用户名: 密码: 验证码:
青海祁漫塔格多金属成矿带典型矿床地质地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海祁漫塔格铁-铜-铅-锌-钨-锡-金-钴多金属成矿带是我国西部秦(岭)-祁(连)-昆(仑)一级成矿带(亦称中央成矿带)中的主要组成部分。该成矿带近年来在地质找矿方面取得了重要进展,资源潜力巨大。因此,该成矿带典型矿床地质地球化学及其成矿规律的系统研究具有重要的科学价值和现实意义。
     本文“青海祁漫塔格多金属成矿带典型矿床地质地球化学研究”紧密结合中国地质调查局青藏高原地质矿产调查与评价专项“祁漫塔格地区成矿条件研究与找矿靶区优选”(项目编码:1212010818091)项目选题,针对研究区地质研究程度低、矿床类型多、成矿作用复杂的现状,以祁漫塔格成矿带典型矿床为主要研究对象,通过矿床解剖和细致研究,应用岩石学和微量元素、同位素、流体包裹体地球化学及数理统计分析等综合研究方法,从广度和深度为找矿靶区优选和西部高寒荒漠地区找矿靶区快速评价技术组合探索提供了科学依据。论文取得以下的主要成果和认识:
     (1)厘定了该成矿带典型矿床的矿床类型,建立了构造-岩浆活动演化与矿床关系模式。在区域地质背景和矿床地质特征研究的基础上,系统地分析了典型矿床的控矿因素及其成因,认为该区是多矿床类型、多成矿系统复合叠加的多金属成矿带,具有优越的成矿地质条件与寻找喷流沉积型-岩浆热液叠加型铜钴多金属矿床、矽卡岩-斑岩型铁铜多金属矿床和造山带型金矿床的良好前景;肯德可克矿床属喷流沉积型-矽卡岩型叠加复合型铁钴多金属矿床,卡尔却卡矿床属岩浆热液型铜多金属矿床,四角羊沟矿床属矽卡岩型铅锌矿床,虎头崖矿床属矽卡岩型铜铅锌银矿床。结合构造-岩浆演化过程,建立了构造-岩浆活动演化与各类矿床关系模式。
     (2)系统总结了典型矿床地球化学特征。在矿床地质特征分析的基础上,从岩石学、岩石化学、稀土元素、微量元素、数理统计分析等方面总结了四个典型矿床地球化学特征。除肯德可克地区闪长岩(SiO2 62.30%)外,其它成矿岩体均为典型酸性钙碱性花岗岩(SiO2≥65%;里特曼指数σ:0.57-2.16);稀土配分模式属铕亏损-轻稀土富集型(δEu:0.56-0.76),表现出S型花岗岩和造山型花岗岩的特征;稀土分配模式显示,除矿石∑REE明显偏低与岩体和围岩有明显分离外,与岩体和围岩分配模式相似,反映了其成矿作用与岩体、围岩有密切的亲缘关系,岩体为主要的成矿地质体;微量元素特征对比显示肯德可克、卡尔却卡矿床靠近岩体的矽卡岩内接触带有利于成矿元素富集,而虎头崖矿床的外接触带有利于成矿元素富集。
     (3)同位素示踪成矿物质具有多源性。通过典型矿床矿石铅同位素特征分析,发现矿石铅同位素组成以岩浆作用有关的幔源铅与壳源铅相混合的造山带铅为特征,认为成矿物质在成矿过程中受到多源混染的强烈影响,幔源物质可能参与了成矿作用,成矿过程伴随有强烈的火山活动;通过硫同位素特征研究,硫同位素组成较分散(-3.08‰-12.23‰)。其中卡尔却卡、四角羊沟矿床634S集中于4.37‰-6.39‰之间,反映了硫主要来源于成矿岩体。
     (4)典型矿床矿物流体包裹体特征反映成矿流体来源以岩浆水为主,矿床的形成是两种成矿流体发生混合作用的产物。矿物流体包裹体形态不规则,大小悬殊(4gm-46μm),均一温度、盐度范围大(89℃~344℃;0.71~42.4.wt%NaClequiv),流体密度范围较大(0.651 g/cm3-1.033g/cm3)。这一特征显示出成矿过程中存在两种成矿流体:高盐度-中高温度-高密度流体与中低温-低盐度-低密度流体,反映了成矿热液主要来源于岩浆水,并有加热的大气降水加入,显示出该类矿床成矿热液的共性特点。
     (5)提出该区处于柴达木盆地西南缘与东昆仑造山带之间的多期复合造山带成矿构造背景的新认识。在前人研究的基础上,认为祈漫塔格地区未出现有明显的俯冲带岛弧、深海沟和弧前弧后盆地等板块空间结构序列,在总体构造格架上为柴达木盆地西南缘与东昆仑造山带之间的多期复合造山带。
     (6)划分了5个成矿亚带,并提出其找矿前景。在研究该区构造演化的基础上,依据地质构造、岩浆活动、矿床类型的差异,编制了祁漫塔格地区(青海段)的(三级)矿化分区图,共圈出五个成矿亚带:①滩北雪峰加里东隆起区W-Sn-Au-Cu成矿亚带;②祁漫塔格前山加里东—印支叠加复合坳陷区Fe-Cu多金属成矿亚带;③祁漫塔格前山印支造山隆起区Cu-Mo多金属成矿亚带;④那棱格勒河坳陷区Fe多金属成矿亚带;⑤祁漫塔格后山加里东一印支叠加复合隆起区Cu-W-Sn多金属成矿亚带。在此基础上,探讨了各亚带的找矿类型与找矿前景。
The Qimantage Fe-Cu-Pb-Zn-W-Sn-Au-Co polymetallic ore belt in Qinghai is the the major component of the first order Qing (Ling)-Qi (Lian)-Kun (lun) metallogenic belt (also known as central metallogenic belt) in western China. In recent years, the geological prospecting of this metallogenic belt has made significant progress, and resources shows great potential. Therefore, the systematic geological and geochemical research of this typical ore deposits has the important scientific value and practical significance.
     The topic selection of this thesis combines with the Bureau of Geology and Mineral Resources Survey and Evaluation of Qinghai-Tibet Plateau special project of China Geological Survey (project number:1212010818091). According to the low level of geological research in the study area, multi-type deposits and complex mineralization, aim at Qimantage typical deposit metallogenic belt as the main object, through careful study and the anatomy of deposits, applied petrological and trace elements, isotopes, geochemistry and fluid inclusion analysis, mathematical statistics, comprehensive research methods, from the breadth and depth of the ore-prospecting target selection and prospecting target areas in western alpine desert to explore the rapid assessment technology portfolio, the thesis provides the scientific basis. The thesis achieves the following main results:
     (1) The thesis determines deposit types and established the model of the relationship between magmatic evolution and deposit models. Based on the regional geological background and mineral geological characteristics, the ore-controlling factors and its genesis are systematic analyzed. It concludes that deposits are multi-metal ore belt of multi-deposit type and multi-composite superimposed metallogenic system, with superior the ore-forming geological conditions and prospects and looking for SEDEX-type overlay-type Cu-Co magmatic hydrothermal polymetallic deposits, skarn-Cu-porphyry iron deposits and orogenic-type gold deposits. Kendekeke deposit belongs to SEDEX-skarn overlay-type Fe-Co polymetallic ore deposit. Kaer belongs to the magmatic hydrothermal polymetallic ore deposit, Sijiaoyanggou belongs to skarn-type lead-zinc deposit. hutouya belongs to skarn-type copper-lead-zinc silver deposit. Combination of tectonic-magmatic evolution, the thesis established tectonic-magmatic activity evolution model and the relationship between various types of deposits.
     (2) The typical geochemical characteristics of deposits were systematically summarized. Based on the analysis of geological features, the petrology, petrochemistry, REE, trace elements, mathematical statistics and so on, sums up the four typical geochemical characteristics of deposits. Expect the Kendekeke area can be diorite (SiO2 62.30%), other rock forming calc-alkaline granites are typical of acid (SiO2≥65%; Rittmann indexσ:0.57~2.16); REE patterns are Eu loss-LREE enrichment type (δEu: 0.56~0.76), show S-type granites and orogenic-type granites; REE distribution patterns were similar with the rock and surrounding rock, except to the ore∑REE significantly lower with a clear separation. It reflects that the mineralization and rock, surrounding rock has a close genetic relationship. The rocks are the main ore-forming geological bodies. The comparison of trace element characteristics shows that Kedekeke, Caerque close to the skarn inner contact zone are favorable to enrichment of ore-forming elements, while the external contact zone of hutouya deposit are favorable to enrichment of ore-forming elements.
     (3) The thesis concludes that the isotope tracer has multi-sources. Through the typical characteristics of lead isotope in ore deposits, it can be concluded that the ore lead isotopes composed with the mantle-derived magmatism lead and crust-derived lead. The ore-forming materials are processed by the multi-source contamination, and the mantle-derived substances may be involved in mineralization. The mineralization are accompanied by strong volcanic activity. The sulfur isotopic characteristics are more decentralized (-3.08‰~12.23‰).δ34S of Kaerqienei and Sijiaoyanggou focused on the 4.37‰~6.39‰, reflecting the mineralization of sulfur comes mainly from rock.
     (4) the typical characteristics of fluid inclusions in mineral deposits reflects that the sources of ore-forming fluid are mainly magmatic water, mineral deposit formation are two ore-forming fluid mixing. The fluid inclusions are irregular shape, size disparity (4μm~46μm), homogenization temperature, salinity range (89℃~344℃; 0.71~42.4 wt% NaCl equiv), fluid density range (0.651 g/cm3~1.033g/cm3). This feature shows that there are two ore-forming process of ore-forming fluids:high salinity-high temperature high-density fluid and low temperature-salinity-low-density fluid, reflecting the ore-forming hydrothermal mainly from magmatic water, with the heated meteoric water. It shows the common feature of hydrothermal ore deposits.
     (5) The thesis proposes that the study areas located at the multi-phase composite orogenic tectonic between the southwestern edge of the Qaidam Basin and East Kunlun. Based on the previous studies, it is conclude that Qimantage areas do not appear significantly island arc subduction zones, deep trench and fore-arc-arc basin sequence, and the spatial structure is the multi-phase composite orogenic belt between the southwestern edge of the Qaidam Basin and the East Kunlun orogenic belt.
     (6) The thesis sub-divides the study area into five metallogenic belt, and proposes minimization prospecting. Based on the geological structure, magmatic activity and comparison of deposits types, prepared Qimantage region (Qinghai Section) (3) mineralization zoning map, and five ore deposit sub-band:①Tanbeixuefeng Caledonian uplift W-Sn-Au-Cu metallogenic ore belt;②Qimantage Maeyama Caledonian-Indo-overlay composite Depression Fe-Cu-polymetallic metallogenic ore belt;③Qimantage before the Indo-orogenic uplift Mountain Cu-Mo-polymetallic ore belt;④Nalenggele river depression Fe-polymetallic ore belt;⑤Qimantage Caledonian-Indo-Chinese superposition compound uplift Cu-W-Sn-polymetallic ore belt. On this basis, the thesis discusses the different of ore belt and the deposit prospection.
引文
[1]Roberts D E and Hudson G R T. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia [J]. Econ. Geol.,1983,78:799-822
    [2]Scott I R. The development of an ore reserve methodology for the Olympic Dam copper-uranium-gold deposit [J]. Resource and Reserves Symposium, Australian Institute of Mining and Metallurgy,1987,99-103
    [3]Sillitoe R H. Iron oxide-copper-gold deposits:an Andean view [J]. Mineralium Deposita,2003, 38(7):787-812
    [4]Hitzman M W, Oreskes N, and Einaudi M T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits [J]. Precambrian Research,1992,58:241-287
    [5]Fyfe W S, Price N J, Thompson A B. Fluid in the Earth's crust[M]. Elsevier Scientific Publishing Company. New York 1978:1-365
    [6]Carranza E G M, Hale M. Where are Porphyry Copper Deposits Spatially Localized? A Case Study in Benguet Province, Philippines. Natural Resources Research,2002,11(1):45-59
    [7]Bonham-Carter G F, Agterberg F P, Wright D F. Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetry and Remote Sensing,1988,54,1585-1592
    [8]Deverle P. Harris, Frederik P. Agterberg. The Appraisal of Mineral Resources.Economic Geology, Seventy-Fifth Anniversary, Volume(1905-1980),1981:987-938
    [9]Groves D, Goldfarb R J, Gebre-Mariam et al. Orogenic gold deposits:a proposed classfication in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews,1998,13:7-27
    [10]Zhangshaohua.The regional metamorphic minerogenetic series of nonmetallic deposits in schist leptynite magnesion carbonate formation in China.Papers to 29th IGC. Published by Geological Press Houes, China,1992
    [11]Harris D P, Zurcher L, Stanley M et al. A Comparative Analysis of Favorability Mappings by Weights of Evidence, Probabilistic Neural Networks, Discriminant Analysis, and Logistic Regression. Natural Resources Research,2003,12(4):241-255
    [12]Chen Congxi. The minerogenetic series of nonmetallic deposits in continental basalt forma-tion in China. Papers to 29th IGC. Published by Geological Press Houes, China,1992
    [13]Harris J R, Wilkinson L, Heather K et al. Application of GIS Processing Techniques for Producing Mineral Prospectivity Maps----A Case Study:Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research,2001,10(2):91-124
    [14]Groves D I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineral.Deposita,1993,28,366-374
    [15]Kemp L D, Bonham-Carter G F, Raines G L. Arc-WofE:Arc View extension for weights of evidence mapping, http://gis.nrcan.gc.ca/software/arcview/wofe,1999
    [16]Haynes D W. Cross K C. Bill R T. etl. Olympic Dam Ore Genesis:A Fluid-Mixing Model. Econnic Geology.1995.99:281-307
    [17]Molnar P, Burchfiel B C, Zhao Z Y et al. Geologic evolution of northern Tibet:results of an expedition to Ulugh Muztagh. Science,1987,235:299-305
    [18]G.R.Hunt and J.W.Salisloury,Visibal & Near-infrared Spectra of Rocks and Minerals,Modern Geology,1974,5(1)
    [19]Pasava J, Haladilcova J, Dobes P. Origin of Proterozoic Metal-rich black shales from the Bohemian massif, Czech Republic. Economic Geolgoy,1996,91(1):63-69
    [20]Timothy M.Kusky,Talaat M.Ramdadan. Structural controls on Neoprotero zoic mineralization in the South Eastern Desert, Egypt:an integrated field, Landsat TM, and SIR-C/X SAR approach. Journal of African Earth Sciences,2002 (35)107-121
    [21]Murphy J B, Nance R D. Supercontinent model for the contrasting character of late proterozoic orogenic belts. Geology,1991,19(5):469-472.
    [22]Bonham-Carter G F. Geographic Information Systems for Geoscientists:Modelling with GIS. Pergamon. Oxford,1994
    [23]V.N.Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York.1995
    [24]Peccerillo A, Taylor S R. Geochemistry of Eocence calc-alkaline volcanic rocks from Kastamanu area, Northern Turkey. Contributions to Mineralogy and Petrology,1976,58:63-81
    [25]Chappell. B W and White. A J R Two contrasting granite types. Pacific Geol.1974(8): 173-174
    [26]Raines G L. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States. Natural Resources Research,1999,8(4):257-276
    [27]Zartman R E, Haines S M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bidirectional transport [J].Geochim Cosmochim Acta,1988,52(6): 1327-1339
    [28]Brown A C. World-class sediment-hosted stratiform copper deposits:characteristics, genetic concepts and metallotects. Australian Journal of Earth Sciences,1997,44:317-328
    [29]Potter R W Ⅱ, Clynne M A, Brown D L. Freezing point depression of aqueous sodium chloride solutions. Econ. Geol.1978,73:284-285
    [30]Brown, P.E,1989, FLINCOR:A microcomputer program for the reduction and investigation of fluid inclusion data:American Mineralogist, v.74, p.1390-1393
    [31]StatSoft, Inc. STATISTICA (data analysis software system), version 6. http://www.statsoft.com, 2001
    [32]Brown, P.E, and Lamb, W.M, P-V-T properties of fluids in the system H2O-CO2-NaCl:New graphical presentations and implications for fluid inclusion studies:Geochimicaet Cosmochimica Acta,1989,53:1209-1221
    [33]Tapponnier P, Molnar P. Active faulting and tectonics in China. J Geophys Res.1977,82:930-2095
    [34]R E. Zartman and B R Doe.1981. Plumbotectonics-the model. Tectonophysics,75:135-162
    [35]Ritts B D. Magintude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, Northwest China. Geological Society of America bulletin,2000,112(1):61-74
    [36]Agterberg F P, Bonham-Carter G F, Wright D F. Statistical pattern integration for mineral exploration. In:Gaal G, Merriam D F (eds.). Computer Applications in Resource Exploration and Assessment for Minerals and Petroleum. Pergamon, Oxford,1990
    [37]Tapponnier P, Xu Z Q, Roger F et al. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science,2001,294:1671-1677
    [38]Agterberg F P. Computer programs for mineral exploration. Science,1989,245:76-81
    [39]Xie Xunjin. Surfierial geochemical expressions of giant ore deposits. Hodgson CJ, Clark A H. Giant ore deposits Ⅱ. Kingston, Canada:Queen's University,1995,475-485
    [40]Batchelor R A et al. Petrogenetic interpretation of granitoid rockseries using multicationic parameters. Chemical Geology,1985,48
    [41]Yang J-S, Robinson P T et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics,1996,258:215-231
    [42]Boleneus D E, Raines G L, Causey J D et al. Assessment method for epithermal gold deposits in northeast Washington State using weights-of-evidence GIS modeling. Open-File Report 01-501, USGS,2001
    [43]Bonham-Carter G F, Agterberg F P, Wright D F. Weights of evidence modelling:a new approach to mapping mineral potential. In:Bonham-Carter G F, Agterberg F P. Statistical Applications in the Earth Sciences. Geological Survey of Canada, Paper 80-9,1989,171-183.
    [44]翟裕生.矿床学的百年回顾与发展趋势.地球科学进展,2001,16(5):719-725
    [45]林为源,虞哲蓉.矿床成因论.福建:科学技术出版社,1991
    [46]连云长,冉清昌.研究矿床的最佳途径:矿床模型.长春地质学院学报,1995,25(2):156-160
    [47]陈毓川,张荣华,盛继福等.玢岩铁矿矿化蚀变作用及成矿机理.中国地质科学院矿床地质研究所文集(3),1982
    [48]宋叔和.火山岩型铜多金属硫化物矿床VCPSD知识模型.地质出版生.北京:1994
    [49]汤中立,任瑞进.中国硫化镍矿床类型及成矿模式.地质学报,1987,4:350-361
    [50]汤中立,闫海卿等.中国岩浆硫化物矿床新分类与小岩体成矿作用.矿床地质,2006,25(1):1-9
    [51]袁见齐等.盐类矿床成因理论的新发展并论中国钾盐找矿问题.化工矿产地质.1980年01期
    [52]倪师军,腾彦国,张成江等.成矿流体活动的地球化学示踪研究综述.地球科学进展.1999,14(4):346-352
    [53]张连昌,赵伦山.成矿流体研究的若干进展与动态.地质与勘探,2001,37(1):7-10
    [54]胡受奚等.层控矿床研究现状及其成因和分类问题.矿床学.北京:地质出版社,1989,69-88
    [55]赵东甫.层控矿床成因分类与找矿.长春地质学院学报,1981, (3):26-34.
    [56]祁思敬.层控矿床的概念和成因模式—矿床学参考书(下册).北京:地质出版社,1987,89-95
    [57]涂光炽等.中国层控矿床地球化学Ⅰ.北京:科学出版社,1984,V.1(前言).
    [58]涂光炽等.中国层控矿床地球化学Ⅱ.北京:科学出版社,1987,67-98
    [59]涂光炽等.中国层控矿床地球化学Ⅲ.北京:科学出版社,1988,17-68
    [60]朱上庆.层控矿床地质学.武汉地质学院出版,1983
    [61]涂光炽.矿床的多成因问题.地质与勘探,1979,6:1-5
    [62]方维萱,柳玉龙,张守林等.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式.西北大学学报,2009,39(3):404-412
    [63]涂光炽.地质学中的若干思维方法.地质与勘探,1984,1-5.
    [64]涂光炽.地学中若干思想方法的讨论.自然辨证法研究,1989,5(5):1-11
    [65]朱上庆.层控矿床(上).地质科技情报,1983,(1):138-146
    [66]陈国达.多成因复成矿床并从地壳演化及其形成机理.陈国达地洼学论文选,长沙:中南大学出版社,1956,345-366.
    [67]陈国达.多因复成矿床并从地壳演化规律看其形成机理.大地构造与成矿学.1982.6(1):1-55
    [68]陈国达.地洼学说的新进展.北京:科学出版社.1992
    [69]陈国达.关于多因复成矿床的一些问题.大地构造与成矿学.2000.24(3):199-201
    [70]彭省临.论华南古断裂谷与多因复成铜多金属矿床的关系.中南矿冶学院学报.1991.22期5卷
    [71]彭省临.陈子龙.多因复成矿床及其研究方法.长沙:中南工业大学出版社.1992:1-7
    [72]程裕淇、陈毓川、赵一鸣.初论矿床的成矿系列.中国地质科学院院报(第一号).北京:地质出版社.1979:32-57
    [73]程裕淇、陈毓川、赵一鸣.再论矿床的成矿系列. 中国地质科学院院报(第六号).北京:地质出版社.1983:1-64
    [74]陈毓川、裴荣富、宋天锐.等.中国矿床成矿系列初论[M].北京:地质出版社.1998:1-104
    [75]陈毓川、裴荣富、宋天锐.等.中国矿床成矿系列初论[A].见:第五届全国矿床会议论文集.北京:地质出版社.1993:89-90
    [76]翟裕生,姚书振、林新多.长江中下游地区铁铜矿床的成矿特征和成成系列.《国际交流地质学术论文集(四)》,北京:地质出版社,1985
    [77]翟裕生等.长江出下游地区铁铜(金)成矿规律.北京:地质出版社,1992
    [78]翟裕生,熊永良.南岭钨-锡成矿系列与长江中下游铁-铜成矿系列的对比兼论成矿系列的几个问题,见《冯景兰教授诞辰90周年纪念文集》.北京:地质出版杜,1990.157-165
    [79]叶庆同,石桂华,叶锦华等.怒江、澜沧江、金沙江地区铅锌矿床成矿特征和成矿系列.北京:科学技术出版社,1999
    [80]叶庆同,傅旭杰.新疆阿尔泰造山带矿床成矿系列.地球学报,1998,19(1):31-39
    [81]陈毓川,王平安等.秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨.矿床地质,1994,13(4)
    [82]陶维屏,高锡芬,孙祁等.中国非金属矿床成矿系列.北京:地质出版社,1994
    [83]王世称,陈永清.成矿系列预测的基本原则及特点.地质找矿论丛,1994,9(4):79-85
    [84]王世称、陈永良、夏立显,等.综合信息矿产预测理论与方法.北京:科学出版社,2000
    [85]陶维屏,马启锐,刘绍斌等.1:5000000中国非金属矿床成矿地质图.北京:地质出版社.1996
    [86]章少华.中国的绿片岩相-角闪岩相片岩变粒岩镁质碳酸岩盐建造区域变质非金属矿成矿系列.《“七五”地质科技重要成果学术交流会议论文集》,北京:科学技术出版社,1991
    [87]陈从喜.中国的大陆玄武岩建造非金属矿成矿系列.《“七五”地质科技重要成果学术文流会议论文集》,北京:科学技术出版社,1991
    [88]李人澍.成矿系列建构若干理论问题的探索.西北有色地质研究所所刊,1991
    [89]翟裕生.成矿系统的结构框架和基本类型.见:中国科学院地球化学研究所等编.资源环境与可持续发展.北京:科学出版社,1999.77-82
    [90]翟裕生.论成矿系统[J].地学前缘.1999,6(1):13-27
    [91]朱创业.成矿系统研究现状及发展趋势.成都理工学院学报.2000.27(1):50-53
    [92]翟裕生,关于构造-流体-成矿作用研究的几个问题.地学前缘,1996,3(3-4):230-236
    [93]程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列[M].中国科学院院报(第一号),北京,地质出版社,1979,32-57
    [94]赵鹏大,池顺都.初论地质异常[J].地球科学—中国地质大学学报,1991,(3):241-248
    [95]赵鹏大.“三联式”资源定量预测与评价-数字找矿理论与实践探讨[J].地球科学,2002,27(5):482-489
    [96]池三川.隐伏矿床(体)的寻找.武汉:中国地质大学出版社.1988
    [97]徐兴旺.蔡新平.隐伏矿床预测理论与方法的研究进展.地球科学进展.2000.15(1):76-83
    [98]廖崇高.兰坪盆地成矿预测中的多元信息定量分析.矿床地质.2001(3):292-297
    [99]刘燕君、金丽芳.东坪式金矿盲矿体的多元信息预测研究[J].国土资源遥感.1994(1):15-22
    [100]陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998
    [101]刘聚海,杨廷槐.遥感地质方法在成矿区带找矿突破中的应用.见:国土资源部信息中心,国外重要成矿区带典型找矿案例和勘查技术应用.1999
    [102]杨自安.西部高寒山区遥感与化探信息综合找矿定位预测研究[D].中国地质大学(北京)博士学位论文,2005,5
    [103]王世称、陈永清.金矿综合信息成矿系列预测理论体系[J].黄金地质.1995.1(1):1-7
    [104]关键.吉林通化南岔式金矿地质—地球物理—地球化学综合找矿模型.中国地质.2001.28(12):22-29
    [105]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑),1996,26(4):302-307
    [106]潘裕生,文世宣,邓万明.岩石圈的形成与演化[A].见:孙鸿烈主编,青藏高原的形成演化.上海:上海科学技术出版社,1996,10-99
    [107]古凤宝,姜常义.东昆仑花岗岩岩石组合及其构造环境[J].青海地质,1996,(2)13-24
    [108]李光明,沈远超,刘铁兵.东昆仑祁漫塔格地区华力西期花岗岩地质地球化学特征.地质与勘探,2001,37(1):73-78
    [109]薛培林,肖静,薛福林等.青海祁漫塔格-都兰成矿带铜矿找矿前景初探.矿产与地质,2006,20(3):247-250
    [110]丁清峰.东昆仑造山带区域成矿作用与矿产资源评价.博士学位论文,2004
    [111]王云山.青藏高原北部构造发展的主要阶段[J].青海地质1991:14-16
    [112]青海省地质矿产局,1997
    [113]青海省地质调查院.东昆仑东段成矿区(带)矿产资源调查评价“十五”工作部署方案.2002a(内部资料)
    [114]青海省地质调查院.青海省昆仑山口成矿区矿产资源潜力评价总体设计书.2002b(内部资料)
    [115]青海省地质调查研究院.2004.布喀大板峰幅1:25万区域地质调查报告.内部资料
    [116]黎敦朋,樊晶,肖爱芳等.东昆仑西段祁漫塔格群早志留世笔石化石的发现[J].地质通报 2001,21(3)
    [117]赵风清,郭进京,李怀坤.青海锡铁山地区滩间山群的地质特征及同位素年代学.地质通报,2003,22(1):28-31
    [118]王惠初,陆松年,袁桂邦,等.柴达木盆地北缘滩间山群的构造属性及形成时代.地质通报,2003,22(7):487-493
    [119]姜春发,朱松年.构造迁移论概述[J].地球学报,1992
    [120]姜春发,王宗起,李锦轶,等.中央造山带开合构造.北京:地质出版社,2000
    [121]李宏茂,时友东,刘忠等.东昆仑西段-祁漫塔格成矿带钨锡成矿地质条件及找矿方向.地质与勘探,2007,16(2):86-90
    [122]李月隆,张芬英,周晓中.青海东昆仑造山带祁漫塔格地区铁钴金多金属矿找矿前景分析.甘肃冶金,2007,29(2):34-36
    [123]何书跃,祁连英,舒树兰等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探,2008,44(2):14-22
    [124]胡正国,刘继庆,钱壮志等.东昆仑区域成矿规律分析—关于找矿工作的战略思考.西安工程学院学报,1999,21(4):46-50
    [125]青海省第三轮成矿远景区划研究及找矿靶区预测汇总报告.青海省国土资源厅,2004
    [126]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质,1999,13(1):51-56
    [127]沈远超,杨金中,刘铁兵,等.新疆东昆仑祁漫塔地区三叠统火山岩的年代及构造环境研究.地质与勘探,2000,36(3):32-35
    [128]青海省地质局第一地质队.青海省格尔木市肯德可克铁矿区铁矿详细普查地质报告,1982
    [129]潘彤,孙丰月.青海东昆仑肯德可克钴铋金矿床成矿特征及找矿方向.地质与勘探,2003,39(1):18-22
    [130]李宏录,刘养杰,卫岗等.青海肯德可克铁、金多金属矿床地球化学特征及成因.矿物岩石地球化学通报,2008,27(4):378-383
    [131]伊有昌,焦革军,张芬英.青海东昆仑肯德可克铁钴多金属矿床特征.地质与勘探,2006,42(3):30-35
    [132]王力,孙丰月,陈国华等.青海东昆仑肯德可克金—有色金属矿床矿物特征研究.世界地质,2003,22(1):50-56
    [133]何书跃,祈兰英,舒树兰等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探,2008,44(2):14-22
    [134]王松,丰成友,李世金等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMPU—Pb测年及其地质意义.中国地质,2009,36(1):74-84
    [135]孙丰月.新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究成果报告.青海省地质调查院,2003
    [136]孙丰月,李碧乐,丁清峰.东昆仑成矿带重大找矿疑难问题研究.中国地质调查局,2009
    [137]青海地质调查研究院,2003
    [138]沈能平,彭建堂,袁顺达等.湖北徐家山锑矿床铅同位素组成与成矿物质来源探讨[J].矿物 学报.2008,28(2):169-176
    [139]李龙,郑永飞,周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报,2001,17(1):61-68
    [140]朱炳泉.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化.北京:科学出版社,1998
    [141]刘云华,莫宣学,张雪亭等.东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J].华南地质与矿产2006,3:31-36
    [142]李宏录,刘养杰,卫岗等.青海肯德可克铁、金多金属矿床地球化学特征及成因.矿物岩石地球化学通报[J].2008.27(4):378-383
    [143]袁见齐,朱上庆,翟裕生等.矿床学.北京:地质出版社,1985
    [144]李厚民,沈远超,胡正国等.青海东昆仑五龙沟金矿床成矿条件及成矿机理.地质与勘探,2001,37(1):65-69
    [145]李世金,孙丰月,王力等.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究.矿床地质,2008,27(3):399-406
    [146]李月隆等,青海东昆仑造山带祁漫塔格地区铁钴金多金属找矿前景分析.甘肃冶金,2007,V29 N234-36
    [147]吴小霞等.青海省尕林格富铁矿床地质及成因探讨.黄金科学技术,2007 V15 N436-40
    [148]高章鉴等.青海省肯德可克金矿热水沉积层矽卡岩特征及成矿意义.西北地质,2001 V34N250-53
    [149]李岩禄等.青海肯德可克铁金多金属矿床地球化学特征及成因.矿产与地质2008
    [150]潘彤等.东昆仑肯德可克及外围钴金金属矿找矿突破的启示.中国地质,2001 V28N217-25
    [151]薛培林等.青海祁漫塔格-都兰成矿带铜矿找矿前景初探.矿产与地质,2006 V20N3247-253
    [152]潘彤等.青海祁漫塔格地区铁多金属成矿特征及找矿潜力.矿产与地质,2008 V22N3232-238
    [153]何跃等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探,2008 V46N214(2)
    [154]伊有昌等.青海东昆仑肯德可克铁钴多金属矿床.地质与勘探,2006 V44N330-35
    [155]刘云华等东昆仑野马泉地区矽卡岩矿床地质特征及控矿条件.华南地质与矿产,2005 N318-29
    [156]胡正国等.东昆仑区域成矿规律初步研究.黄金科学技术,1998 N5-66-13
    [157]姜春发等.昆仑开合构造.北京地质出版社,1992 154-156
    [158]袁可明.东昆仑早石炭世火山岩的地球化学特征及其构造背景岩石矿物学杂志,1998V17N2289-299
    [159]罗晚华等.东昆仑印支期幔源岩浆活动地质通报,2002 V21N6292-297
    [160]李宏茂等.东昆仑西段祁漫塔格成矿带钨锡成矿地质条件及找矿方向.地质与资源,2007V16N286-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700