北京林业大学学报,2002,24(5/6):96-100
    64.马钦彦,谢征鸣.中国油松林储碳量基本估计.北京林业大学学报,1996,18(3):31-34
    65.毛凯,蒲朝龙,任佰文.川中丘陵人工幼林草本层动态研究初报.植物生态学报,1995,19(4):384-388
    66.孟宪宇.测树学.北京:中国林业出版社,2006:295-296
    67.宁波.樟子松人工林结构动态及生物量的研究(博士学位论文).东北林业大学,2007
    68.潘攀,牟长城,孙志虎.长白落叶松人工林灌丛生物量的调查与分析.东北林业大学学报,2007,35(4):1-3
    69.潘建忠,孙志虎,朱元金,等.立地条件对长白落叶松养分生物学特性的影响.东北林业大学学报,2007,35(12):4-8
    70.潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法.湖南林业科学,1981(2):1-12
    71.彭小勇.闽北杉木人工林地上部分生物量模型的研究(硕士学位论文).福建农林大学,2007
    72.秦建华,姜志林,钱能志.福建洋口杉木生物量估测模型的选择.南京林业大学学报,1990,14(1):30-34
    73.曲建升,孙成权,张志强,等.全球变化科学中的碳循环研究进展与趋向.地球科学进展,2003,18(6):980-987
    74.冉慧,邢立新,潘军,等.遥感技术与陆地生态系统碳循环研究.环境科学与管理,2010,35(3):117-121
    75.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究一含量与分布规律.生态学杂 志,1997,16(6):17-21
    76.沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展.江西农业大学学报,2006,28(2):312-317
    77.史大林.碳汇林经营数表编制的探索(硕士学位论文).北京林业大学,2008
    78.孙玉军,张俊,韩爱惠,等.兴安落叶松幼中龄林的生物量与碳汇功能.生态学报,2007,27(5):1756-1762
    79.唐建维,张建侯,宋启示,等.西双版纳热带次生林生物量的初步研究.植物生态学报,1998,22(6):489-498
    80.唐罗忠,生原喜久雄,黄宝龙,等.江苏省里下河地区杨树人工林的碳储量及其动态.南京林业大学学报(自然科学版),2004,28(2):1-6
    81.唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究.林业科学,2000,36(1):19-27
    82.唐旭利,周国逸,周霞,等.鼎湖山季风常绿阔叶林粗死木质残体的研究.植物生态学报,2003,27(4):484-489
    83.唐旭利,周国逸.亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响.植物生态学报,2005,29(4):559-568
    84.田大伦.杉木林生态系统定位研究方法.北京:科学出版社,2004,311-314
    85.田志和.日本落叶松育林学.北京:北京农业大学出版社,1995
    86.汪家社.杉木生态系统生物量与固碳能力的分析与评价.福建林业科技,2008,35(2):1-4
    87.万猛,李志刚,李富海.基于遥感信息的森林生物量估算研究进展.河南林业科技,2009,29(4):42-45
    88.王凤友.森林凋落物量综述研究.生态系统学进展,1989,6(2):95-102
    89.王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究.西北林学院学报,2000,15(1):9-14
    90.王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力.生态学杂志,2000,19(4):72-74
    91.王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1):13-16
    92.王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展.世界林业研究,2008,21(5):24-29
    93.王战.中国落叶松林.北京:中国林业出版社,1992
    94.王仲锋,冯仲科.森林蓄积量与生物量转换的CVD模型研究.北华大学学报(自然科学版),2006,7(3):265-268
    95.魏平,温达志,黄忠良等.鼎湖山季风常绿阔叶林死木生物量及其特征.生态学报,1997,17(5):505-510
    96.吴家兵,张玉书,关德新.森林生态系统CO2通量研究方法与进展.东北林业大学学报,2003,31(6):49-51
    97.吴鹏飞,朱波,刘世荣,等.不同林龄桤柏混交林生态系统的碳储量及其分配.应用生态学报,2008,19(7):1419-1424
    98.吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究.应用生 态学报,1998,9(4):341-344
    99.项文化,田大伦,闫文德.森林生物量与生产力研究综述.中南林业调查规划,2003,22(3):57-64
    100.肖复明,范少辉,汪思龙,等.毛竹(Phyllostachypubescens)、杉木(Cunningham lanceolata)人工林生态系统碳贮量及其分配特征.生态学报,2007,27(7):2794-2801
    101.徐存宝,张伟,宋国华.小兴安岭阔叶红松林下草本植物分布特点分析.林业科技,2000,25(5):4-6
    102.胥辉.林木生物量模型研究评述.林业资源管理,1997(5):33-36
    103.胥辉.立木生物量模型构建及估计方法的研究(博士学位论文).北京林业大学,1998
    104.胥辉.一种生物量模型构建的新方法.西北农林科技大学学报(自然科学版),2001,29(3):35-40
    105.胥辉.两种生物量模型的比较.西南林学院学报,2003,23(2)
    106.薛立,杨鹏.森林生物量研究综述.福建林学院学报,2004,24(3):283-288
    107.薛秀康,盛炜彤,朱亭.福建柏人工林生物量研究.林业科技通讯,1993,(4):16-18
    108.闫文德,田大伦,焦秀梅.会同第二代杉木人工林林下植被生物量分布及动态.林业科学研究,2003,16(3):323-327
    109.闫文德,张学龙,王金叶,等.祁连山森林枯落物水文作用的研究.西北林学院学报,1997,12(2):7-14
    110.杨海军,邵全琴,陈卓奇,等.森林碳蓄积量估算方法及其应用分析.地球信息科学,2007,9(4):5-12
    111.杨礼攀,刘文耀,杨国平,等.哀牢山湿性常绿阔叶林和次生林木质物残体的组成与碳贮量.应用生态学报,2007,18(10):2153-2159
    112.杨丽韫,代力民,张扬建.长白山北坡暗针叶林倒木储量和分解的研究.应用生态学报,2002,13(9):1069-1071
    113.杨昆,管东生.林下植被的生物量分布特征及作用.生态学杂志,2006,25(10):1251-1256
    114.叶镜中,姜志林.苏南丘陵杉木林地上部分生物量的研究.南京林产工业学院学报,1982,(3):109-115
    115.叶镜中,姜志林,等.福建洋口林场杉木林生物量的年变化动态.南京林产工业学院学报,1984,(4):1-9
    116.于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积.北京:‘气象出版社,2003,119-123
    117.于贵瑞,温发全,王秋凤,等.全球气候变化与陆地生态系统碳循环.北京:气象出版社,2003:30-100
    118.张佳华,卞林根,延晓东,等.碳循环及其对气候变化和人类生存环境的影响.气象科学,2006,26(3):350-354
    119.张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究.林业科学研究,1999,12(1):53-59
    120.张会儒,赵有贤,王学力,等.应用线性联立方程组方法建立相容性生物量模型研究.林业资源管理,1999,(6):63-67
    121.张萍.北京森林碳储量研究(博士学位论文).北京林业大学,2009
    122.张修玉.广州三种主要森林生物量与碳储量分配特征(博士学位论文).中山大学,2009
    123.张治军,王彦辉,袁玉欣,等.马尾松天然次生林生物量的结构与分布.河北农业大学学报,2006,29(5):37-43
    124.赵德华,李建龙,齐家国,等.陆地生态系统碳平衡主要研究方法评述.生态学报,2006,26(8):2655-2662
    125.赵士洞,汪业歇,于振良,等.中国森林生态系统碳循环研究(中国生态学会编).中国生态学会通讯,2000年,特刊:50-52
    126.赵玉涛,余新晓,程根伟,等.粗木质残体(CWD)的水文生态功能——当前森林水文研究中被忽视的重要环节.山地学报,2002,20(1):12-18
    127.郑金萍,郭忠玲,范春楠,等.长白山5种主要森林群落细根现存生物量研究.北华大学学报(自然科学版).2005.5(5):458-461
    128.郑征,刘宏茂,冯志立.西双版纳热带山地雨林生物量研究.生态学杂志,2006,25(4):347-353
    129.郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产.植物生态学报,2000,24(2):197-203
    130.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522
    131.邹春静,卜军,徐文铎.长白松人工林群落生物量和生产力的研究.应用生态学报,1995,6(2):123-127
    132.Bartel P. Soil carbon sequestration and its role in economic development:a donor perspective. Journal of Arid Environments,2004,59:643-644
    133. Birdsey R A. Carbon storage and accumulation in United States forest ecosystems, United States Department of Agriculture Forest Service, General Technical Report WO-59 August 1992
    134. Fowler D, Duyzer J H. Micro-meteorological techniques for the measurement of trace gas exchange//Andreae M O, Schimel D Sfeds. Exchange ofTrace cases BetweenTerrestri. Ecosystems and the Atmosphere, Wiley, Chiehester,1989:189-207
    135.Dixon R K, Brown S, Houghton R A, et al. Carbon pool and flux of global forest ecosystems. Science,1994,263:185-190
    136. Dixon R K, Winjum J, Andrasko K, J Lee &P Schroeder. Integrated systems:assessment of promising agroforest alternative land-use practices to enhance carbon conservation and sequestration. Climatic Change,1994,30:1-23
    137. Anderson D E, Verma S B, Rosenberg N J. Eddy correlation measurements of CO2, Latent heat, and sensible heatfluxesver a crop surface. Bound-LayMeteorology,1984,29:263-272
    138. Verms S B, Baldocchi D D, Anderson D E, et al. Eddyfluxes of CO2 water vaporand sensible heat over a deciduousforest. Bound-lay Meteorology,1986,36:71-96
    139. Fang J Y, Chen A P, Peng C H, et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Seience,2001,292:2320-2322
    140. Isaev A, Komvin G, Zamolod D, et al. Carbon stock and deposition in phytomass of the Russian forests. Water Air Soil Poll,1995,82:247-256
    141. Whittaker R H, Likens G E. Methods of assessing terrestrial productivity. New york:Springer Veflag,1975:305-328
    142. Johnson J C, Birdsery R A, Pan Y D. Boimass and NPP estimation for the Mid-Atlantic region(USA) using plot-level inventory data. Ecol.Appl,2001,11:1174-1193
    143. Businger J A, Oncley S P. Flux measurement with conditionalsampling. J Atmosph Ocean Teeh, 1990,7:349-352
    144. Brown S, Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes. Science, 1984,223:1290-1293
    145. Brown S, Luso A E. Abevegroand biomass estimates for calmoist forests of Brazilian Anmzon. Interciencia,1992,17:8-18
    146. Brown S J, Gilhspie R, Lngo A E. Biomaas estimation methods for tropical forests with application to forest inventory data. For. Sei,1989,36:881-902
    147. Brown S L, Schroeder P, Kem J S. Past and prospective carbon storage in United States forests. For. Ecol.,1993,59:33-40
    148. Schreder P, Brown S, Mo J, et al. Boimass estimation for ternaerate broadleaf forests of the US using inventory data. For.Sci.,1997,43:424-434
    149. lark K L. Environmental controls over net exchanges of carbon dioxide from contrasting florida ecosystems. Ecol Appl,1999,9:936-948
    150. Mori S. Daytime whole-tree respiration of Iatrix gmellini trees in middle Siberia//Proceedings of the Eightll Symposiumon the Joint Siberian Peaflm Studies between Japan an dRussian Tsukuba, Japan,2000:55-58
    151. Ffolliot P F, Clary W P. Differences in herbage-timber relationships in sedimentary and igneous soils in Arizona ponderosa pine stands. Prog. Agric. Ariz.1975,27:6-7
    152. Geron C D. Comparison of constant and variable allometric ratios for predicting foliar biomass of various tree genera. Can. J. For. Res.,1988,18:1298-1304
    153. Gough C M, Vogel C S, Kazanski C, et al. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Management,2007,244:60-67
    154. Harmon M. E., Franklin J. F., Swanson F. J. et al. The ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research,1986,15:133-302
    155. Harmon M. E., Sexton J. Guidelines for measurements of woody detritus in forest ecosystems. Washington:US LTER Network Office, University of Washington,1996
    156. Hood I A, Beets P N, Kimberley M O, et al. Colonisation of podocarp coarse woody debris by decomposer basidiomycete fungi in an indigenous forest in the central North Island of New Zealand. Forest Ecology and Management,2004,1 96:311-325
    157. Houghton R A, Hackler J L, Lawrence K T. The US. carbon budget:contributions from land use change. Science,1999,285:574-578
    158. Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature,2000,403:301-304
    159. IPCC. Climate change 2001:the Scientific basis contribution of working group third assessment report of the IPCC. Cambridge Univ. Press, Cambridge,2001
    160. IPCC. Good practice guidance for landuse.land-use change and forestry. Japan, Hayama, IPCC/IGES,2003, ISBN 4-88788-032-041
    161. IPCC. In:Houghton J T, Ding Y, Griggs D J, et al. eds, Climate change 2001:the scientific basis, cambridge:Cambridge University Press,12-14,183-237,2001
    162. Jameson D A. The relationship of tree overstory and herbaceous understory vegetation. Range Manage.1967,20:247-249
    163. Jennings S D, Brown N D, Sheil D. Assessing forest canopies and understory illumination:canopy dosure, canopy cover and other measures. Forestry,1999,72:59-73
    164. Kappes H, Catalano C, Topp W. Coarse woody debris ameliorates chemical and biotic soil parameters of acidified broad-leaved forests. Applied Soil Ecology,2007,36:190-198
    165. Keeling C D, Whorf T P. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends:A compendium of data on global change. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Oak Ridge, TN, USA,1999
    166. Kimble, J M, Heath, L S, Birdsey, R A, et al.2002. The potential of U.S. forest soil to sequester carbon and mitigate the greenhouse effect. CRC/Lewis, Boca Raton, FL.429 PP
    167. Kittredge J. Estimation of the amount of folige of trees and stand. J. For,1944,42:905-912
    168. Kurz W A, Apps M J. Contribution of northern forest to the global carbon cycle:Canada as a case study, Water. Air and soil Pollution,1993,70:163-176
    169. Larcher W. Physiological Plant Ecology. Berlin Herdelberg:SPringer-Verlag,1980,252
    170. Nabuurs C J. Significance of wood Produets in forest sector carbon.In:Apps M J, Priee D T. eds. Forest Ecosystems, Forest Management and the Global Carbon Cyele. Berlin Heidelberg: Springer-verlag,1996,245-256
    171. Lal R. Forest soils and carbon sequestration. Forestry Ecology & Management,2005,220:242-258
    172. MacNally R., Parkinson A., Horrocks G. et al. Relationships between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on southeastern Australian floodplains. Biological Conservation,2001,99:191-205
    173. MeKenney, D W, Yemshanov, D, Fox, G, Ramlal, E E. Cost estimates for carbon sequestration from fast growing poplar plantations in Canada. Forest Policy & Economics,2004,6:345-358
    174. Melillo J M, MeGuire D A, Kieklighter D W, et al. Global climate change and terrestrial net primary production. Nature,1993,363:234-240
    175. Melillo J M, Steudler, P A, Aber, J D, et al. Soil warming and carbon-cycle feedback to the climate system. Science,2002,298:2173-2176
    176. Mitchell J E, Barting P N S. Comparison of linear and non-linear overstory and understory models for Ponderosa pine. For. Ecol. Manage.1991,42:195-204
    177. Ni J. Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutings and their responses to climate change. Climatic Change,2001, (49):339-358
    178. Olson J S, Watts J, Alison L. Carbon in live vegetation of major world ecosystem, Report ORNT~5862, Oak Ridge National Laboratory,1983
    179. Oreskes N. The scientific consensus on climate change. Science,2004,306:1686
    180. Phillips O L, Malhl Y,Higuchi N, et al. Changes in the carbon balance of tropical forests:Evidence from long-term plots. Science,1998,282:440-442
    181. Prentice IC. Biome modelling and the carbon cycle. Heimann Med. The Global Carbon Cycle. Berlin:Springer,1993,219-238
    182. Ruark G A. Comparision of constant and variable allometric ratios for estimating populus tremula biomass. Forest Science,1987,33:294-300
    183. Sabine C L, Heimann M, Artaxo P et al. Current Status and Past Trends of the Global Carbon Cycle. In:The Global Carbon Cycle:Integrating Humans, Climate and the Natural World. Washington, Island Press,2004,17-44
    184. Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature,2001,414(6860):169-172
    185. Schindler D W. The mysterious missing sink. Nature,1999,398:105-106
    186. Sedjo R A. Temperate forest ecosystems in the global carbon cycle. Ambio,1992,21:274-277
    187. Shvidenko A Z, Nilsson S, Rojikov V A,et al. Carbon budget of the Russian boreal forests:a systems analysis approach to uncertainty. In:Apps M J, Price D T. eds. Forest Eeosystems, Forest Management and the Global Carbon Cycle. Berlin Heidelberg:Springer-verlag,1996,145-162
    188. Spies T A, Franklin J P, Thomas T B. Coarse woody debds in Douglas, fir forests of western Oregon and Washington. Ecology,1988.69:1689-1702
    189. Storry K A, Weldrick C K, Mews M, et al. Intertidal coarse woody debris:A spatial Subsidy as shelter or feeding habitat for gastropods? Estuarine, Coastal and Shelf Science,2006,66:197-203
    190. Sundquist E T. The global carbon dioxide budget.Seienee,1993,259:934-941
    191. Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystem. Oxford:Blackwell scientific publication,1979:56-57
    192. Sykes M and Prentice C. Carbon storage and climate change in Swedish forest:a comparison of static and dynamic modeling approaches. In:Apps M J, Priee D T. eds. Forest Ecosystems, Forest Management and the Global Carbon Cycle. Berlin Heidelberg:Springer-verlag,1996,69-77
    193. Taylor A H, Huang J Y, Zhou S Q. Canopy tree development and undergrowth bamboo dynamics in old-growth Abiesbetula forests in southeastern China:a 12-year study. For. Ecol. Manage,2004, 200:347-360
    194. Valentini R, Matteuccl G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404:861-865
    195. Walker B, Steffen W. An overview of the implications of global change for natural and managed terrestrial ecosystem. Conservation Ecology,1997,2(2):2
    196. Woodwell G M. Whittaker R H. Reiners W A. et al. The Biota and the World Carbon Budget. Science,1978,199:141-146
    197. Zeide B. Analysis growth equations. Forest Science.1993.39(3):594-616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700