用户名: 密码: 验证码:
宏观和微观代谢分析相结合的系统生物过程研究—维生素B_(12)发酵过程优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,微生物发酵过程研究正逐渐由胞外深入到胞内,由宏观扩展到微观。建立起能检测并综合利用胞内外的宏观和微观代谢信息的方法对我国从发酵大国发展到发酵强国具有重要意义。本文以脱氮假单胞菌(Pseudomonas denitrificans)生产维生素B12发酵过程为对象,探讨在微生物发酵过程中进行微观和宏观代谢信息综合检测和分析的方法。维生素B12在医药和添加剂等行业中有着广泛应用,如何实现维生素B12发酵过程的优化控制及其产率提高已逐渐成为研究的热点,本研究采用微观和宏观代谢信息相结合的方法系统地研究了维生素B12合成前体甜菜碱、供氧和过程中C02的优化控制和放大优化策略。具体结果如下:
     P. denitrificans发酵生产维生素B12代谢途径网络的分析。分析了利用同位素13C葡萄糖标记实验进行代谢通量考察的原理、数据处理和代谢速率的计算过程,以及以同位素标记实验得到的代谢网络节点通量比率为约束条件的整体代谢通量分析。建立了以宏观代谢参数相同为控制指标的可用于同位素标记实验的微型传感反应系统,该微型反应器体积小(200ml),能够精确采集和在线控制温度、溶氧、pH、氧摄取速率(OUR)、C02释放速率(CER)、呼吸商(RQ)等参数,并配备有尾气质谱仪检测系统对发酵过程尾气中的同位素标记的45CO2进行精确定量分析。该系统能很好地对生产发酵过程中的代谢状态进行同位素示踪考察。利用[1-13C]和[U-13C]葡萄糖标记代谢实验,建立并鉴定了P. denitrificans发酵生产维生素B12的代谢途径网络,研究表明该菌主要利用ED途径和磷酸戊糖途径(PPP)代谢葡萄糖,而EMP途径几乎没有活性,含有丙酮酸羧化酶和磷酸烯醇式丙酮酸羧化激酶催化的回补和糖异生途径。
     甜菜碱的代谢机制考察及控制策略的优化。利用[U-13C]葡萄糖考察了甜菜碱在发酵过程中的代谢去向,通过对菌体蛋白原氨基酸的标记信息和尾气中二氧化碳的丰度分析,结合宏观代谢参数的变化,定性和定量分析了甜菜碱在发酵过程中的代谢过程。结果表明,在菌体生长阶段,大量的甜菜碱参与到中心代谢并被用于菌体的合成。进一步研究发现适量的甜菜碱浓度对发酵过程中pH的维持和菌体的呼吸有很大的影响,因此对甜菜碱的添加策略进行了合理的调整,在初始培养基中不添加甜菜碱,而是在进入指数增长期后期(以OUR开始下降为指示点)开始连续补加甜菜碱以维持最佳的浓度3-5g/l,能明显促进菌体生长和VB12合成,同时将甜菜碱的消耗量降低了58.7%。
     根据宏观和微观代谢信息综合分析,建立了以OUR为控制变量的代谢过程优化控制工艺。首先通过分批和连续培养详细考察了P. denitrificans的生理代谢特性,研究表明该菌对氧有极高的亲和力,供氧对发酵过程有着显著的影响。因此进一步在50 L高级反应器中详细研究了不同氧消耗速率(OUR)下P. denitrificans发酵过程的宏观代谢参数的变化,并进行了详细的微观代谢通量变化分析,提出了以OUR为在线控制参数的分阶段供氧调控策略。进而结合120 m3反应器中的流场特性分析,成功地将该优化控制策略进行了生产放大,发酵单位提高了17.3%,单位维生素B12合成所消耗葡萄糖量减少了34.4%,同时大大降低了动力消耗,提高了生产效益。
     在利用菌体蛋白氨基酸进行稳态同位素代谢分析实验的基础上,建立了利用13C同位素研究P. denitrificans生长非稳态时代谢通量的方法。通过微型传感反应器跟踪生产发酵罐进行同位素标记实验,利用GC-MS分析菌体胞内游离氨基酸的标记信息,对维生素B12分批发酵过程不同阶段的代谢通量进行精确分析。结果表明,该方法能很好地对分批发酵过程中的代谢情况进行实时跟踪考察,同时发现随着发酵过程中VB12合成速率的增加丙酮酸羧化生成草酰乙酸的途径通量大大增强。鉴于羧化回补途径中CO2的重要性,采用静止细胞培养方式研究了C02对VB12合成阶段发酵过程的影响,结合宏观代谢相关参数变化和微观代谢途径通量分析,提出了发酵过程中基于搅拌和通气协同作用的C02优化控制策略,该优化策略下VB12的发酵单位达到了235.4mg/l,比最初的原始工艺(177.1mg/l)提高了32.9%。
     总之,在微生物发酵过程中检测并综合利用胞内外的宏观和微观代谢信息进行发酵过程优化的方法是可行的。该方法能够更深入地了解发酵过程现象背后的机理,洞察基因改造和环境参数对细胞代谢的影响,更好地进行工业微生物发酵过程优化。
Currently, the researches on microbial fermentation process are getting more and more profound, which has been developed from the extracellular to intracellular analysis, from macrocosmic to microcosmic metabolism of the microbes. Therefore, an industrial systems bioprocess engineering by integrating the multi scale physiological metabolism information is more essential for elevating the power of the domestic industrial fermentation. In the present work, the methods for determining and analyzing the macro-and micro-metabolic information were established in the industrial vitamin B12 fermentation by Pseudomonas denitrificans. Vitamin B12 has become one of the most important industrial materials for its well utilization in medicine and nutrition; more and more researches were focused on the improvement of the productivity and the optimization of the fermentation process controlling strategy. Integrated with the systematical analysis of the macro and micro metabolism information, the effects and the controlling strategies of the betaine, oxygen supply, and CO2 on the vitamin B12 fermentation and scale-up were investigated in this thesis.
     The structurally conserved and ubiquitous pathways of central carbon metabolism were identified and quantified in vitamin B12 producing strain P. denitrificans. The protocol for fast sampling and the principles underlying the calculation of metabolic flux ratios from the mass spectra of amino acids were developed. Furthermore, a mini-scale sensor reactor system was constructed for the 13C-labeling experiments, which has only 200 ml volume and all the online parameters reflecting the physiological characters (like pH, dissolved oxygen, OUR, CER, RQ, etc.) can be monitored and controlled. And also the labeled 45CO2 could be well determined. The central carbon metabolism in vitamin B12 producing strain P. denitrificans were identified and quantified with labeling experiments based on the [1-13C] and [U-13C] glucose. The results demonstrated that glucose was mainly consumed along the Entner-Doudoroff pathway, the pentose phosphate pathway, and the EMP pathway was inactive. Although the main result was identical to other reported Pseudomonas, but there was a high pentose phosphate pathway and no malic enzyme activity in this strain. The C1 metabolism associated with the serine, glycine and betaine was also illustrated in detail.
     The mechanism and the optimal controlling strategy of betaine were constructed in vitamin B12 production based on the [U-13C] glucose experiments. The fate of betaine and the metabolic fluxes analysis were illustrated under 13C-constrained flux balancing analysis, complemented with stoichiometric relations and measured extracellular rates. Fluxes in central metabolism of exponentially growing P. denitrificans revealed that most of the betaine was disassembled for cell growth, only small amount of it was served as methyl group donor for vitamin B12 biosynthesis. Meanwhile the betaine also had the function for enhancement of the respiration and maintaining the constant pH in the fermentation process. Furthermore, the feeding strategy of the betaine was optimized combined with OUR. The optimal betaine supplementation time began just at the moment of the decreasing point of OUR, which would not only accelerate vitamin B12 production rate and decrease the consumption of the betaine significantly (about 58.7% lower than that of control), but also avoid the inhibition of high betaine concentration on cell growth, and thus a cost-effective industrial vitamin B12 fermentation technology was achieved.
     Integrated with the macro and micro metabolic parameters analysis, a novel oxygen supply controlling strategy based on oxygen uptake rates (OUR) was achieved for cost effective vitamin B12 production. The physiological metabolic characters of P. denitrificans on vitamin B12 fermentation were investigated under fed-batch and continuous cultivations, a high affinity to oxygen was demonstrated in the strain, and oxygen supply played an important role on vitamin B12 production. Therefore, the effects of different oxygen transfer rates (OTR) on the cell growth and vitamin B12 biosynthesis of P. denitrificans were investigated under dissolved oxygen limiting conditions. The results demonstrated that high OTR accelerated cell growth and initial vitamin B12 biosynthesis rate, while lower OTR was critical for higher productivity in the late fermentation process. The OUR corresponded well with OTR. Based on the metabolic intermediates analysis and the metabolic flux analysis, a step-wise OUR control strategy was proposed. The strategy was successfully implemented in scale-up to an industrial fermenter (120 m3). A stable maximum vitamin B12 production of 208±2.5 mg/1 was achieved, which was increased by 17.3 percent compared with the control. Furthermore, the glucose consumption coefficient to vitamin B12 was 34.4 percent lower than that of the control. An efficient and economical fermentation process based on OUR criterion was established for industrial vitamin B12 fermentation by P. denitrificans.
     Metabolic flux analysis using 13C-labeled substrates is a well-developed method for investigating cellular behavior in steady state culture condition. To extend its application, in particular to typical industrial conditions, such as batch and fed-batch cultivations, a novel method of 13C metabolic flux analysis based on intracellular free amino acids was proposed. Metabolic flux distributions were determined in both exponential and stationary phases. Using this new approach, a culture phase-dependent metabolic shift on anaplerotic reaction catalyzed by pyruvate carboxylase was detected in the industrial fed-batch fermentation. The approach presented here has great potential for investigating cellular behavior in industrial processes. Considering the importance of the CO2 on the anaplerotic reaction, the effect of increased levels of dissolved CO2 on fed-batch cultures of P. denitrificans was investigated by means of continuous gassing with inlet gas mixtures containing various ranges of CO2 concentration. Combined with the systematical analysis of the macro and micro metabolism information, an optimal CO2 controlling strategy through adjustment of the agitation and aeration strategy was proposed, with which the highest vitamin B12production of 235.4 mg/1 was obtained, which was 32.9% higher than that of the control (177.1 mg/1) before the optimization.
     Overall, detecting and integrating the macro and micro metabolism information of industrial microorganisms are feasible approach for the optimization of fermentation process. This strategy could also be well utilized for better understanding the mechanism behind the fermentation phenomenon and revealing the synergistic effects of genetic modifications and environment parameters on cell metabolism, thus the better industrial fermentation process optimization could be achieved.
引文
[1]Deckwer WD, Jahn D, Hempel D, Zeng AP. Systems biology approaches to bioprocess development. Engineering in Life Sciences.2006,6:455-469.
    [2]李良智,成漠,李小林,徐鑫.系统生物学技术在微生物菌种改良中的应用.化工科技2009,17:46-50.
    [3]Stephanopoulos G. Metabolic engineering by genome shuffling. Nat Biotechnol. 2002,20:666-668.
    [4]Lee SY, Lee DY, Kim TY. Systems biotechnology for strain improvement. Trends Biotechnol.2005,23:349-358.
    [5]Hermann T. Using functional genomics to improve productivity in the manufacture of industrial biochemicals. Current Opinion in Biotechnology.2004,15:444-448.
    [6]Lee JW, Lee SY. Proteome-based physiological analysis of the metabolically engineered succinic acid producer Mannheimia succiniciproducens LPK7. Bioprocess Biosyst Eng.33:97-107.
    [7]Han MJ, Yoon SS, Lee SY. Proteome analysis of metabolically engineered Escherichia coli producing Poly(3-hydroxybutyrate). J Bacteriol.2001,183:301-308.
    [8]Kabir MM, Shimizu K. Proteome analysis of a temperature-inducible recombinant Escherichia coli for poly-beta-hydroxybutyrate production. J Biosci Bioeng. 2001,92:277-284.
    [9]Lee DY, Park YC, Kim HJ, Ryu YW, Seo JH. Proteomic analysis of Candida magnoliae strains by two-dimensional gel electrophoresis and mass spectrometry. Proteomics.2003,3:2330-2338.
    [10]Otero JM, Nielsen J. Industrial systems biology. Biotechnol Bioeng.2009, 105:439-460.
    [11]Zhu Y, Yang ST. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol.2004,110:143-157.
    [12]Vicente A, Castrillo JI, Teixeira JA, Ugalde U. On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems. Biotechnol Bioeng. 1998,58:445-450.
    [13]Liu W, Zheng H, Wu Z, Wang Y. Effects of pH profiles on nisin fermentation coupling with foam separation. Appl Microbiol Biotechnol.2009,23:1401-1407.
    [14]Liu D, Zeng RJ, Angelidaki I. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C). Biotechnol Bioeng.2008,100:1108-1114.
    [15]Krier F, Revol-Junelles AM, Germain P. Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl Microbiol Biotechnol.1998,50:359-363.
    [16]Cui YQ, van der Lans RG, Luyben KC. Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol Bioeng.1998,57:409-419.
    [17]Carilli A, Chain EB, Gualandi G, Morisi G Aeration studies. Ⅲ. Continuous measurement of dissolved oxygen during fermentation in large fermenters. Sci Rep Ist Super Sanita.1961,1:177-189.
    [18]Berovic M. Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng.1999,64:552-557.
    [19]喻扬,王永红,储炬,庄英萍,张嗣良.控制发酵过程氧化还原电位优化酿酒酵母乙醇生产.生物工程学报.2007,23:878-884.
    [20]Kastner JR, Eiteman MA, Lee SA. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Appl Microbiol Biotechnol. 2003,63:96-100.
    [21]Lu S, Eiteman MA, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol.2009,143:213-223.
    [22]Zhang S, Chu J, Zhuang Y. A multi-scale study of industrial fermentation processes and their optimization. Adv Biochem Eng Biotechnol.2004,87:97-150.
    [23]Ye X, Chu J, Zhuang Y, Zhang S. Multi-scale methodology:a key to deciphering systems biology. Front Biosci.2005,10:961-965.
    [24]张嗣良.发酵过程多水平问题及其生物反应器装置技术研究--基于过程参数相关的发酵过程优化与放大技术.中国工程科学.2001,3:37-45.
    [25]张嗣良,储炬,庄英萍.抗生素发酵过程优化技术研究.中国抗生素杂志.2002,27:572-576.
    [26]Arredondo T, Seeger M, Dombrovskaia L, Avarias J, Calderon F, Candel D, Munoz F, Latorre V, Agullo L, Cordova M, Gomez L. Bioinformatics integration framework for metabolic pathway data-mining. Advances in Applied Artificial Intelligence, Proceedings.2006,4031:917-926.
    [27]李景森,庄英萍,王永红,郭元昕,储炬.基于参数相关分析的头孢菌素C发酵过程溶氧调控策略.华东理工大学学报(自然科学版).2007,33:788-793.
    [28]陈双喜,周潜,郭元听,储炬,庄英萍,张嗣良.枯草芽胞杆菌肌苷发酵过程参数相关分析.华东理工大学学报(自然科学版).2006,32:28-32.
    [29]扶教龙,储炬,刘玉伟,樊涛,庄英萍,彭皓宇,张嗣良.金霉素发酵过程的代谢特性及调控策略.中国抗生素杂志.2002,27:141-144.
    [30]Kelly WJ. Using computational fluid dynamics to characterize and improve bioreactor performance. Biotechnol Appl Biochem.2008,49:225-238.
    [31]Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem.2005,41:1-8.
    [32]Davidson KM, Sushil S, Eggleton CD, Marten MR. Using computational fluid dynamics software to estimate circulation time distributions in bioreactors. Biotechnol Prog.2003,19:1480-1486.
    [33]Kim JK, Han GH, Oh BR, Chun YN, Eom CY, Kim SW. Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresour Technol. 2008,99:4394-4399.
    [34]S.L. Z, J. C, Y.P Z. A multi-study of industrial fermentation processes and their optimization. Adv Biochem Eng Biot.2004,87:97-150.
    [35]Schmalzriedt S, Jenne M, Mauch K, Reuss M. Integration of physiology and fluid dynamics. Adv Biochem Eng Biotechnol.2003,80:19-68.
    [36]Wang Y, Chu J, Zhuang Y, Xia J, Zhang S. Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv. 2009,27:989-995.
    [37]Alford JS. Bioprocess control:Advances and challenges. Computers & Chemical Engineering.2006,30:1464-1475.
    [38]Alford JS. Principles of Bioprocess Control. Chemical Engineering Progress. 2009,105:44-51.
    [39]Stephanopoulos G, Jensen KL. Metabolic engineering:Developing new products and processes by constructing functioning biosynthetic pathways in vivo. Aiche Journal. 2005,51:3091-3093.
    [40]Stephanopoulos G. Metabolic engineering:Enabling technology for biofuels production. Metabolic Engineering.2008,10:293-294.
    [41]Shimizu H. Metabolic engineering--Integrating methodologies of molecular breeding and bioprocess systems engineering. Journal of Bioscience and Bioengineering. 2002,94:563-573.
    [42]Stafford DE, Stephanopoulos G. Metabolic engineering as an integrating platform for strain development. Current Opinion in Microbiology.2001,4:336-4340.
    [43]黄明志,蔡显鹏,陈双喜,储炬,庄英萍,张嗣良.鸟苷发酵过程的定量和优化:抑制NH4+离子积累提高了鸟苷产量70%.生物工程学报.2003,19:200-205.
    [44]吴祖芳,堵国成,陈坚.从代谢通量分析角度探讨培养条件下对放线根瘤菌WSH2601合成辅酶Q1o的影响.微生物学报.2005,45:231-235.
    [45]Yang C, Hua Q, Shimizu K. Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy. Journal of Bioscience and Bioengineering.2002,93:78-87.
    [46]Szyperski T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem.1995,232:433-448.
    [47]Nielsen J. Metabolic engineering:techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng.1998,58:125-132.
    [48]Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol.2001,55:263-283.
    [49]Saucer RT. Processes of motion perception. Science.1954,120:806-807.
    [50]Wiechert W, Mollney M, Petersen S, de Graaf AA. A universal framework for 13C metabolic flux analysis. Metab Eng.2001,3:265-283.
    [51]Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H. Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab Eng.2001,3:344-361.
    [52]Christensen B, Nielsen J. Metabolic network analysis of Penicillium chrysogenum using 13C-labeled glucose. Biotechnol Bioeng.2000,68:652-659.
    [53]Drysch A, El Massaoudi M, Mack C, Takors R, de Graaf AA, Sahm H. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach:Ⅱ-13C-labeling-based metabolic flux analysis and-lysine production. Metabolic Engineering.2003,5:96-107.
    [54]Barbara C, Erik B, Vinck E, Katharina D, Cambier D. Atherosclerosis in the vertebral artery:an intrinsic risk factor in the use of spinal manipulation? Surgical and Radiologic Anatomy.2006,28:129-134.
    [55]Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G. Metabolic flux analysis in a nonstationary system:Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metabolic Engineering.2007,9:277-292.
    [56]Yang TH, Wittmann C, Heinzle E. Respirometric 13C flux analysis, Part 1: Design,construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. Metabolic Engineering.2006,8:417-431.
    [57]Yang TH, Wittmann C, Heinzle E. Respirometric 13C flux analysis-Part II:In vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metabolic Engineering.2006,8:432-446.
    [58]El Massaoudi M, Spelthahn J, Drysch A, de Graaf A, Takors R. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach:I-Sensor reactor system. Metabolic Engineering. 2003,5:86-95.
    [59]Wittmann C, Kim HM, Heinzle E. Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng. 2004,87:1-6.
    [60]Drysch A, El Massaoudi M, Mack C, Takors R, de Graaf AA, Sahm H. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach:Ⅱ-13C-labeling-based metabolic flux analysis and L-lysine production. Metabolic Engineering.2003,5:96-107.
    [61]Katz J, Wals P, Lee WN. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate. J Biol Chem.1993,268:25509-25521.
    [62]Zupke C, Sinskey AJ, Stephanopoulos G. Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol.1995,44:27-36.
    [63]Rickes EL, Brink NG, Koniuszy FR, Wood TR, Folkers K. Crystalline Vitamin B12. Science.1948,107:396-397.
    [64]Mitchell T, Etteldorf JN, Tuttle AH, Clayton GW, Jr. Crystalline vitamin B12 and sodium folvate in prematurity. Pediatrics.1951,8:821-827.
    [65]Macek TJ, Feller BA. A note on stability of the B vitamins in solutions-crystalline vitamin B12. J Am Pharm Assoc Am Pharm Assoc (Baltim).1955,44:255.
    [66]Hodgkin DC, Kamper J, Mackay M, Pickworth J, Trueblood KN, White JG. Structure of vitamin B12. Nature:1956,178:64-66.
    [67]Eisenberg RC, Butters SJ, Quay SC, Friedman SB. Glucose uptake and phosphorylation in Pseudomonas fluorescens. J Bacteriol.1974,120:147-153.
    [68]Martens JH, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol.2002,58:275-285.
    [69]Stupperich E. Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev.1993,12:349-365.
    [70]Poirot C, Valk E, Keltjens J, der DCV, Vogels G. Formation of methylcoenzyme M from formaldehyde by cell free extracts of Methanobacterium thermoautotrophicum. Evidence for the involvement of a corrinoid-containing methyltransferase. FEMS Microbiol Lett.1987,40:7-13.
    [71]罗伟,郝常明.维生素B12的研究及其进展.中国食品添加剂.2002,3:15-18.
    [72]Organische A.E. Naturstoffsynthese heute, Vitamin B12 als Beispiel. Naturwissenschaften.1974,61:513-525.
    [73]Debussche L, Thibaut D, Cameron B, Crouzet J, Blanche F. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J Bacteriol. 1993,175:7430-7440.
    [74]Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep.2002,19:390-412.
    [75]Warren MJ. Finding the final pieces of the vitamin B12 biosynthetic jigsaw. Proc Natl Acad Sci U S A.2006,103:4799-4800.
    [76]Scott AI, Roessner CA, Stolowich NJ, Spencer JB, Min C, Ozaki SI. Biosynthesis of vitamin B12. Discovery of the enzymes for oxidative ring contraction and insertion of the fourth methyl group. FEBS Lett.1993,331:105-108.
    [77]Scott AI. Discovering nature's diverse pathways to vitamin B12:a 35-year odyssey. J Org Chem.2003,68:2529-2539.
    [78]Scott AI. Recent studies of enzymically controlled steps in B12 biosynthesis. Ciba Found Symp.1994,180:285-303.
    [79]Stamford NP, Crouzet J, Cameron B, Alanine AI, Pitt AR, Yeliseev AA, Battersby AR. Biosynthesis of vitamin B12:the preparative multi-enzyme synthesis of precorrin-3A and 20-methylsirohydrochlorin (a 2,7,20-trimethylisobacteriochlorin). Biochem J. 1996,313 (Pt 1):335-342.
    [80]Vevodova J, Graham RM, Raux E, Schubert HL, Roper DI, Brindley AA, Ian Scott A, Roessner CA, Stamford NP, Elizabeth Stroupe M, Getzoff ED, Warren MJ, Wilson KS. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. J Mol Biol.2004,344:419-433.
    [81]Thibaut D, Couder M, Famechon A, Debussche L, Cameron B, Crouzet J, Blanche F. The final step in the biosynthesis of hydrogenobyrinic acid is catalyzed by the cobH gene product with precorrin-8x as the substrate. J Bacteriol.1992,174:1043-1049.
    [82]Thibaut D, Blanche F, Debussche L, Leeper FJ, Battersby AR. Biosynthesis of vitamin B12:structure of precorrin-6x octamethyl ester. Proc Natl Acad Sci USA. 1990,87:8800-8804.
    [83]Blanche F, Maton L, Debussche L, Thibaut D. Purification and characterization of Cob(II)yrinic acid a,c-diamide reductase from Pseudomonas denitrificans. J Bacteriol. 1992,174:7452-7454.
    [84]Blanche F, Couder M, Debussche L, Thibaut D, Cameron B, Crouzet J. Biosynthesis of vitamin B12:stepwise amidation of carboxyl groups b, d, e, and g of cobyrinic acid a,c-diamide is catalyzed by one enzyme in Pseudomonas denitrificans. J Bacteriol. 1991,173:6046-6051.
    [85]Scott AI. Concerning the biosynthesis of vitamin B12. Ann N Y Acad Sci. 1975,244:356-370.
    [86]Quesada-Chanto AC, Schmid-Meyer AG, Schroeder. Effect of oxygen supply on biomass, organic acids and vitamin B12 production by Propionibacterium shermanii. World Journal of Microbiology & Biotechnology.1998,14:843-846.
    [87]Miyano K, Ye K, Shimizu K. Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochem Eng J. 2000,6:207-214.
    [88]Salminen K. Cobalt metabolism in horse. Serum level and biosynthesis of vitamin B12. Acta Vet Scand.1975,16:84-94.
    [89]Raux E, Lanois A, Warren MJ, Rambach A, Thermes C. Cobalamin (vitamin B12) biosynthesis:identification and characterization of a Bacillus megaterium cobI operon. Biochem J.1998,335 (Pt 1):159-166.
    [90]Raux E, Schubert HL, Woodcock SC, Wilson KS, Warren MJ. Cobalamin (vitamin B12) biosynthesis--cloning, expression and crystallisation of the Bacillus megaterium S-adenosyl-L-methionine-dependent cobalt-precorrin-4 transmethylase CbiF. Eur J Biochem.1998,254:341-346.
    [91]Demain AL, Daniels HJ, Schnable L, White RF. Specificity of the stimulatory effect of betaine on the vitamin B12 fermentation. Nature.1968,220:1324-1325.
    [92]Li K-T, Liu D-H, Li Y-L, Chu J, Wang Y-H, Zhuang Y-P, Zhang S-L. Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technology.2008,99:8516-8520.
    [93]Li K-T, Liu D-H, Li Y-L, Chu J, Wang Y-H, Zhuang Y-P, Zhang S-L. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess and Biosystems Engineering.2008,31: 605-610.
    [94]Li K-T, Liu D-H, Li Y-L, Chu J, Wang Y-H, Zhuang Y-P, Zhang S-L. Influence of Zn2+, Co2+ and dimethyl -benzimidazole on vitamin B12 biosynthesis by Pseudomonas denitrificans. World Journal of Microbiology and Biotechnology.2008,24:2525-2530.
    [95]Vallino JJ, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng. 1993,41:633-46.
    [96]van Gulik WM, Heijnen JJ. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng.1995,48:681-698.
    [97]Jin S, Ye K, Shimizu K. Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production. J Biotechnol.1997,54:161-174.
    [98]Stephanopoulos G. Metabolic engineering. Curr Opin Biotechnol.1994,5:196-200.
    [99]Wolfgang WJ, Hoskote A, Roberts IJ, Jackson S, Forte M. Genetic analysis of the Drosophila Gs(alpha) gene. Genetics.2001,158:1189-1201.
    [100]Schmidt K, Carlsen M, Nielsen J, Villadsen J. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng. 1997,55:831-840.
    [101]Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML. Metabolic flux analysis:A powerful tool for monitoring tissue function. Tissue Engineering.1999,5:347-368.
    [102]Christensen B, Nielsen J. Isotopomer analysis using GC-MS. Metab Eng. 1999,1:282-290.
    [103]Drysch A, El Massaoudi M, Wiechert W, de Graaf AA, Takors R. Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach. Biotechnol Bioeng.2004,85:497-505.
    [104]Iwatani S, Yamada Y, Usuda Y. Metabolic flux analysis in biotechnology processes. Biotechnol Lett.2008,30:791-799.
    [105]Yang TH, Wittmann C, Heinzle E. Respirometric 13C flux analysis, Part I:design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. Metab Eng.2006,8:417-431.
    [106]Deshpande R, Yang TH, Heinzle E. Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J. 2009,4:247-263.
    [107]Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R. Serial 13C-based flux analysis of an L-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol Prog.2004,20:706-714.
    [108]A JM. Increasing the sensitivity of the anthrone method for carbohydrate.1975, 68:332-335.
    [109]易蕴玉,全文海,徐晨东.利用苯酚-次氯酸盐反应测定铵离子方法的探讨.无锡轻工大学学报.1998,17:34-38.
    [110]李友元,陶萍.高效液相色谱法测定螺旋霉素发酵液中的有机酸.色谱.2002,20:46-48.
    [111]Choi C, Hong BS, Sung HC, Lee HS, Kim JH. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnology Letters.1999,21: 551-554.
    [112]Christensen B, Nielsen J. Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol.2000,66:209-231.
    [113]Klapa MI, Park SM, Sinskey AJ, Stephanopoulos G. Metabolite and isotopomer balancing in the analysis of metabolic cycles:I. Theory. Biotechnology and Bioengineering.1999,62:375-391.
    [114]Fuhrer T, Fischer E, Sauer U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol.2005,187:1581-1590.
    [115]Wittmann C, Heinzle E. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng.2001,3: 173-191.
    [116]Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng. 2002,79:53-73.
    [117]Thykaer J, Christensen B, Nielsen J. Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum:elucidation of adipate degradation. Metab Eng.2002,4:151-158.
    [118]Cannizzaro C, Christensen B, Nielsen J, von Stockar U. Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab Eng.2004,6:340-351.
    [119]Nanchen A, Fuhrer T, Sauer U. Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data:protocol and principles. Methods Mol Biol.2007,358:177-197.
    [120]Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J.13C tracer experiments and metabolite balancing for metabolic flux analysis:comparing two approaches. Biotechnol Bioeng.1998,58:254-257.
    [121]Sauer U. High-throughput phenomics:experimental methods for mapping fluxomes. Curr Opin Biotechnol.2004,15:58-63.
    [122]Zhao Z, Kuijvenhoven K, Ras C, Van Gulik WM, Heijnen JJ, Verheijen PJ, Van Winden WA. Isotopic non-stationary 13C gluconate tracer method for accurate determination of the pentose phosphate pathway split-ratio in Penicillium chrysogenum. Metab Eng.2008,10:178-186.
    [123]Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12:verification and complementation of hypotheses derived from transcriptomics. J Biotechnol. 2009,143:124-129.
    [124]Fuhrer T, Sauer U. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol.2009,191:2112-2121.
    [125]Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol.2001,183:1441-1451.
    [126]高雁,李春,姿恺.甜菜碱的制备及其应用研究进展.新疆农业科学报.2007,44(s2):48-52.
    [127]Kim SK, Choi KH, Kim YC. Effect of acute betaine administration on hepatic metabolism of S-amino acids in rats and mice. Biochem Pharmacol.2003,65:1565-74.
    [128]张宇航,张景楼,王清发.浅谈甜菜碱营养机理研究进展.中国糖科.2005,2:28-31.
    [129]White RF, Kaplan L, Birnbaum J. Betaine-homocysteine transmethylase in Pseudomonas denitrificans, a vitamin B12 overproducer. J Bacteriol.1973,113:218-223.
    [130]White RF, Demain AL. Catabolism of betaine and its relationship to cobalamin overproduction. Biochim Biophys Acta.1971,237:112-119.
    [131]Obis D, Guillot A, Mistou MY. Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol Lett.2001,202:39-44.
    [132]Fa YH, Kusel JP, Demain AL. Dependence of Betaine Stimulation of Vitamin B12 Overproduction on Protein Synthesis. Appl Environ Microbiol.1984,47:1067-1069.
    [133]Bacher A, Rieder C, Eichinger D, Arigoni D, Fuchs G, Eisenreich W. Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. Fems Microbiology Reviews.1998,22:567-598.
    [134]Fischer E, Sauer U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem.2003,270:880-891.
    [135]Plakunov VK, Shelemekh OV. Mechanisms of Oxygen Regulation in Microorganisms. Microbiology.2009,78:535-546.
    [136]Zeng A-P, Deckwer W-D. Bioreaction techniques under microaerobic conditions: From molecular level to pilot plant reactors. Chemical Engineering Science. 1996,51:2305-2314
    [137]Liang J, Yuan J. Oxygen transfer model in recombinant Pichia pastoris and its application in biomass estimation. Biotechnol Lett.2007,29:27-35.
    [138]Matsunaga N, Kano K, Maki Y, Dobashi T. Estimation of dissolved carbon dioxide stripping in a large bioreactor using model medium. J Biosci Bioeng.2009,107: 419-424.
    [139]El-Sabbagh N, Harvey LM, McNeil B. Effects of dissolved carbon dioxide on growth, nutrient consumption, cephalosporin C synthesis and morphology of Acremonium chrysogenum in batch cultures. Enzyme and Microbial Technology.2008,42:315-324.
    [140]El-Sabbagh N, McNeil B, Harvey LM. Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology in batch cultures of Penicillium chrysogenum. Enzyme and Microbial Technology.2006,39:185-190.
    [141]Yang YK, Morikawa M, Shimizu H, Shioya S, Suga K-I, Nihira T, Yamada Y. Image analysis of mycelial morphology in virginiamycin production by batch culture of Streptomyces virginiae. Journal of Fermentation and Bioengineering.1996,81:7-12
    [142]Xiang S, Tong L. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol.2008,15:295-302.
    [143]Onken U, Liefke E. Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv Biochem Eng Biotechnol.1989,40:137-169.
    [144]Everaert N, Kamers B, Witters A, De Smit L, Debonne M, Decuypere E, Bruggeman V. Effect of four percent carbon dioxide during the second half of incubation on embryonic development, hatching parameters, and posthatch growth. Poultry Science. 2007,86:1372-1379.
    [145]Baumchen C, Knoll A, Husemann B, Seletzky J, Maier B, Dietrich C, Amoabediny G, Buchs J. Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate. Journal of Biotechnology. 2007,128:868-874.
    [146]Bylinkina ES, Nikitina TS, Biryukov VV, Cherkasova ON. Effect of dissolved carbon dioxide on life activity of antibiotic-producing microorganisms. Biotechnol Bioeng Symp.1973,0:197-207.
    [147]Richards OW, Haynes FW. Oxygen Consumption and Carbon Dioxide Production during the Growth of Yeast. Plant Physiol.1932,7:139-144.
    [148]Mclntyre M, McNeil B. Morphogenetic and biochemical effects of dissolved carbon dioxide on filamentous fungi in submerged cultivation. Appl Microbiol Biotechnol. 1998,50:291-298.
    [149]Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ. Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol.2003,104:99-122.
    [150]Matsunaga N, Kano K, Maki Y, Dobashi T. Culture scale-up studies as seen from the viewpoint of oxygen supply and dissolved carbon dioxide stripping. J Biosci Bioeng. 2009,107:412-418.
    [151]Baumchen C, Knoll A, Husemann B, Seletzky J, Maier B, Dietrich C, Amoabediny G, Buchs J. Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate. J Biotechnol. 2007,128:868-874.
    [152]Borken W, Xu YJ, Beese F. Leaching of dissolved organic carbon and carbon dioxide emission after compost application to six nutrient-depleted forest soils. J Environ Qual. 2004,33:89-98.
    [153]Ferrentino G, Ferrari G, Poletto M, Balaban MO. Microbial inactivation kinetics during high-pressure carbon dioxide treatment:nonlinear model for the combined effect of temperature and pressure in apple juice. J Food Sci.2008,73:389-395.
    [154]Furukawa S, Watanabe T, Tai T, Hirata J, Narisawa N, Kawarai T, Ogihara H, Yamasaki M. Effect of high pressure gaseous carbon dioxide on the germination of bacterial spores. Int J Food Microbiol.2004,91:209-213.
    [155]Van Hekken DL, Rajkowski KT, Tomasula PM, Tunick MH, Holsinger IH. Effect of carbon dioxide under high pressure on the survival of cheese starter cultures. J Food Prot.2000,63:758-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700