用户名: 密码: 验证码:
基于厌氧水解—硝化—反硝化/厌氧氨氧化技术的城市污水脱氮工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统的硝化-反硝化生物脱氮工艺已不能满足低C/N比城市污水脱氮处理的要求,近年来以厌氧氨氧化技术为核心的生物脱氮工艺已逐渐成为污水处理领域研究的热点。由于厌氧氨氧化菌对有机物、温度和溶解氧等环境因素非常敏感,并且厌氧氨氧化菌的倍增时间较长,因此探索研究厌氧氨氧化菌应用的有效方式成为了其工业化应用的关键问题。目前,以厌氧氨氧化工艺为核心的组合工艺(SHARON-ANAMMOX工艺、Canon工艺等)已经在污泥消化液、畜禽养殖废水、垃圾渗滤液等高氨氮废水处理中得到广泛应用。本文旨在针对低碳氮比城市污水设计以厌氧处理为核心的低能耗城市污水处理工艺,重点考察基于厌氧水解-硝化-反硝化/厌氧氨氧化技术(Denitrification and Anammox, Den-Anammox)的一体式城市污水脱氮工艺的可行性。并且对Den-Anammox反应的操作条件、碳氮处理性能和微生物菌群变化进行了详细地探索分析。论文取得了一些创新研究成果,主要包括以下几点:
     (1)厌氧水解反应可以作为以厌氧处理为核心的低能耗城市污水处理工艺的脱碳预处理过程,实现部分COD的脱除同时产生挥发性脂肪酸(VFA),为异养反硝化反应提供有机碳源。厌氧生物反应的反应级数近似为2级,厌氧水解反应的最大COD脱除率为75%,基质的去除主要发生在反应的前3h,并且在第2hVFA积累达到量最大。本实验中厌氧水解反应产生的VFA主要是以乙酸、丙酸和丁酸为主,前两者占VFA总量的95%以上。FISH (fluorescence in situ hybridization)结果显示产酸菌和产甲烷菌的比例分别为39.7%和46.5%。
     (2)异养反硝化细菌与厌氧氨氧化菌可以实现协同脱氮,Den-Anammox系统的最优氮基质为氨氮和硝酸氮。FISH结果显示基于亚硝酸盐的Den-Anammox系统中的优势菌种为厌氧氨氧化菌,比例为84%,而基于硝酸盐的Den-Anammox系统中优势菌种为异养反硝化细菌和厌氧氨氧化菌,其中厌氧氨氧化菌的比例为65%。与基于亚硝酸盐的Den-Anammox系统相比,基于硝酸盐的Den-Anammox系统具有更好的碳氮综合脱除性能,并且具有更强的有机物耐受能力和低温适应能力。基于亚硝酸盐的Den-Anammox系统的氮去除途径以厌氧氨氧化反应为主,最优COD:NO2--N:NH4+-N为0.6:1.26:1和0.8:1.33:1;基于硝酸盐的Den-Anammox系统的氮去除途径主要为Den-Anammox反应,最优COD:NO3--N:NH4+-N为10:7:6。
     (3)成功启动了一体式厌氧水解-硝化-反硝化/厌氧氨氧化反应器,室温(25℃)下反应器的总氮和COD平均去除率分别为89.9%和91.5%,并且与传统的硝化-反硝化工艺相比,该工艺节省了能源消耗,减少了温室气体的排放(C02)。当COD/NO3--N为0.94-1.69时,成功实现了短程异养反硝化细菌和厌氧氨氧化菌的协同脱氮,Den-Anammox反应的最大氨氮去除率和总氮去除率分别为97.6%和93.8%。根据生物反应计量学原理分析,Den-Anammox反应对于一体式反应器的氮去除贡献百分比为70%以上。DGGE (denaturing gradient gel electrophoresis)和基因测序结果显示,经过175天后Den-Anammox池中的优势菌群由单一的厌氧氨氧化菌变成了异养反硝化细菌和厌氧氨氧化菌;并且FISH结果显示厌氧氨氧化菌的比例由89%下降到了58%。
     (4)为了探索厌氧氨氧化技术实际应用的新方式,本实验利用厌氧连续搅拌反应器(CSTR)成功培养了blank-anammox菌颗粒、Fe-anammox菌颗粒和Fe3O4-anammox菌颗粒,三种颗粒的最大特定厌氧氨氧化活性(SAA)值分别为0.205kgN-kgVSS-1d-1、0.24kgN-kgVSS-1d-1和0.239kgN-kgVSS-1d-1,最大颗粒粒径[d(0.5)]分别为602.8μm (第72天)、417.3μm (第39天)和988.5μm(第72天),形成方式分别为ECP-bonding模型、ions-bonding模型和ions-bonding模型。实验得到厌氧氨氧化菌生长的最优ORP为205-209mV,并且其分泌的QS物质为十二酰基高丝胺酸内酯。实验结果表明以Fe3O4为内核的厌氧氨氧化颗粒更稳定,加入Fe3O4可以实现厌氧氨氧化菌的快速稳定颗粒化。
Recently, the novel nitrogen reomoval technologies based on anammox reaction have been the research focus in wastewater treatment due to that the tranditional nitrification-denitrification process does not meet the demand of low C/N ratio municipal sewage treatment. However, anammox activity is easlily inhibited by the environmental factors of organics, temperature, DO and etc., and the doulbe time of anammox bacteria is long (11d). Hence, the development of combined process based on anammox reaction is a key problem in the industrial application of anammox reaction. At present, some combined processes based on anammox reaction, such as SHARON-ANAMMOX process and CANON process, have been utilized to treat sludge digestion liquid, aquaculture wastewater and landfill leachate. In this study, a low-energy anaerobic wastewater treatment technology was designed to treat low C/N municipal sewage. We mainly studied the feasibility of the intergated anaerobic hydrolysis (A)-nitrification (O)-Den-Anammox (A) bioreactor. The operation condition, carbon-nitrogen removal performance and microbial community of the A/O/A bioreactor were in detail studied. The main research achievements of this study have been obtained as follows:
     (1) Anerobic hydrolysis reaction could be utilized as the carbon-removal pretreatment process of low-energy anaerobic sewage treatment combination process, which could remove the most organics of wastewater and produce VFA as the organic carbon source of heterotrophic denitrification. The anaerobic reaction serie was2. The maximum COD removal rate of anaerobic hydrolysis reaction arrived to75%, and the substrate removal was achieved in the initial3hours of reaction. The maximum accumulation of VFA appeared in the2nd h. In this study, the produced VFA mainly included acetic acid, propionic acid and butyric acid. The content of acetic acid and propionic acid in VFA arrived to above95%. FISH (fluorescence in situ hybridization) results showed that the ratios of acid-forming bacteria and methanogens in the reactor were39.7%and46.5%, respectively.
     (2) The nitrogen removal could be achieved by the synergistic effect of heterotrophic denitrifying bacteria and anammox bacteria. The optimum nitrogen substrate of Den-Anammox system was ammonia and nitrate. FISH results showed that the preponderant bacteria of Den-Anammox system based on nitrite was anammox bacteria and the ratio of anammox bacteria was84%; The preponderant bacteria of Den-Anammox system based on nitrate were heterotrophic denitrifying bacteria and anammox bacteria, and the ratio of anammox bacteria was65%. Compared with Den-Anammox system based on nitrite, the Den-Anammox system based on nitrate had better carbon-nitrogen removal performance and better resistance ability for organics and low temperature. The main nitrogen removal approach of Den-Anammox system based on nitrite was anammox reaction and the optimum influent COD:NO2--N:NH4+-N ratios were0.6:1.26:1and0.8:1.33:1. The main nitrogen removal approach of Den-Anammox based on nitrate was heterotrophic partial denitrification1-anammox reaction and the optimum influent COD:NO3--N:NH4+-N ratio was10:7:6.
     (3) In this study, an integated anaerobic hydrolysis (A)/nitrification (O)/Den-Anammox (A) bioreactor was successfully started up under room temperature (25℃). The TN (total nitrogen) and COD removal rates of bioreactor were89.9%and91.5%, respectively. Compared with the tranditional nitrification-denitrification process, the integrated A/O/A bioreactor could save energy source consumption and reduce greenhouse gas emission. Under the COD/NO3-N of0.94-1.69, the synergistic effect of heterotrophic denitrifying bacteria and anammox bacteria was achieved in the A/O/A bioreactor. The maximum ammonimum and TN removal rates of Den-Anammox reaction were97.6%and93.8%, respectively. According to biological reaction metrology theory, the nitrogen removal contribution percentage of Den-Anammox reaction was above70%. DGGE (denaturing gradient gel electrophoresis) and gene sequencing results showed that the optimum microbial community of Den-Anammox pool changed from single anammox bacterium to heterotrophic denitrifying bacterium and anammox bacterium through175-day running. And FISH results showed that the ratio of anammox bacteria declined from89%down to58%.
     (4) In order to explore new application ways of anammox, three different anammox granules including blank-anammox granule, Fe-anammox granule and Fe3O4-anammox granule were successfully obtained by anaerobic continuously stirred tank reactor (CSTR). The maximum SAAs of there anammox granlues were0.205kgN·kgVSS-d-1,0.24kgN·kgVSS-d-1and0.239kgN·kgVSS-1d-1, respectively. The maximum granlue rizes [d(0.5)] of three anammox granules were602.8μm (the72nd day),417.3μm (the39th day) and988.5μm (the72nd day), respectively. The forming models of blank-anammox granule, Fe-anammox granule and Fe304-anammox granule were ECP-bonding model, ions-bonding model and ions-bonding model, respectively. The experimental results showed that the optimum ORP of anammox bacteria was205-209mV and QS matter that was produced by anammox bacteria was N-dodecanoyl homoserine lactone. The experimental results showed that Fe3O4-anammox granule was steadier than blank-anammox granule and Fe-anammox granule. The addition of Fe3O4in the reactor was helpful to achieve the quick and steady granulation of anammox bacteria.
引文
[1]国家环境保护部.中国环境公报[M].北京:国家环境保护部,2011.
    [2]高廷耀,顾国维,周琪.水污染控制工程[M].北京:高等教育出版社,2007.
    [3]邹家庆.工业废水处理[M].北京:化学工业出版社,2003.
    [4]郑平,徐向阳,胡宝兰.新兴生物脱氮理论与技术[M].北京:科学出版社,2004.
    [5]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.
    [6]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷工艺评述[J].环境科学,1999,(01):111-113
    [7]郭远凯,黎松强,吴馥萍.改良bardenpho工艺同步脱氮除磷处理小区生活污水[J].水处理技术,2008,(10):57-59.
    [8]Furukawa S., Tokimori K., Hirotsuji J., et al. New operational support system for high nitrogen removal in oxidation ditch process [J]. Water Science and Technology,1998,37(12):63-68.
    [9]Gillot S., Heduit A.. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers [J]. Water Research,2000,34(5):1756-176
    [10]Andreottola G., Foladori, et al. On-line control of a SBR system for nitrogen removal from industrial wastewater [J].2001,43(3):382.
    [11]Cassidy D.P., Belia E.. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Research,2005,39(19):4817-4823.
    [12]Chen H, Liu S, Yang F, et al. The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal [J]. Bioresource Technology, 2009,100(4):1548-1554.
    [13]Wang C-C, Lee P-H, Kumar M., et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant [J]. Journal of Hazardous Materials,2010,175(1-3):622-628.
    [14]Lan C-J, Kumar M, Wang C-C, et al. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor [J]. Bioresource Technology,2011, 102(9):5514-5519.
    [15]Gao D, Peng Y, Li B, et al. Shortcut nitrification-denitrification by real-time control strategies [J]. Bioresource Technology,2009,100(7):2298-2300.
    [16]Zhang Y, Zhou J, Zhang J, et al. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification [J]. Journal of Environmental Sciences,2009, 21(5):568-574.
    [17]Chen Y, Wang Y, Fan M, et al. Preliminary study of shortcut nitrification and denitrification using immobilized of mixed activated sludge and denitrifying sludge [J]. Procedia Environmental Sciences, 2011,11, Part C(0):1171-1176.
    [18]Righi E.. Ampullula, a new acritarch genus from the ordovician (arenig-llanvirn) of land, Sweden [J]. Review of Palaeobotany and Palynology,1991,68(1-2):119-126.
    [19]Tropepi R., Ribecai C.. An unusual process structure in tresarcus, a new acritarch genus from the ordovician of land, Sweden [J]. Review of Palaeobotany and Palynology,2000,111(1-2):103-109.
    [20]Bagnoli G., Ribecai C.. On the biostratigraphic significance of the ordovician acritarch genus liliosphaeridium on land, Sweden [J]. Review of Palaeobotany and Palynology,2001,117(4): 195-215.
    [21]Gali A., Dosta J., van Loosdrecht M.C.M., et al. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process [J]. Process Biochemistry,2007,42(4):715-720.
    [22]Sri Shalini S., Joseph K.. Nitrogen management in landfill leachate: Application of sharon, anammox and combined SHARON-ANAMMOX process [J]. Waste Management,2012,32(12):2385-2400.
    [23]Third K.A., Sliekers A.O., Kuenen J.G., et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria [J]. Systematic and Applied Microbiology,2001,24(4):588-596.
    [24]Nielsen M., Bollmann A., Sliekers O., et al. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a canon reactor [J]. FEMS Microbiology Ecology,2005,51(2): 247-256.
    [25]Liu T, Li D, Zeng H, et al. Distribution and genetic diversity of functional microorganisms in different CANON reactors [J]. Bioresource Technology,2012,123(0):574-580.
    [26]Kalyuzhnyi S., Gladchenko M., Mulder A., et al. New anaerobic process of nitrogen removal [J]. Water Science and Technology,2006,54(8):163-170.
    [27]Kalyuzhnyi S., Gladchenko M., Mulder A., et al. Deamox-new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite [J]. Water Research,2006,40(19):3637-3645.
    [28]Kalyuzhnyi S., Gladchenko M.. Deamox-new microbiological process of nitrogen removal from strong nitrogenous wastewater [J]. Desalination,2009,248(1-3):783-793.
    [29]Mulder A., Van de Graaf, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiology Ecology,1995,16:177-184.
    [30]Strous M., Van Gerven E., Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations [J]. Water Research,1997,31(8):1955-1962.
    [31]van de Graaf, Mulder A., de Bruijn P., et al. Anaerobic oxidation of ammonium is a biologically mediated process [J]. Applied and Environmental Microbiology,1995,61(4):1246-1251.
    [32]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,(02):193-198.
    [33]van de Graaf, De Bruijn P., Robertson L.A., et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor [J]. Microbiology,1997,143(7): 2415-2421.
    [34]Strous M., Pelletier E., Mangenot S., et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J]. Nature,2006,440(7085):790-794.
    [35]Kartal B, Maalcke W.J., de Almeida NM, et al. Molecular mechanism of anaerobic ammonium oxidation [J]. Nature,2011,479(7371):127-130.
    [36]Strous M., Kuenen J.G., Jetten M.S.M.. Key physiology of anaerobic ammonium oxidation [J]. Applied Microbiology and Biotechnology,1999,65:3248-3250.
    [37]Schalk J., de Vries S., Kuenen J.G.. et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation [J]. Biochemistry,2000,39(18):5405-5412.
    [38]Sinninghe Damste J.S., Strous M., Rijpstra W.I.C., et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane [J]. Nature,2002,419(6908):708-712.
    [39]Sinninghe Damste J.S., Rijpstra W.I.C., Geenevasen J.A.J., et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox) [J]. FEBS Journal,2005,272(16):4270-4283.
    [40]Boumann H.A., Hopmans E.G., Van De Leemput I., et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups [J]. FEMS Microbiology Letters,2006,258(2):297-304.
    [41]Jetten M.S.M., Strous M., van de Pas-Schoonen K.T., et al. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews,1998,22(5):421-437.
    [42]Rysgaard S., Glud R. N., et al. Denitrification and anammox activity in arctic marine sediments [J]. Limnology and Oceanography,2004,49(5):1493-1502.
    [43]Van De Vossenberg J, Rattray J.E., Geerts W., et al. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production [J]. Environmental Microbiology, 2008,10(11):3120-3129.
    [44]Strous M., Kuenen J.G., Jetten M.S.M., Key physiology of anaerobic ammonium oxidation [J]. Applied Microbiology and Biotechnology,1999,65:3248-3250.
    [45]Strous M., Heijnen J.J., Kuenen J.G., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [46]Toh S., Ashbolt N., Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater [J]. Applied Microbiology and Biotechnology,2002,59(2-3):344-352.
    [47]Gut L., Plaza E., Trela J., et al. Combined partial nitritation/anammox system for treatment of digester supernatant [J]. Water Science and Technology,2006,53(12):149-159.
    [48]Fernandez I., Dosta J., Fajardo C., et al. Short- and long-term effects of ammonium and nitrite on the anammox process [J]. Journal of Environmental Management,2012,95, Supplement(O):S170-S174.
    [49]Date Y., Isaka K., Ikuta H., et al. Microbial diversity of anammox bacteria enriched from different types of seed sludge in an anaerobic continuous-feeding cultivation reactor [J]. Journal of Bioscience and Bioengineering,2009,107(3):281-286.
    [50]Rich J., Dale O., Song B., et al. Anaerobic ammonium oxidation (anammox) in chesapeake bay sediments [J]. Microbial Ecology,2008,55(2):311-320.
    [51]Hamersley M. R., Lavik G., et al. Anaerobic ammonium oxidation in the peruvian oxygen minimum zone [J]. Limnology and Oceanography,2007,52(3):923-933.
    [52]Kuenen J.G.. Anammox bacteria:From discovery to application [J]. Nature Reviews Microbiology, 2008,6(4):320-326.
    [53]Chamchoi N., Nitisoravut S.. Anammox enrichment from different conventional sludges [J]. Chemosphere,2007,66(11):2225-2232.
    [54]Jetten M., Schmid M., et al. Anammox organisms: Enrichment, cultivation, and environmental analysis. In: JARED R L. Methods in enzymology. Academic Press.2005.34-57
    [55]Strous M., Kuenen J.G., Fuerst J., et al. The anammox case-a new experimental manifesto for microbiological ecophysiology [J]. Antonie van Leeuwenhoek,2002,81(1-4):693-702.
    [56]Kartal B., Van Niftrik L., Rattray J., et al. Candidatus' brocadia fulgida':An autofluorescent anaerobic ammonium oxidizing bacterium [J]. FEMS Microbiology Ecology,2008,63(1):46-55.
    [57]Tsushima I., Ogasawara Y., Kindaichi T., et al. Development of high-rate anaerobic ammonium oxidizing (ANAMMOX) biofilm reactors [J]. Water Research,2007,41(8):1623-1634.
    [58]Quan Z-X, Rhee S-K, Zuo J-E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium oxidizing (ANAMMOX) reactor [J]. Environmental Microbiology,2008, 10(11):3130-3139.
    [59]Kartal B, Strous M., Rattray J. Candidatus "Anammox globus propionicus" A new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic Applied and Microbiology,2007,30(1):39-49.
    [60]Jetten MSM, Sliekers O, Kuypers M, et al. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria [J]. Applied Microbiology and Biotechnology,2003,63(2):107-114.
    [61]Schmid M, Walsh K, Webb R, et al. Candidatus "scalindua brodae", sp. Nov., candidatus "scalindua wagneri", sp. Nov., two new species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology,2003,26(4):529-538.
    [62]Liu S, Yang F, Gong Z, et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal [J]. Bioresource Technology,2008,99(15): 6817-6825.
    [63]van der Star W.R.L., Abma W.R,. Blommers D., et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in rotterdam [J]. Water Research, 2007,41(18):4149-4163.
    [64]AbmaW. R., Schultz, et al. Full-scale granular sludge anammox process.2007,55(8-9):7.
    [65]郭文艳等.采用anammox颗料污泥工艺对酵母废水进行脱氮处理的研究[J].北方环境,2011,(05):134-136.
    [66]Hu Z, Lotti T., Loosdrecht M., et al. Nitrogen removal with the anaerobic ammonium oxidation process [J]. Biotechnology Letters,2013,35(8):1145-1154.
    [67]Clippeleir H, Yan X, Verstraete W, et al. Oland is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times [J]. Applied Microbiology and Biotechnology,2011,90(4): 1537-1545.
    [68]Hendrickx TLG, Wang Y, Kampman C, et al. Autotrophic nitrogen removal from low strength waste water at low temperature [J]. Water Research,2012,46(7):2187-2193.
    [69]APHA. Standard methods for the examination of water and wastewater[M]. USA: United Book Press. 1998.
    [70]Fromm J, Rockel B, Lautner S, et al. Lignin distribution in wood cell walls determined by tern and backscattered SEM techniques [J]. Journal of Structural Biology,2003,143(1):77-84.
    [71]Bai R, Wan L, Li H, et al. Identify the injury implements by SEM/EDX and ICP-AES [J]. Forensic Science International,2007,166(1):8-13.
    [72]Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation [J]. Systematic and Applied Microbiology,2000, 23(1):93-106.
    [73]Daims, H., Bruhl, et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set [J]. Systematic and Applied Microbiology,1999,22:434-444.
    [74]Neef, A. A, R.I., et al. Monitoring a widespread bacterial group: In situ detection of planctomycetes with 16S rRNA-targeted probes. [J]. Microbiology,1998,144:3257-3266.
    [75]Pathak B.K., Kazama F., Saiki Y., et al. Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors [J]. Bioresource Technology,2007,98(11):2201-2206.
    [76]Mobarry B.K., Wagner M., Urbain V., et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [J]. Applied and Environmental Microbiology,1996,62(6): 2156-2162.
    [77]Crocetti G, Murto M, Bjornsson L. An update and optimisation of oligonucleotide probes targeting methanogenic archaea for use in fluorescence in situ hybridisation (FISH) [J]. Journal of Microbiological Methods,2006,65(1):194-201.
    [78]Amann R.I., Krumholz L., Stahl D.A.. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. Journal of Bacteriology, 1990,172(2):762-770.
    [79]Amann R, Ludwig W, Schulze R, et al. RNA-targeted oligonucleotide probes for the identification of genuine and former pseudomonads [J]. Systematic and Applied Microbiology,1996,19(4):501-509.
    [80]Serrano D, Suarez S, Lema J.M., et al. Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor [J]. Water Research,2011,45(16): 5323-5333.
    [81]Ahn J.H., Kim Y.J., Kim T., et al. Quantitative improvement of 16S rRNA DGGE analysis for soil bacterial community using real-time PCR [J]. Journal of Microbiological Methods,2009,78(2): 216-222.
    [82]Arcuri E.F., Sheikha A.F., Rychlik T, et al. Determination of cheese origin by using 16S rRNA fingerprinting of bacteria communities by PCR-DGGE:Preliminary application to traditional minas cheese [J]. Food Control,2013,30(1):1-6.
    [83]Gurtner C, Heyrman J, Pinar G, et al. Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rRNA sequence analysis [J]. International Biodeterioration & Biodegradation,2000,46(3):229-239.
    [84]Lyautey E, Lacoste B, Ten-Hage L, et al. Analysis of bacterial diversity in river biofilms using 16S rRNA PCR-DGGE: Methodological settings and fingerprints interpretation [J]. Water Research,2005, 39(2-3):380-388.
    [85]Wang H-F, Zhu W-Y, Yao W, et al. DGGE and 16S rRNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice [J]. Anaerobe,2007,13(3-4): 127-133.
    [86]Li H, Zhang Y, Li D-S, et al. Comparisons of different hypervariable regions of rrs genes for fingerprinting of microbial communities in paddy soils [J]. Soil Biology and Biochemistry,2009, 41(5):954-968.
    [87]Ndon U.J., Dague R.R.. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater [J]. Water Research,1997,31(10):2455-2466.
    [88]Debik E, Coskun T. Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling [J]. Bioresource Technology,2009,100(11): 2777-2782.
    [89]Grau P, Dohanyos M, Chudoba J. Kinetics of multicomponent substrate removal by activated sludge [J]. Water Research,1975,9(7):637-642.
    [90]Isik M, Sponza DT. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater [J]. Process Biochemistry,2005,40(3-4):1189-1198.
    [91]Ozturk Ⅰ, Altinbas M, Koyuncu Ⅰ, et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates [J]. Waste Management,2003,23(5):441-446.
    [92]Jin R C, Zheng P. Kinetics of nitrogen removal in high rate anammox upflow filter [J]. Journal of Hazardous Materials,2009,170(2-3):652-656.
    [93]Yu H, Wilson F, Tay J-H. Kinetic analysis of an anaerobic filter treating soybean wastewater [J]. Water Research,1998,32(11):3341-3352.
    [94]Buyukkamaci N, Filibeli A. Determination of kinetic constants of an anaerobic hybrid reactor [J]. Process Biochemistry,2002,38(1):73-79.
    [95]Bhunia P, Ghangrekar M.M.. Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors [J]. Bioresource Technology,2008,99(7): 2132-2140.
    [96]Cheong D.Y., Hansen C.L.. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions [J]. Bioresource Technology,2008,99(11):5058-5068.
    [97]Pavlostathis S.G., Giraldo-Gomez E.. Kinetics of anaerobic treatment:A critical review [J]. Critical Reviews in Environmental Control,1991,21(5-6):411-490.
    [98]Versyck K.J., Claes J.E., Van Impe J.F.. Practical identification of unstructured growth kinetics by application of optimal experimental design [J]. Biotechnology Progress,1997,13(5):524-531.
    [99]Bipin K., P. F. Kazama, Y. Tanaka, et al. Quantification of anammox populations enriched in an immobilized microbial consortium with low levels of ammonium nitrogen and at low temperature [J]. Applied Microbiology and Biotechnology,2007,76:1173-1179.
    [100]Chamchoi N, Nitisoravut S, Schmidt JE. Inactivation of anammox communities under concurrent operation of anaerobic ammonium oxidation (anammox) and denitrification [J]. Bioresource Technology,2008,99(9):3331-3336.
    [101]Cema G., Wiszniowski J., Zabczynski S., et al. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC) [J]. Water Science and Technology,2007,55(8-9):35-42.
    [102]Sabumon P.C.. Anaerobic ammonia removal in presence of organic matter:A novel route [J]. Journal of Hazardous Materials,2007,149(1):49-59.
    [103]Kumar M, Lin J-G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—strategies and issues [J]. Journal of Hazardous Materials,2010,178(1-3):1-9.
    [104]Lee K-C, Rittmann B.E., Effects of ph and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor [J]. Water Research,2003.37(7):1551-1556.
    [105]Van Hulle S.W.H., Vandeweyer H.J.P., Meesschaert B.D., et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams [J]. Chemical Engineering Journal,2010,162(1):1-20.
    [106]Fu Z, Yang F, An Y, et al. Characteristics of nitrite and nitrate in situ denitrification in landfill bioreactors [J]. Bioresource Technology,2009,100(12):3015-3021.
    [107]Li Z, Ma Y, Hira D, et al. Factors affecting the treatment of reject water by the anammox process [J]. Bioresource Technology,2011,102(10):5702-5708.
    [108]Molinuevo B., Garcia M.C., Karakashev D., et al. Anammox for ammonia removal from pig manure effluents:Effect of organic matter content on process performance [J]. Bioresource Technology, 2009,100(7):2171-2175.
    [109]Dosta J., Fernandez I., Vazquez-Padin J.R., et al. Short- and long-term effects of temperature on the anammox process [J]. Journal of Hazardous Materials,2008,154(1-3):688-693.
    [110]Hartig E., Zumft W.G.. Kinetics of nirs expression (cytochrome cdl nitrite reductase) in pseudomonas stutzeri during the transition from aerobic respiration to denitrification:Evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system [J]. Journal of Bacteriology, 1999,181(1):161-166.
    [111]Mahne I., Princic A., Megusar F. Nitrification/denitrification in nitrogen high strength liquid wastes [J]. Water Research,1996,30(6):2107-2111.
    [112]Jetten M., Wagner M., Fuerst J., et al. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process [J]. Current Opinion in Biotechnology,2001,12(3):283-288.
    [113]Kaksonen A.H., Plumb J.J., Franzmann P.D., et al. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater [J]. FEMS Microbiology Ecology,2004,47(3):279-289.
    [114]Liu J, Wu W, Chen C, et al. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems [J]. Applied Microbiology and Biotechnology,2011,91(6):1659-1675.
    [115]Schwarz J.I.K., Lueders T., Eckert W., et al. Identification of acetate-utilizing bacteria and archaea in methanogenic profundal sediments of lake kinneret (israel) by stable isotope probing of rRNA [J]. Environmental Microbiology,2007,9(1):223-237.
    [116]Riviere D, Desvignes V, Pelletier E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge [J]. ISME Journal,2009,3(6):700-714.
    [117]Yasir M, Aslam Z, Kim S.W., et al. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity [J]. Bioresource Technology,2009,100(19):4396-4403.
    [118]Stephanie A., Eichorst, Cheryl R. Kuske, et al. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum acidobacteria [J]. Applied Environmental Microbiology,2011, 77(2):586-596.
    [119]Sanchez-Melsio A., Caliz J., Balaguer M.D., et al. Development of batch-culture enrichment coupled to molecular detection for screening of natural and man-made environments in search of anammox bacteria for N-removal bioreactors systems [J]. Chemosphere,2009,75(2):169-179.
    [120]Gregersen L.H., Habicht K.S., Peduzzi S., et al. Dominance of a clonal green sulfur bacterial population in a stratified lake [J]. FEMS Microbiology Ecology,2009,70(1):30-41.
    [121]Bae H., Chung Y.C., Jung J.Y.. Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process [J]. Water Science and Technology, 2010,61 (11):2723-2732.
    [122]Park H., Rosenthal A., Ramalingam K., et al. Linking community profiles, gene expression and N-removal in anammox bioreactors treating municipal anaerobic digestion reject water [J]. Environmental Science and Technology,2010,44(16):6110-6116.
    [123]Gao F, Zhang H, Yang F, et al. The contrast study of anammox-denitrifying system in two non-woven fixed-bed bioreactors (NFBR) treating different low C/N ratio sewage [J]. Bioresource Technology,2012,114(0):54-61.
    [124]Liao D, Li X, Yang Q, et al. Enrichment and granulation of anammox biomass started up with methanogenic granular sludge [J]. World Journal of Microbiology and Biotechnology,2007,23(7): 1015-1020.
    [125]Tang C-j, Zheng P, Mahmood Q. The shear force amendments on the slugging behavior of upflow anammox granular sludge bed reactor [J]. Separation and Purification Technology,2009,69(3): 262-268.
    [126]Fernandez I., Vazquez-Padin J.R., Mosquera-Corral A., et al. Biofilm and granular systems to improve anammox biomass retention [J]. Biochemical Engineering Journal,2008,42(3):308-313.
    [127]Jung, J.Y., Kang, et al. Factors affecting the activity ofanammox bacteria during start up in the continuous culture reactor [J]. Water Science and Technology,2007,55(1):459-468.
    [128]Cho S, Takahashi Y., Fujii N., et al. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor [J]. Chemosphere,2010,78(9): 1129-1135.
    [129]Yang Z, Zhou S, Sun Y. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor [J]. Journal of Hazardous Materials,2009,169(1-3):113-118.
    [130]van Niftrik L., Geerts W.J.C., van Donselaar E.G., et al. Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria [J]. Journal of Structural Biology,2008,161(3):401-410.
    [131]Zhang J, Zhang Y, Li Y, et al. Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode [J]. Bioresource Technology,2012,114(0):102-108.
    [132]Liu S, Horn H. Effects of Fe(Ⅱ) and Fe(Ⅲ) on the single-stage deammonification process treating high-strength reject water from sludge dewatering [J]. Bioresource Technology,2012,114(0):12-19.
    [133]张蕾,郑平,胡安辉.铁离子对厌氧氨氧化反应器性能的影响[J].环境科学学报,2009,29(8):1629-1634.
    [134]Ruby C, Upadhyay C, Gehin A, et al. In situ redox flexibility of Fe Ⅱ-Ⅲ oxyhydroxycarbonate green rust and fougerite [J]. Environmental Science and Technology,2006,40(15):4696-4702.
    [135]Clippeleir H, Defoirdt T, Vanhaecke L, et al. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm [J]. Applied Microbiology and Biotechnology,2011,90(4):1511-1519.
    [136]Dapena-Mora A, Campos J.L., Mosquera-Corral A., et al. Stability of the anammox process in a Gas-lift reactor and a SBR [J]. Journal of Biotechnology,2004,110(2):159-170.
    [137]Lackner S., Horn H.. Evaluating operation strategies and process stability of a single stage nitritation-anammox sbr by use of the oxidation-reduction potential (ORP) [J]. Bioresource Technology,2012,107(0):70-77.
    [138]Chen K-C, Chen C-Y, Peng J-W, et al. Real-time control of an immobilized-cell reactor for wastewater treatment using ORP [J]. Water Research,2002,36(1):230-238.
    [139]Zhou W, Imai T, Ukita M, et al. Triggering forces for anaerobic granulation in UASB reactors [J]. Process Biochemistry,2006,41(1):36-43.
    [140]Schmidt J.E.E., Ahring B.K.. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors [J]. Applied Microbiology and Biotechnology,1994, 42(2-3):457-462.
    [141]Yu Q. H, Fang H.H.P., et al. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors.2000,41(12):272.
    [142]袁俊生,杨磊.改性斜发沸石在Na+-Ca2+-Mg2+和NH4+-Ca2+-Mg2+水溶液体系中的离子交换平衡[J].过程工程学报,2010,(02):287-291.
    [143]Boyer M, Wisniewski-Dye F. Cell-cell signalling in bacteria: Not simply a matter of quorum [J]. FEMS Microbiology Ecology,2009,70(1):1-19.
    [144]Gera C., Srivastava S. Quorum-sensing: The phenomenon of microbial communication [J]. Current S cience,2006,90:666-676.
    [145]Frommberger M, Schmitt-Kopplin P, Ping G, et al. A simple and robust set-up for on-column sample preconcentration-nano-liquid chromatography-electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones [J]. Analytical and Bioanalytical Chemistry,2004,378(4): 1014-1020.
    [146]Fuqua C, Parsek M.R., Greenberg E.P.. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing [J]. Annual Review of Genetics,2001,35(1):439-468.
    [147]Hense B.A., Kuttler C., Muller J., et al. Does efficiency sensing unify diffusion and quorum sensing? [J]. Nature Reviews Microbiology,2007,5(3):230-239..
    [148]Redfield R.J.. Is quorum sensing a side effect of diffusion sensing? [J]. Trends in Microbiology, 2002,10(8):365-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700