用户名: 密码: 验证码:
有机高分子—无机纳米复合粒子改性高分子材料的力学性能—相态与群子标度之间关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料是纳米科技中最为活跃、最接近应用的重要组成部分。
     纳米技术是80年代末诞生并正在蓬勃发展的一种高新技术,主要是研究由尺寸在1~100nm之间的物质组成的体系。当粒子尺寸进入纳米量级时,其本身就具有一些常规粒子所没有的奇特的效应,如小尺寸效应、表面效应等,因而展现出许多特有的性质,成为探索和制备高性能和多功能复合材料的重要途径。随着纳米科技的发展,纳米复合材料正在崭露头角。
     纳米复合材料是指材料显微结构中至少有一相的一维尺度达到纳米级的材料。无机纳米粒子一有机高分子材料的复合体系是目前研究最多的体系,也是最有应用潜力的体系。无机纳米粒子一有机高分子材料的复合体系是集无机、有机和纳米材料的特点于一身,因此具有许多优良的性能。同时,可以通过两相的优化组合来剪裁其物理性能,合成出不同用途的复合材料。
     纳米粒子粒径小,表面能大,且粒子表面的原子价健处于不饱和
    
    北京化工大学博士学位论文
    状态,表面原子有极大的物理与化学活性,因此纳米粒子非常易于团
    聚和吸附,而使得其拥有的性能难以充分发挥,从而失去应有的对高
    分子材料的改性作用。另外,纳米粒子往往是亲水疏油的,呈强极性,
    在有机介质中难以均匀分散。因此,纳米材料的应用功效主要取决于
    纳米粉体材料的表面分子设计(即与基体材料的相容性问题)及其在
    基体材料中的分散度,也就是如何将纳米粒子以纳米尺度分散于高分
    子基体中。
     因此,要制备有纳米无机粒子改性的功能材料,首先需要对纳米
    无机粒子进行表面处理和改性,其应用开发的难度也在于此。本文采
    用原位聚合法较好地解决了这一问题。
     碳酸钙因具有材料来源易得、价格较低、毒性低、污染小、白度
    较高、填充量大及混炼加工性能好等特点而成为塑料工业中应用最广
    泛的无机填料之一。日本早在四、五十年代就率先将纳米级碳酸钙投
    入工业化生产。随着高新材料的开发和应用,纳米级碳酸钙有着很大
    的应用价值。
     本文采用超重力场法制备的纳米级碳酸钙新鲜浆液,经透射电子
    显微镜(TEM)测试,碳酸钙粒子尺寸在20一60纳米之间。
     本文研究了在纳米碳酸钙原生粒子存在下,进行的丙烯酸酷类的
    原位乳液聚合实验。通过实验,制备出以纳米碳酸钙为核、丙烯酸酷
    类为壳的核一壳型复合材料(纳米复合ACR)。通过X射线光电子能
    谱(ESCA)、热失重分析(TGA)、动态扫描量热分析(DSC)、透射
    电子显微镜(TEM)等手段,证实在纳米碳酸钙原生粒子存在下,
    可以进行丙烯酸酷类的原位乳液聚合,乳液聚合顺利,纳米碳酸钙表
    面被丙烯酸酷类聚合物所包覆,使纳米碳酸钙粒子间的团聚不易发
    生,同时由于丙烯酸酷类聚合物与PVC、ABS、AS等极性聚合物具
    有较好的相容性,从而使纳米碳酸钙在聚合物基体中能达到纳米状态
    分散,从而发挥纳米效应。
    
    北京化工大学博士学位论文
     本文同时研究了纳米复合ACR对PVC、ABS、AS体系的改性
    效果,以及纳米粒子与CPE对RPVC的协同改性效果。实验结果表
    明,采用自制的纳米复合ACR对这些体系进行改性,具有增强增韧
    效果,特别是纳米复合ACR与CPE对RPVC的复合改性体系中,其
    增强增韧效果更为显著。实验结果表明,纳米复合ACR与CPE产生
    了协同作用。通过扫描电镜显示,在此复合改性体系中,冲击断面结
    构出现了拉丝及网化结构,正是由于这种拉丝一网化的超大变形,吸
    收了大量的冲击能量,使得复合材料的冲击韧性得以大幅度提高,同
    样的研究结果在前人的工作中尚未见到报道。
     本文在对一系列增韧、增强RPVC体系研究的基础上,首次运
    用第四统计力学一JRG群子统计理论对聚合物改性材料的破坏行为
    进行了分析。以群子模型为基础,通过大量的实验数据,得到了力学
    性能与群子参数Rl、RZ、inRI、hiRI·R:之间的关系。群子理论能较
    好地拟合改性体系的粒度积分分布。群子标度InR,·R:与低温缺口
    冲击强度、拉伸强度及InRI与弯曲强度均具有较好的线性相关性。
    通过以上实验结果验证了群子理论的合理性。
On the hopeful 21st century, the rapid development of information, biotechnology, energy resources, environment, advanced manufacturing technology and national defense have produced the new demand for materials. More and more small size of materials will meet the demand of miniatured, intelligent, highly integrated, densely memorized and super fast transmission element. Aerospace industry, up-to-date military equipment, advanced manufactured technology and so on has required better and better properties. The innovations of new materials and new technology will become the most influentially strategic research field of society development, economic promote and national power enhance in the future 10 years, and nanometer material will become to be one of the most important materials. Nanometer material is the most dynamic and practiced component of nano-technology.
    Nano-technology is a kind of vigorously growing high technology turned up in late 80s and mainly studies the system composed by substance dimensioned from 1 to 100 nanometer. Only when the dimension of particle is up to nano-scale, appear the uncommon effects such as small dimension effect, surface effect and so on which not appear in common particles. So, this kind of particles has many characteristic properties and become important way to explore and prepare highly performance and multifunctional composite materials. Following the development of nano-technology, nano-scale composite is standing out conspicuously.
    Nano-scale composite materials usually refer to the kind of materials in which microstructure there is at least one dimension scale of one phase up to nano-scale. Now,
    
    
    
    composite system composed by inorganic nano-particle and organic polymer is largely being studied and is becoming the most applied potential system. This kind of system has many excellent performances for gathering characters of inorganism, organism and nanometer material. At the same time, its physical properties can be obtained by optimally assembling two phases to produce composite materials for different uses.
    The diameter of nano-particle is small and its surface energy is high. Atomic valence bond of particle surface is not saturation and surface atoms have extremely physical and chemical activity. So, nano-particle is apt to agglomerate to make difficult to bring its excellent properties to completely play and to modify polymer. Meanwhile, nano-particle is usually hydrophilic and oil-phobic and is strongly polar, so, it is difficult to even disperse into organic media. The applied effect of nanometer material mainly depend on surface molecule design of nano-powder material and its dispersion degree in matrix, i.e., how to disperse nano-particles into polymer matrix on nano-scale level.
    Thus, at first, it is essential to treat and modify the surface of inorganic nano-particle, which is the difficulty of its applied development. But, in the paper, in-situ polymerization can fairly settle this problem.
    Calcium carbonate has become one of the most widespreadly applied inorganic filler for its easy obtain, lower price, low toxicity, light pollution, better whiteness, largely filled amount and good processability. In Japan, the industrializational production of nano-scale calcium carbonate had become to be realized in the 40s. Following the development and application of new materials, nano-scale calcium carbonate has much highly applied value.
    In the paper, the fresh slush pulp of nano-scale calcium carbonate prepared by super-weighing force field method was used, and the dimension of calcium carbonate particle is up to from 20 to 60 nanometer tested by transmission electronmicroscopy (i.e., TEM).
    On the exist of original particles of nano-scale calcium carbonate, the emulsion polymerization in situ of acrylate monomers has been reached in the present work. So, a novel composite (i.e., nano-composite ACR) with the core-shell structure, in which the nano-particle of calcium carbonate is as the core and the copolymer of acrylate is as the shell, has been prepared. By the te
引文
[1]Feynman, R.E, Science, 1991, 254, 29, 1300
    [2]张立德,纳米材料,第一版,北京,化学工业出版社,2000,2
    [3]Kobo, R., Electronic properties of metallic fine particles 1, J. of the Phys. Sco.of Japan, 1962,17(5), 975~986
    [4]曹珍元,纳米材料的化工应用与开发,化工新型材料,2000,11,4
    [5]Halperin, W.E, Quantum size effects in metal particles, Rev. of Modem.Phys., 1986,58(3), 533~605
    [6]Herr, U., Gleiter, H., Trans. Jpn. Inst. Metal. Suppl., 1986, 27, 43
    [7]Kroto, H.W., et al, Nature, 1985, 318, 162
    [8]严东尘,无机材料学报,1995,3(1),1
    
    
    [9]奇云,纳米化学研究进展,现代化工,1993,8,38
    [10]Eigler, D.M., Schweizer, E.K., Nature, 1990, 344, 524
    [11]Hosoki, S., Hosaka, S., Hasegawa, T., Appl. Surf. Sci., 1992, 60, 643
    [12]白春礼,材料表、界面研究的新技术:化学所STM/AFM研究进展,92秋季中国材料研讨会论文集,广州,中国材料研究学会,1992,13~15
    [13]Andrievski, R.A., Mater. Sci., 1994, 29, 614
    [14]张志焜,崔作林,纳米技术与纳米材料,第一版,北京,国防工业出版社,2000,45
    [15]Cavicchi, R.E., Silsbee, R.H., Phys. Rew. Lett., 1984, 52, 1453
    [16]Ball, R, Garwin, L., Nature, 1992, 355,761
    [17]Kubo, R., J. Phys. Soc. Jpn., 1966, 21, 1765
    [18]周震,王现有,化学通报,1998,4,23
    [19]杨剑,滕凤恩,材料导报,1997,11(2),6
    [20]郭卫红,李盾,纳米材料及其在聚合物改性中的应用,工程塑料,1998,26(4),11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700