用户名: 密码: 验证码:
气水比对膜生物反应器运行特性及碳足迹的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随膜生物反应器(Membrane Bioreactor, MBR)技术的工程化应用,膜污染始终是困扰其效率和经济性的关键问题。作为缓解膜污染的常用措施之一,超量曝气不仅直接影响MBR中的污泥粒径、相对疏水性、SVI等污泥性质,从而影响污泥的后续脱水,而且还与MBR工艺的能耗及其碳足迹息息相关。针对目前MBR工艺中膜污染防治高度依赖超量曝气,缺乏行之有效的低能耗膜污染防治措施等问题,揉合碳足迹理念,以节能减碳为引导,开展MBR工艺气水比对污染物去除效果、污泥性质及膜污染的影响研究,并对其碳足迹进行初步核算,将引领我国污水回用领域实现由单纯的水质达标向低碳低能耗的升级跨越。本文以处理模拟生活废水的MBR为研究体系,系统考察了气水比对MBR运行特性及碳足迹的影响,主要研究内容及结果如下:
     (1)气水比对MBR处理效果的影响研究。气水比对COD去除影响很小,去除率始终维持在90%以上,一方面由于降解有机物的异养菌受溶解氧浓度影响较小,另一方面,膜将部分大分子有机物截留在反应器中,使得出水COD基本稳定。气水比对氮的去除影响较大,氨氮的去除率随着气水比的提高而增加,总氮的去除率在溶解氧浓度0.8 mg·L~(-1)时最高。不同气水比条件下总磷的去除率均不高。提高气水比可缓解膜污染。
     (2)气水比对MBR中EPS含量及其分布的影响研究。随气水比升高,反应器上清液及污泥中的LB-EPS含量均降低,但污泥总EPS含量变化不大。上清液中EPS及污泥中EPS均以多糖为主。与反应器中EPS组成及含量的变化规律不同,随气水比升高,膜污染层中溶解态及总EPS含量均升高,其组成均以蛋白质为主,气水比为75:1时,膜面污染层溶解态EPS中蛋白质与多糖的比值在1.1-2.0之间,总EPS中蛋白质与多糖的比值在1.0-1.8之间。
     (3)气水比对MBR中污泥性质的影响研究。气水比对污泥浓度的影响不大,而随气水比增大,污泥MLVSS/MLSS比值从0.83增加到0.88,反应器中溶解氧也有所升高,污泥脱氢酶活性和比耗氧速率随之上升,污泥活性良好,同时,污泥Zeta电位呈现上升趋势,由-38.5 mV上升到-32.1 mV,污泥平均体积粒径则从60μm增大到120μm,污泥Zeta电位与膜污染呈现出良好的负相关性。
     (4)气水比对MBR碳足迹的影响初探。碳足迹初步计算结果表明,随气水比增加,MBR体系处理模拟生活污水的碳足迹随之增加,主要来自不同曝气强度下电耗的CO2排放量,气水比为45:1时,碳足迹最小,为4.67 g·gCOD~(-10。
With the application of membrane bioreactor (MBR), membrane fouling is always the key issue puzzling its efficiency and cost. As one of the measures in alleviating membrane fouling, the air/water ratio, which had a close relationship with membrane fouling and subsequent dehydration of sludge, had important impact on properties of mixed liquor, such as relative hydrophobicity, SVI, Zeta potential, the content of extracellular polymeric substances (EPS) and its composition. Moreover, it was closely related to the energy consumption and carbon footprint. Combined with the concept of carbon footprint, the effect of air/water ratio on pollutant removal, sludge characteristics and membrane fouling in MBR system was investigated and its carbon emissions were preliminary calculated in this study. The main contents and results were summarized as follows:
     Firstly, the effect of air/water ratio on effluent quality of MBR was investigated. The air/water ratio had little impact on COD removal (more than 90%) due to the degradation of organic matters by heterotrophic bacteria. On the other hand, the membrane cutoff would keep most large organic molecules in MBR so that the effluent COD kept stable. Ammonia removal increased with aeration intensity increased, and the removal rate of TN in the dissolved oxygen concentration of 0.8 mg·L-1 was the highest. With the increase of air/water ratio, TP removal was not high. The higher air/water ratio could alleviate membrane fouling.
     Secondly, EPS content and its distribution under different air/water ratio was studied. The results showed that, with the air/water ratio increased, LB-EPS contents in the supernatant and sludge were decreased, but the total EPS content changed little. Both EPS in sludge and supernatant were mainly composed of polysaccharides. In addition, the dissolved and total EPS contents in the membrane fouling layer increased, and proteins were dominative. When the air/water ratio was 75:1, the ratio of proteins and polysaccharides in dissolved EPS in the membrane fouling layer was between 1.1-2.0, and the ratio of proteins and polysaccharides in total EPS was between 1.0-1.8.
     Thirdly, the effect of air/water ratio on the properties of MBR sludge was investigated. Air/water ratio had little effect on the sludge concentration. However, with the air/water ratio increased, MLVSS/MLSS ratio increased from 0.83 to 0.88. In addition, the dehydrogenase activity and SOUR of sludge also increased. The sludge Zeta potential showed upward trend, rising from -38.5 mV to -32.1 mV, the sludge volume particle size in average increased from 60μm to 120μm. Zeta potential of sludge and membrane fouling showed a good negative correlation with air/water ratio.
     Finally, the carbon footprints of MBR system treating simulated municipal wastewater under different air/water ratio were primarily calculated in this study. The preliminary results showed that the carbon footprint increased with the increase in air/water ratio of MBR system, and CO2 emissions were mainly from the energy consumption. When the air/water ratio of MBR was 45: 1, there was the smallest carbon footprint, which was 4.67 g·gCOD-1.
引文
[1] Smith C V, DiGregorio D, Talcott R M. The use of ultrafiltration membrane for activated sludge separation [J]. Proceeding of the 24th industrial waste conference. Purdue University,Lafayette,Indiana, USA, 1969, 24(6): 1300-1310.
    [2] Yamamoto K. Hinsa M. Direct Solid-Liquid Separation Using Hollow Fiber Membrane in a Activated Sludge Aeration rank [J]. Wat. Sci. Tech. 1989. 21(4): 43-51.
    [3] W. Yang, N. Cicek, et al, State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America [J], J. Membr. Sci., 2006, 270(1): 201-211.
    [4]王雪梅,刘燕,华志浩.SMBR不同特性膜处理城市内河道水对比试验研究[J].环境化学, 2006,25(1):61-64.
    [5]刘阳,张捍民,夏杰.气水比对活性污泥性质和膜污染的影响[J].中国科技论文在线, 2008,3(5):314-319.
    [6] Dcvereux N, Hoare M. Membrane separation of protein precipitates: studies with cross flow in hollow fibers[J]. Biotechnology and Bioengineering, 1986, 28(3):422-430.
    [7]张传义,王勇,黄霞等.一体式膜生物反应器经济曝气量的试验研究[J].膜科学与技术. 2004, 24(5):11-15.
    [8]杨小丽,王世和.污泥浓度与气水比对MBR运行的综合影响[J].中国给水排水.2007, 23(l):77-80.
    [9] Chang IS,Kim S N. Wastewater treatment using membrane filtration effect of biosolids concentration on cake resistance [J]. Process Biochemistry, 2005, 40(3):1307-1314.
    [10] Wang Y, Dao, et a1. Characterization of floc size strength and structure in various aluminum coagulants treatment [J]. Journal of Colloid and Interface Science, 2009, 332(2): 354-359.
    [11] Fangang Meng, et al. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors [J], Separation and Purification Technology 2006, 51(1) : 95–103.
    [12] Lee, J, Ahn, W Y, and Lee C-H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 2001, 35(10): 2435-2445.
    [13] Chang, IS. and Lee C-H. Membrane filtration characteristics in membrane-coupled activated sludge system the effect of Physiological states of activated sludge on membrane fouling [J]. Desalination, 1998, 120(3): 221-233.
    [14] Chang I S. Kim SN. Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistances [J]. Process Biochem 2005, 40(3):1307-1314.
    [15]赵军,徐高田,哲,等.胞外聚合物EPS组成及对污泥特性的影响研究[J].安全与环境工程,2008,l5(1):66-73.
    [16]张连凯.平板膜MBR处理生活污水试验研究[J].环境科学与技术.2010,33(12):32-35.
    [17]张传义,张雁秋.MBR-厌氧/缺氧交替工艺处理生活废水的试验研究[J].中国矿业大学学报.2007,36(3):347-350.
    [18]国家环境保护局,GB 11914-89.水质化学需氧量的测定重铬酸盐法[S].北京:中国标准出版社,1991.
    [19]国家环境保护局,GB 7480-87.水质硝酸盐氮的测定酚二磺酸分光光度法[S].北京:中国标准出版社,1987.
    [20]国家环境保护局,GB 11894-89.水质总氮的测定过硫酸钾消解紫外分光光度法[S].北京:中国标准出版社,1989.
    [21]国家环境保护局,GB 11893-89.水质总磷的测定钼酸盐分光光度法[S].北京:中国标准出版社,1989.
    [22]马悦,朱贻华,赵冬玲,等.利用Berthelot颜色法测定发酵液中铵离子的干扰排除[J].华东理工大学学报(自然科学版),2006,32(3):282-284.
    [23]李红瑛,陈卫.A/O MBR处理低浓度生活污水的试验研究[J].中国给水排水.2007, 23(3):96-98.
    [24]黄志金,黄光团.溶解氧对膜生物反应器处理高氨氮废水的影响[J].2010,33(1): 138-145.
    [25]邹联沛,刘旭东,王宝贞,等.MBR中影响同步硝化反硝化的生态因子[J].环境科学. 2001,22(7):51-55.
    [26]李绍峰,崔崇威等.DO和HRT对MBR同步硝化反硝化影响研究[J].哈尔滨工业大学学报.2007,39(6):887-890.
    [27] S-H Yoon, H-S Kim, and J.-K. Park et al. Influence of important operational parameters on performance of a membrane biological reactor [J]. Wat .Sci. Technol. 2000, 41 (10 - 11): 235– 242.
    [28] Buisson H, Cote P, Praderie M, et al. The use of immersed membranes for upgrading wastewater treatment plants [J]. Water science and technology, 1998, 37 (9): 89-95.
    [29]张传义,袁丽梅,张雁秋.气水比对膜污染的影响[J].环境污染与防治,2005,27(8): 580-582.
    [30] Tardieu E, Grasmick A, Geaugey V, et al. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment [J]. Journal of membrane science, 1998, 147(1): 1-12.
    [31]罗曦,雷中方,张振亚.好氧-厌氧污泥胞外聚合物(EPS)的提取方法研究[J].环境科学学报,2005,25(12):1624-1629.
    [32]陈宏宇,孙宝盛,张海丰.膜生物反应器中溶解性微生物产物对膜污染的影响[J].水处理技术,2008,34(7):16-18.
    [33]吴金玲,黄霞.膜生物反应器混合液性质对膜污染影响的研究进展[J].环境污染治理技术与设备,2006,7(2):16-24.
    [34]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J].中国安全科学学报,2003,13(9):31-34.
    [35]王雪梅,刘燕,华志浩,等.胞外聚合物对浸没式膜-生物反应器膜过滤性能的影响[J].环境科学学报,2005,25(12):1602-1607.
    [36]李绍峰,王宏杰.EPS与MBR中污泥活性关系研究[J].2007,(12):59-61.
    [37]顿咪娜,胡文容,裴海燕,等.脱氢酶活性检测方法及应用[J].工业水处理,2008,28(10): 1-4.
    [38] Association A P H, Association A W W, Federation W P C, et al. Standard methods for the examination of water and wastewater [S]. American Public Health Association. 1912.
    [39] Wilen B M, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Research, 2003, 37(9): 2127-2139.
    [40] Chinese N. Water and wastewater monitoring methods [S]. Chinese Environmental Science Publishing House, Beijing, 1997: 354.
    [41] Molina-Munoz M, Poyatos, J, Vílchez, R, Hontoria, E, Rodelas, et al. Effect of the concentration of suspended solids on the enzymatic activities and biodiversity of a submerged membrane bioreactor for aerobic treatment of domestic wastewater [J]. Applied microbiology and biotechnology. 2007, 73(6): 1441-1451.
    [42] Rosenberger S, Krüger U, Witzigb R, et al. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water [J]. Water Research, 2002, 36(2): 413-420.
    [43] Burgess, J E, Pletschke, B I. Hydrolytic enzymes in sewage sludge treatment: A mini-review [J]. Water SA 2008, 34(3): 343-349.
    [44]朱小彪,许春华,高宝玉,等.曝气生物滤池生物量和生物活性的试验研究[J].环境科学学报,2007,27(7):1135-1140.
    [45]贺电,王峰.活性污泥活性的检测方法简述[J].科技信息,2010,1(1): 381-382.
    [46] Wen H, Lee D. Strength of cationic polymer-flocculated clay flocs [J]. Adv. Environ. Res, 1998(2): 390-396.
    [47] Dangcong P, Bernet N, Delgenes J P, et al. Aerobic granular sludge--a case report [J]. Water Research, 1999, 33(3): 890-893.
    [48] Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Research, 2002, 36(7): 1653-1661.
    [49]赵军,徐高田等.胞外聚合物EPS组成及对污泥特性的影响研究[J].2008,15(15):66-73.
    [50]顾平.中空膜生物床处理生活污水的中试研究[J].中国给水排水,2000,16(3):5-8.
    [51] Rosso D, Stenstrom M K. The carbon-sequestration potential of municipal wastewater treatment [J]. Chemosphere, 2008, 70(8): 1468-1475.
    [52] Alvarez-Hornos F, Volckaert D, Heynderickx P, et al. Performance of a composite membrane bioreactor for the removal of ethyl acetate from waste air [J]. Bioresource technology, 2011, 102(19): 8893-8898.
    [53] Monteith H D, Sahely H R, MacLean H L, et al. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants [J]. Water environment research, 2005, 77(4): 390-403.
    [54] Rosso D, Stenstrom M K. The carbon-sequestration potential of municipal wastewater treatment [J]. Chemosphere, 2008, 70(8): 1468-1475.
    [55]袁懋.典型水体有机污染物指示指标的研究[D]:[博士学位论文].吉林:吉林大学环境科学专业, 2008
    [56] Gori R, Jiang L M, Sobhani R, et al. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes [J]. Water Research: 2011 45(18): 5858-5872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700