用户名: 密码: 验证码:
张广才岭及完达山森林生物量遥感估测及变化驱动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是地球上最重要的资源之一,是人类赖以生存的自然资源,是陆地上面积最大、分布最广、组成结构最复杂、物质资源最丰富的生态系统,是陆地生态系统的主要碳汇。然而,七十年代、八十年代人们对森林进行了大量的采伐,导致生态系统环境的严重破坏。随着天然林保护工程的启动,从根本上遏制了生态环境恶化,保护了生物多样性,促进了社会、经济的可持续发展。在天然林保护期间,森林生物量碳储量发生了很大的变化,对森林生态系统有着积极的作用。因此,研究森林生物量变化特别是天然林保护期间森林生物量及变化意义重大。
     我国东北森林是世界上3大块温带森林之一,占全国森林面积和森林蓄量积的1/3以上,在我国和全球碳循环、林业和生态环境建设中起着举足轻重的作用。然而东北森林碳循环的研究尚不全面,在我国和全球碳循环评估、建模和预测中还急需来自该区域的研究成果。本研究结合遥感技术和地理信息系统技术,分析和探讨了张广才岭和完达山地区森林生物量的估算方法和森林生物量时空变化规律。
     本研究采用各种与生物量相关的遥感因子、GIS因子、气象因子、社会经济因子建立估算张广才岭和完达山地区的生物量模型,并且分析生物量的时空变化信息。研究生物量变化的自然驱动因子、人为驱动因子和社会经济驱动因子,并作定量的研究,分析各因子对生物量变化的驱动贡献量。与以往的定性分析和线性定量分析比较,找出最适合模拟这种驱动模型的方法,对生物量变化及驱动因子做非线性的定量分析。为研究此区域的森林产量、森林碳收支及碳循环模型等提供参考依据。
     针对上述问题展开了如下研究并得出相应的主要结论:
     1、大区域和大时间尺度的遥感影像由于受大气条件、光照条件、地表起伏等因素的影响,造成同一地区所成的影像具有较大的辐射差异。这种差异对于后续定量提取信息具有重要影响。只有在进行生物量定量反演以及时空变化规律分析之前进行几何校正、辐射校正、大气校正、太阳高度角的校正以及多时相遥感影像的辐射归一化,才能保证精度要求。
     2、通过研究多元逐步回归方法、线性和非线性偏最小二乘方法、BP神经网络及改进Erf-BP神经网络建模方法,发现以改进的Erf-BP神经网络模型模拟和预测结果最好,预测精度达到了84.91%,列于几种方法之首。其次是非线性偏最小二乘模型,模拟精度达到85.8%,预测精度为83.08%,线性偏最小二乘模型模拟精度为83.08%,预测精度为83.09%;传统的BP神经网络位于其后,网络预测精度为80.97%;传统的多元逐步回归分析建立的生物量模型模拟精度仅为76%,而预测精度为75%。但受制于运算时间,导致偏最小二乘模型和神经网络模型很难推广应用。
     3、分析70年代到现在森林生物量变化受自然因素、人为因素的影响,并做定量研究。利用偏最小二乘的线性和非线性方法计算了气候变量、经营措施变量和经济因素变量的VIP值,通过VIP值的大小进行森林生物量变换的驱动力和驱动机制的分析。森林生物量变化在70—80年代经营措施是主要驱动因子,80—90年代3类因子都起到重要的影响作用,90年代末到现在经营措施类因子的重要性大幅度降低,自然因素和社会经济因素的影响升高,说明天然林保护工程初见成效。
     结果表明,本文所使用的方法正确,能够准确预算出研究区域的四期生物量,并且对于研究生物量的变化、变化机制和驱动力作出正确的分析和判断。
Forest, the important resource on surface, is the natural resource on which human survival depends. It is not only an ecosystem with the biggest area, the most widely distribution, complex composition and abundant material resources, but also a main carbon sink of the terrestrial ecosystem. However, people had cut large numbers of woods during 70s and 80s that led to heavy destruction of the ecosystem. During the period of natural forest protection, forest biomass and carbon storage have undergone great changes that have a positive effect on forest ecosystems. Therefore, it is significant to study changes of forest biomass, especially in natural forest protection time.
     Northeast forest in China, one of the large temperate forests in the world occupied over a third of national forest area and volume, plays an important role in global carbon cycle and entironment constructions. However, researches on forest carbon cycling in Northeast are not comprehensive. Carbon cycle estimating, modeling and forecasting in the region are also needed in Chinese and the global research. This paper analyzes and discusses some estimating methods of forest biomass and its rules in temporal and spatial changes, combining with RS and GIS technology.
     This paper develops biomass estimation models of Changbai mountain using many relevant factors, such as remote sensing factors, GIS factors, meteorological factors and economic factors, then analyses information of temporal and spatial changes. It also focuses on natural driving factors, factitious driving factors and economic driving factors, and analyses each factors for biomass changes quantitatively. Comparing with formerly qualitative and linear quantitative analysis, this paper finds the most proper method to simulate the driving mechanism and makes nonlinear analysis of biomass changes and driving factors, which provides references for investigating forest productions, carbon budgets and carbon cycling models.
     Some conclusions were made according to above problems:
     1. Due to atmospheric conditions, lighting conditions, surface fluctuations and other factors of remote sensing image in large area and large time scales, images in the same region have large radiative differences. These differences have important quantitative effects on extracting information. Only when geometric correction, radiometric correction, atmospheric correction, sun elevation angle calibration, radiation normalization of multi-temporal remote sensing images are made before forest biomass estimation and tempory-spatial analysis can precision have good results.
     2. Models for estimating forest biomass quantitatively were discussed and established by using multivariate stepwise regression, linear and nonlinear partial least-squares (PLS) method, back-propagation (BP) neural network model and back-propagation neural network based on gaussian error function (Erf-BP) model. The best predicted model among them was Erf-BP neural network with the precision of 84.91%. The second one was nonlinear PLS model with the fitted and predicted precision of 85.8% and 83.08% respectively. The third was linear PLS model with the fitted and predicted precision of 83.08% and 83.09%. The fourth was BP neural network model with the precision of 80.97%. The last one was multivariate stepwise regression with the fitted and predicted precision of 76% and 75%. Because of the limitations of calculating time, PLS and neural network models were hard to popularize and apply.
     3. The impacts of some factors on biomass variations, such as natural factors and man-made factors were analysed quantitatively in this study. Linear and nonlinear PLS models were used to calculate variables'VIP values of atmosphere, management and economy. These VIP values were useful for analyzing driving mechanism of biomass changes. The results indicated that the main driving factors of biomass changes between 70s and 80s,80s and 90s,90s and 2000s were management factors, all of the three factors, natural and social factors respectively. This result showed the effects of Natural Forest Protection Project.
     In this paper, not only correct methods were used for predicting biomass of the study region, but also biomass changes, changes mechanism and driving factors were identified and analyzed.
引文
[1]庞勇,李增元,陈尔学.激光雷达技术及其在林业上的应用.林业科学,2005,41(3):129~136.
    [2]BrownS, SathayeJ, CanellM, et al. Mitigation of carbon emission t the atmosphere by forest management. Com For Rev,1996,75:80~91
    [3]周晓峰.天然林保护工程与可持续林业.东北林业大学学报.2000,28(5):62~66
    [4]Sala. O.E., Biondini, M.E.,& Lauenoroth, W.K. Primary production of the central grasslands region of the United States, Ecology,1988,69:40~45.
    [5]Webb WL, Lauenroth WK, Szarek SR, et al. Primary production and abiotic controls in forests, grasslands and desert ecosystems in the United States [J]. Ecology,1983,64: 134-151.
    [6]Baskerville G.L. Dry-matter production in immature balsam fir stands. For. Sci. Monogr. 1965,9:42-45
    [7]Kitterge J. Estimation of amount of foliage of trees and shrubs [J]. J. Forest,1944 (42): 905-912.
    [8]Burger H Holz, Blattmenge Zuwachs.12 Fichten in plenterwald Mitteil, Schweiz, Anst. Forttl Versuchsw,1952,28:109~156
    [9]冯宗炜,陈楚莹,李昌华等.湖南会同杉木人工林生长发育与环境的相互关系[J].南京林业大学学报(自然科学版),1982(3):19~38
    [10]陈灵芝,Lindley DK.英国Hampsfell蕨菜草地第一性生产量的研究.植物生态学植物与地植物学丛刊,1982,6(2):105~119.
    [11]李月树,祝廷成.羊草种群地上部生物量形成规律的探讨[J].植物生态学报,1983,7(40):289~298
    [12]鲍显诚,陈灵芝,陈清郎等.栓皮栎林的生物量.植物生态学与地植物学丛刊,1984,8(4):313~320
    [13]王义凤.大针茅草原地上生物量形成的规律与特点.植物生态学与地植物学学报,1989,13(4):297~308.
    [14]刘志刚,马欽彦,潘向丽.兴安落叶松天然林生物量及生产力的研究.1994,18(4):328~337
    [15]王庆锁,李博.鄂尔多斯沙地油篙群落生物量初步研究.1994,18(4):347~353.
    [16]范伟民,李鸿昌,邱星辉.羊草地上生物量的估测模型[J].植物学通报,1993,S1:31~32.
    [17]李文华,邓坤枚,李飞.长白山主要森林生态系统生物量及初级生产力的研究[J].森林生态系统研究,1981,2:34~50.
    [18]方精云,刘国华,徐篙龄.中国陆地生态系统碳循环.见:王庚晨,温玉璞主编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社.1996:109~128.
    [19]方精云,刘国华,徐篙龄.中国森林植被生物量和净生产力.生态学报.1996,16(4):497~508.
    [20]Fang J Y, Wang G G, Liu G H et al. Forest biomass of China:an estimate based on the biomass-volume relationship. Ecological Applications,1998,8(4):1084~1091.
    [21]Brown S, Lugo A E. The storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica,1982,14:161 ~187.
    [22]Brown S, Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes. Science,1984(223):1290~1293.
    [23]Brown S J, Gillespie R, Lugo A E. Biomass estimation methods for tropical forests with application to forest inventory data. For Sci,1989 (36):881~902.
    [24]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(3):23~25.
    [25]Curran P J, Dungan J L, Cholz H L. Seasonal LAI in slash pine estimated with LandsatTM. Remote Sensing of Environment,1992,39:3~13.
    [26]Daolan Zheng, John Rademacherb, Jiquan Chen et al. Estimating aboveground biomass using Landsat 7 ETM+data across amanaged landscape in northern Wisconsin, USA. Remote Sensing of Environment,2004:402~411.
    [27]De Jong SMS, Pebesma E J, Lacaze B. Above-ground Biomass Assessment of Mediterranean Forests Using Airborne Imaging Spectrometry[J]. International Journal of Remote Sensing,2003,24(7):1505~1520.
    [28]Dengsheng, Mateus BATISTELLA. Exploring TM Image Texture and its Relationships with Biomass Estimation in Rondonia, Brazilian Amazon.ACTAAMAZONICA,2005,35 (2):261-268.
    [29]Boyd D S, Goody G M, Curran P J. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelength (3.0-5.0um). International Journal of Remote Sensing,1999,20(5):1017~1023.
    [30]Muukkonen, P.& Heiskanen, J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J].Remote Sensing of Environment,2005,99(4):434~447.
    [31]Haprell P A, Bourgeau-chavez L L, Kasischke ES, et al. Sensitivity of ERS-1 and J ERS-1 radar data to biomass and stand structure in Alaskan Boreal Forest [J]. Remote Sensing of Environment,1995 (54):247~260.
    [32]Thenkabail PS, et al. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics [J]. Remote Sens. Environ.2000,71:158~182.
    [33]Lefsky M A, Harding D, Coben W B, et al. Surface lidar remote sensing of basal area and biomass in deciduous forests of Eastern Maryland, USA. Remote Sensing of Environment, 1999,67:83-98.
    [34]Dubayah, R. O.,& Drake, J. B. Lidar remote sensing for forestry. Journal of Forestry,2000, 98,44~46.
    [35]李健,舒晓波等.基于Landsat-TM数据部阳湖湿地植被生物量遥感监测模型的建立.广州大学学报(自然科学版),2005(4):20~24.
    [36]张建奇.湿润地表红外辐射统计特性和热图像空间结构[J].西安电了科技大学学报,1999,10:33~35.
    [37]徐希孺.遥感物理[M].北京大学出版社,2005.
    [38]侯英雨,土石立.基于作物植被指数和温度的产量估算模型研究[J].地理学与国土研究,2002,18(3):105~107.
    [39]黎夏,刘凯,土树功.珠江日红树林湿地演变的遥感分析.地理学报,2006,61(1):32~35.
    [40]王臣立,郭治兴,牛铮等.热带人工生物物理参数及生物理对RADARSAT SAR信号响应研究.生态环境.2006,15(1):115~119.
    [41]刘占宇,黄敬峰,吴新宏等.草地生物量的高光谱遥感估算模型.农业工程学报[J],2004,22(2):63-66.
    [42]Pang Yong, Sun Guoqing, Li Zengyuan. Effects of forest spatial structure on large footprint lidar waveform. Proceedings of IGARSS04,2004:4738~4741.
    [43]Pang Yong, Li Zengyuan, Sun Guoqing. A large footprint lidar waveform model for forest. Proceedings of Scandlaser Scientific Workshop on Airborne Laser Scanning of Forests, 2003:59~64.
    [44]Sun G, Yong Pang. Evaluation of GLAS Land and canopy elevation (GLA14) data. International Conference on Land-Cover and Land-Use Change Processes in North East Asia Region (LCLUC).2005.
    [45]Eric F. Lambin, B.L. Turner, Helmut J. Geist, et al. The causes of land-use and land-cover change:moving beyond the myths. [J]. Globle Environment Change,2001(11):261~269.
    [46]Lambin E. F, Baulies X, Bockstael N, et al. Land-use and land-cover change[R]. Implementation Strategy. IGBP report No.48, IHDP report No.10,1999.
    [47]Bilsbomow R.E., H.W.O. Oloth-Ogendo. Population driven change in Land use in developing country [J]. Ambio,1992,1:37~45
    [48]李秀彬.全球环境变化研究的核心领域—土地利用/土地覆盖变化的国际研究动向[[J].地理学报,1996,51(6):553~557.
    [49]摆万奇,赵士洞.土地利用和土地覆盖变化研究模型综述[J].自然资源学报,1997,12(2):169~175.
    [50]史培军等.土地利用/覆盖变化研究的方法与实践[M].北京,科学出版社,2000.
    [51]李秀彬.中国近20年来耕地面积的变化及其政策启示[J].自然资源学报,1999,14(4):329~333.
    [52]李平,李秀彬,刘学军.我国现阶段土地利用变化驱动力的宏观分析[J].地理研究,2001,20(2):129~138.
    [53]谢高地,成升魁,丁贤忠.人口增长胁迫下的全球土地利用变化研究[J].自然资源学报,1999,14(3):193~199.
    [54]李克让,陈育峰,黄攻等.气候变化对土地覆被变化的影响及其反馈模[J].地理学报,2000,55(增刊):57~63.
    [55]龙花楼,李秀彬.长江沿线样带土地利用格局及其影响因子分析[J].地理学报,2001,56(4):417~425.
    [56]陈佑启,杨鹏.国际上上地利用/土地覆盖变化研究的新进展[J].经济地理,2001,21(1):95~100.
    [57]周峰,周颖.江苏锡山市耕地数量、质量变化影呐因素分板[J].中国土地科学,2001,15(4):7~11.
    [58]张国平,张增祥,刘纪远.中国土壤风力侵蚀空间格局及驱动因子分析[J].地理学报,2001,56(2):146~158.
    [59]董玉祥,陈克龙.长江上游地区土地沙漠化现状及其驱动力研究[J].长江流域资源与环境,2002,11(1):84~88.
    [60]张佳华,王长耀.人类活动影响下科尔沁沙地沙漠化动态的敏感性分析及灰色预测[J].应用生态学报,1999,10(2):163~166.
    [61]赵英时等.遥感应用分析原理与方法.科学出版社.2003:50~52
    [62]Boochs F. Shape of the Red Edges As Vitality Indicator for plant. Journy of Remote Sensing,1990,11(10):1741~1753
    [63]J.M. Chen, T.A. Black. Defining leaf area index for non-flat leaves. Plant Cell Environment,1992,15:421~429
    [64]杨曦光,范文义,于颖.基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演.光谱学与光谱分析,2010,30(11):3022~3026
    [65]S.W. Running, R.R. Nenani. Relating seasonal platters of the AVHRR vegetation index to simulate photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment,1988,24(2):347~367
    [66]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述.国土资源遥感,2003,57(3):58~62.
    [67]P. Gong, R. Pu, J.R. Miller. Coniferous forest leaf area index estimation along the Oregon transect using compact airborne spectrographic imager data. Photogrammetric Engineering & Remote Sensing,1995,61 (9):1107~1117
    [68]J.M. Chen. Evaluation of vegetation indices and a modified simple ratio for boreal applications. IEEE Transactions on Geo-science and Remote Sensing,1996,34:1353 ~ 1368.
    [69]J.M. Chen, J. Cihlar. Retrieving leaf area index for boreal conifer forests using Landsat TM images. Remote Sensing of Environment,1996,55:153 ~ 162.
    [70]张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式.遥感技术与应用,1995,10(3):13~18
    [71]L. Lymburner, J.B. Paul. Estimation of canopy-average surface specific leaf area using Landsat TM data. Photogrammetric Engineering & Remote Sensing.2000,66(2):183 ~ 191
    [72]S. Jacquemoud, C. Bacour, H. Poilve, J.P. Frangi. Comparison of four radiative transfer models to simulate plant canopies reflectance direct and inverse mode. Remote Sensing of Environment,2000,74:471 ~481
    [73]M. Meroni, R. Colombo, C. Panigada. Inversion of a radiative transfer model with hyper-spectral observations for LAI mapping in poplar plantations. Remote Sensing of Environment,2004,92:195~206
    [74]R. Liu, J.M. Chen, J. Liu, F. Deng, R. Sun. Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research. Journal of Environment Management,2007,85:649~658
    [75]宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析.遥感学报,1998,2(3):211~217
    [76]M.E. Martin, S.D. Newman, J.D. Aber and R.G. Congalton. Determining forest species composition using high resolution spectral resolution remote sensing data. Remote Sensing of Environment,1998,65:249~254
    [77]D.G. Goodenough, A. Dyk, K.O. Niemnn, et al. Processing Hyperion and ALI for forest classification. IEEE Transactions on Geo-science and Remote Sensing,2003, 41(6):1321 ~1331
    [78]P. Gong, R. Pu, J.R. Miller. Forest canopy closure from classification and spectral unmixing of scene components ultisensor evaluation of an open canopy. IEEE Transactions on Geo-science and Remote Sensing,1994,32(5):1067~1080
    [79]梁顺林著,范闻捷译.定量遥感.北京:科学出版社,2009:85~86
    [80]Simon Hay kin著,叶世伟,史忠植译.神经网络原理.北京:机械工程出版社,2006:3~4
    [81]G.F. Hepner, T. Logan, N. Ritter, N. Bryant. Artificial neural network classification using minimal training set. Photogrammetric Engineering and Remote Sensing.1990,56:469~ 473
    [82]D.P. Justin and A.S. Robert. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing.1995,33(4):564~582
    [83]巴雅尔-敖登高娃,沈彦俊,朱林等.地理信息系统支持下Spot/vegetation NDVI影像的大尺度神经网络分类.红外与毫米波学报.2005,24(6):427~431
    [84]P.K. Goel, S.O. Prasher, R.M. Patela, et al. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture.2003,39:68~93
    [85]M. Weiss and F. Baret. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sensing of Environment.1999, 70:293~306
    [86]O. Mutanga and A.K. Skidmore. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment.2004,90(1):104~115
    [87]杨曦光.高光谱数据提取森林冠层叶绿素及氮含量的研究.东北林业大学硕士论文,2010:38~41
    [88]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法.北京:国防工业出版社,2006
    [89]Nguyen, H., Lee, B. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression [J]. European Journal of Agronomy, 2006,24:349~356.
    [90]琚存勇,邸雪颖,蔡体久.变量筛选方法对郁闭度遥感估测模型的影响比较[J].林业科学,2007,43(12):33~38
    [91]杜晓明,蔡体久,琚存勇.采用偏最小二乘回归方法估测森林郁闭度[J].应用生态学报2008,19(2):273~277
    [92]李明泽.东北林区森林生物量遥感估算及分析[D].东北林业大学,2010:117~118
    [93]彭望斌,白振平,文帐南等.遥感概论.北京:高等教育出版社,2002,274~276
    [94]郭欣.遥感图像的分类.北京化工大学硕士论文,2004:9~23
    [95]王润生.图像理解.北京:国防科技大学出版社,1997:125~131
    [96]杨曦光,范文义,于颖.森林叶绿素含量的高光谱遥感估算模型的建立.森林工程.2010,26(2):8~11
    [97]杨曦光,范文义,于颖.基于Hyperion数据的森林叶绿素含量反演.东北林业大学学报.2010,38(6):123~124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700