用户名: 密码: 验证码:
莺琼盆地天然气成因类型及成藏动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对制约莺琼盆地油气勘探中的一些关键性的地球化学问题,采用实际资料与模拟实验相结合、宏观与微观相结合的研究方法,深入地研究了天然气的成因类型和高温高压环境天然气的运移特征,进而探讨了超压与成藏的关系。
     莺琼盆地至少存在4种主要天然气类型。其中,以产热成因气和无机CO_2为主,同时还有少量的生物气和混合气。细菌调查和生化成气模拟实验结果表明,生物气主要来源于第四系—上新统海相泥岩有机质中的粗纤维、半纤维素和蛋白质等细菌可利用基质,生化成气下限温度为85℃,突破了传统模式中的生物气下限温度为75℃门限。热成因气具有煤型气的特征,采用比较性分析和气源直接对比研究的新思路,可将其进一步划分为崖城天然气和莺歌海天然气两个亚类:前者主要源于渐新统崖城组含煤地层及浅海相泥岩,同时,西侧的莺歌海盆地有少量的贡献;后者则来自中新统梅山-三亚组海相泥岩。通过系统地剖析莺歌海底辟带气田无机CO_2的碳、稀有气体(氦)同位素特征与第三系及古生界基底的岩性及热源条件,结合热模拟实验资料,认为无机CO_2主要来深埋的梅山-三亚组钙质泥岩热分解和前第三系基底碳酸岩的热变质,这种钙质泥岩和碳酸岩热分解产生CO_2的初始温度大约为250℃,相当于埋深约6000m。
     琼东南盆地崖城组和莺歌海盆地梅山-三亚组两套烃源岩含有大量的陆源有机质,构成了天然气生成雄厚的物质基础。盆地的高温地热效应特别是底辟带浅层由于深源热流体向上活动引起的“超前”熟化现象有利于天然气的生成,与高的地温作用相比,地层超压对本区腐殖型有机质热演化的抑制作用是次要。高温高压条件天然气成藏机制比较复杂,根据天然气的组成、同位素特征和储层包裹体分析,发现莺歌海东方1-1气田具有幕式充注、混合成藏的特征,由此揭示莺歌海盆地高压系统的幕式-快速运移导致排烃和聚集效率大大提高,是底辟正常压力带圈闭在极短的地质时期内天然气能够富集成藏的一个极其重要因素。储层包裹体古压力模拟结果表明,崖21-1构造储层的超压形成时间大约在中中新世—晚中新世(上新世早期的压力系数已达1.65),早于崖城组烃源岩大量生气阶段,因此妨碍了晚期天然气的大量充注,未形成商业价值气藏。
The Ying- Qiong Basins in the north continental shelf of the South China Sea are in fact two separate Cenozoic basins with close geographic proximity and genetic linkage. Great attention has been paid to these basins in recent years because of their large sedimentary volumes and huge gas potentials. Geochemical and isotopic data of the natural gases from these basins have indicated the presence of at least four genetic types of gases in these basins. They are biogenic gas, thermogenic gas, gase with a mixed origin and inorganic CC^ gas. Biogas was generated from coarse fiber, hemicelluloses and protein that can be degraded by bacteria in Quaternary and Pliocene marine mudstone. The data from simulation test of source rocks, combined with the gas-measurement log and geothermal gradient data of the basins, has shown that the main stage of the bio-gas generation is between 35℃ and 65 ℃ and the death line of bio-gas is about 85 ℃
    . Using the methods of comparative analyses and gas-source direct correlation, it was suggested that thermogenic gases in the Ying-Qiong Basins were derived from two geographically separate petroleum systems. The gases in the Yinggehai Basin were likely from the marine shales in the Meishan-Sanya Formations within this basin, whereas gases in the Yacheng Field were mainly from the coal-bearing source rocks in the Yacheng Formation in the Qiongdongnan Basin, with only small amounts of gases with high inorganic CC>2 from the Yinggehai Basin. By studying the inorganic CO2 and helium isotopes in Yinggehai Basin, and investigating the Tertiary lithology and geothermal condition, combined with the results of thermal simulation test, it was suggested that inorganic CO2 gas principally came from thermal decomposition of Tertiary calcareous shales and Pre-Tertiary carbonate under the burial depth of 6000m, approximately at a strata temperature of about 250℃.
    The hydrocarbon source rocks in Yacheng Formation in Qiongdongnan Basin and Meishan and Shanya Formation in Yinggehai basin contain a dominant amount of terrestrial organic matter. This study has indicated that the overpressure cannot significantly delay the organic thermal maturation of the source-rock. However, the high temperature conditions have had strong influence on the thermal evolution and hydrocarbon generation of the source rocks. In places where the source rocks were intensely influenced by deep sourced hot fluids, the rapid heating resulted in an advanced maturation of organic matter deposited in shallower depth. It is the high
    
    
    temperature, combined with relatively abundant humic organic matter in the Miocene and Yacheng Formation source rocks, that led to predominantly abundant natural gases in the Ying-Qiong basins. Moreover, the focused-episodic gas migration significantly increased the hydrocarbon expulsion efficiencies of the source rocks, and thus provided favorable conditions for the accumulation of large amounts of gases in the diapric structures (such as Dongfangl-1 gas field) in very short geological time. PVT simulation results of fluid inclusions have revealed that an overpressure formed in middle or late Miocene in Yacheng21-l structure, earlier than the phase of enormous hydrocarbon generation and migration of the Yacheng source rock. This overpressure has stopped migration of the later-generating gases into the reservoir, having led to only small amount of aqueous gas in the reservoir.
引文
1.包茨等主编,1988.天然气地质学.北京:科学出版社
    2.戚厚发、关德师、张详、黄保家、钱贻伯主编,1997.中国生物气的成藏条件.北京:石油工业出版社
    3.陈伟煌,1987.崖13-1气田的成藏条件.见:煤型气地质研究,北京:石油工业出版社,
    4.戴金星等,1995.中国东部无机成因气及其成藏条件.北京:科学出版社
    5.戴金星,1988.云南腾冲县硫磺塘天然气的碳同位素组成特征和成因.科学通报 33(15)1168-1170
    6.戴金星和戚厚发,1985.鉴别煤型气和油成气若干指标的初步探讨.石油学报,6(2)
    7.戴金星,戚厚发,1989.天然气地质学概论.北京:石油工业出版社
    8.戴金星等主编,1992.中国天然气地质学.北京:石油工业出版社
    9.戴金星等主编,1997.中国大中型天然气田形成与分布规律.北京:地质出版社
    10.维索茨基著,1979,戴金星译,1986.天然气地质学.北京:石油工业出版社
    11.董伟良,黄保家,1999.莺歌海东方1-1气田天然气组成的非均质性和幕式充注研究.石油勘探与开发,26(2)
    12.董伟良,黄保家,2000.莺歌海盆地流体压裂与热流体活动及天然气的幕式运移.石油勘探与开发,27(4):36-40
    13.董伟良,黄保家,2001.莺-琼盆地煤型气的鉴别标志和气源判识.天然气工业.20(1):23-27
    14.傅家谟,刘德汉主编,1992.天然气运移、储集及封盖条件.北京:科学出版社
    15.傅家谟,刘德汉,盛国英主编,1992.煤成烃地球化学.北京:科学出版社
    16.傅家谟,陈军红,盛国英,耿安松,刘德汉等,1995.莺歌海-琼东南盆地第三系烃源岩研究.南海西部石油公司内部报告
    17.顾树松编著,1993.柴达木盆地东部第四系气田形成条件及勘探实践.北京:石油工业出版社
    18.龚再升、李思田等,1997.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社
    19.黄保家,1992.莺歌海油气苗调查及其成因探讨.中国海上油气 6(4)
    20.黄保家,李里,1995.莺歌海盆地CO_2成因及分布的控制因素探讨.南海西部公司内部报告
    
    
    21.黄保家,1999.琼东南盆地天然气潜力及有利勘探方向.天然气工业.19(1)
    22.黄保家、肖贤明等,2002,莺歌海盆地烃源岩特征及成烃演化模式.天然气工业.22,p26-32
    23.黄保家、肖贤明等,2002.莺歌海盆地海相生物气特征及生化成气模式.沉积学报,20(3):11-17
    24.黄第藩,1993.陆相烃源岩有机质的碳同位素分布.中国海上油气,7(4):1-5
    25.Hunt M.J. 著,1979;胡伯良译.石油地球化学和地质学.北京:石油工业出版社,p96-102
    26.何家雄,张伟,陈刚,1995.莺歌海盆地CO_2成因及其分布规律探讨.南海西部公司内部报告
    27.廖永胜,1981.应用同位素探讨油气成因.石油学报增刊
    28.林壬子、将基平、梅博文,1985.琼东南盆地油气来源的初步研究.南海西部石油公司内部报告
    29.李明诚,1994.油气运移.北京:石油工业出版社,p197-215
    30.李剑、张英等,2001.煤型气判识新方法及其应用.见:戴金星等主编,煤成烃国际学术研讨会文集,北京:石油工业出版社,p36-45
    31.刘文汇等,1990,天然气氩同位素的研究现状.天然气地球科学(2):7-11
    32.刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社,25-42
    33.马启富、陈斯忠、张启明、郭水生、王善书,2000.超压盆地与油气分布.北京:地质出版社
    34.米敬奎、肖贤明、刘德汉、申家贵,2002.利用PVTsim模拟计算油气藏形成古压力.地球化学,第3期
    35.裘松余等,1985.松辽盆地南部万金塔二氧化碳的地质特征及成因.石油与天然气地质,6(4):434-439
    36.宋岩,1991.松辽盆地万金塔气藏天然气成因.天然气工业,11(1):17-21
    37.宋岩、魏国齐、洪峰、李亚红,2000.天然气地质学研究及应用.北京:石油工业出版社
    38.施继锡,1987.有包裹体及其与油气运移的关系.中国科学(辑),7:318-325
    39.唐忠驭,1980.三水盆地二氧化碳气藏地质特征及成因探讨.石油地质实验,2(3):10-18
    40.唐忠驭,1984.三水盆地火成岩活动与油气的关系.石油与天然气地质,5(2):89-99
    41.唐忠驭,1983.二氧化碳气藏的地质特征及其利用.天然气工业,8(3):22-26
    
    
    42.涂修元,1986.鉴别煤型气的辅助指标—汞蒸汽.见:天然气勘探,北京:石油工业出版社,p180-185
    43.张泉兴,张启明,1989.莺歌海盆地梅山组石油的深热成因.中国海上油气,3:25-33
    44.张泉兴,黄保家,1991.南海主要盆地天然气的成因类型及其成烃史.中国海上油气,4:5-13
    45.张启明,董伟良,2000.中国含油气盆地中的超压体系.石油学报,21(6):1-11
    46.张启明,1995.莺-琼盆地类型演化史及构造热体制.南海西部公司内部报告
    47.张国华、黄保家、潘贤庄,1998.莺歌海-琼东南盆地天然气的成因联系及海相烃源岩研究.“9.5”国家天然气攻关成果
    48.汪集旸、罗晓容等,1996.莺歌海盆地地温场特征与天然气成藏关系研究.“9.5”国家天然气攻关成果
    49.王建宝、郭汝泰、肖贤明、刘祖发、申家贵,2002.塔里木轮南低隆起早古生代油气藏形成的期次与时间研究.沉积学报,20(2):320-325
    50.徐永昌、王先彬,1979.天然气中的稀有气体同位素.地球化学,4:271-281
    51.徐永昌、沈平、刘文汇、刘万春,1990,一种新的天然气成因类型——生物-热过渡带气,中国科学通报B辑,20(9):975—980
    52.徐永昌等主编,1994.天然气成因理论及应用.北京:科学出版社,1994
    53.徐永昌、沈平、刘文汇、陶明信、孙明良、杜建国,1998.天然气稀有气体地球化学.北京:科学出版社
    54.肖贤明著,1992.有机岩石学及其在油气评价中的应用.广州:广东省科学出版社
    55.肖贤明,刘祖发,刘德汉等,2002.应用储层包裹体住处研究天然气的成藏时间.科学通报,47(12):975-960
    56.杨计海,陈红汉 1998.莺-琼盆地的压力系统及油气运移.“9.5”国家天然气攻关成果
    57.朱岳年等,1994.二氧化碳地质研究.兰州:兰州大学出版社
    58. Aplin A.C., G.Macleod, S.R.Larter, K.S.Pedersen, H.Sorensen, T.Bbbth, 1999. Combined use of Confocal Laser Microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Marine and Petrolum geology, 16: 98~101.
    59. Aplin A.C., S.R.Larter, M.A.Bigge, G,Macleod, R.E.Swarbrick, D.Grunberger,2000. PVTX history of the North sea's Judy oilfield. Journal of Geochemical Exploration, 60-70: 641~644.
    
    
    60. Bement,W. O., Levery, R. A., and Mango, F.D.,1994. The temperature of oil generation as defined with a C_7 Chemistry parameter (2,4-DMP/2,3-DMP): AAPG/AMGP Abstract, Hedberg, Research Conference, Oct. 1994, Mexico City.
    61. Braun R.L. and Burnham A. K., 1990, Mathematical model of oil generation, degradation and expulsion: Energy Fuels, V.4, P. 132-146.
    62. Chivas A. R., Barnes I, Evans W.C., Lupton J. E., and Stone J.O., 1987. Liquid carbon dioxide of magmatic origin and its and non-hydrocarbon gases, Mineralogical Magazine51:483-493
    63. Cornides I., 1993. Magmatic carbon dioxde at the crust's surface in the Carpathian basin. Geochemical Journal, 27:241-249
    64. Cathles L.M., Scheoll M and Simon R., 1990. A kinetic model of CO_2 generation mineral and isotopic alteration during steamflooding. SPE Reservoir Engineering: 524-550
    65. Cecil, B. C., W. Stanton, and E.I. Robbins,1977, Geologic factors controlling coalification and hydrocarbon maturation(abs.): AAPG Bulletin,v.61: 775
    66. Carr, A. D., 1991. A pressure dependent model for vitrinite reflectance. In: Manning, D. (ed.), Organic Geochemistry: Advances and Applications in Energy and the Natural Environment, p.285-287. Manchester University Press.
    67. Carr, A. D., 1999. A vitrinite reflectance kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, Vol.16, p.355-377.
    68. Chen, H., Li, S., Sun, Y., Zhang, Q., 1998. Charging of the YC13-1 gas field from two petroleum systems in the Yinggehai and Qiongdongnan basins, South China Sea. Bulletin of American Association of Petroleum Geologists 82, 757-772.
    69. Crawford M. L., 1981. Phase equilibria in aqueous flusion inclusions. In Short Course in Fluid inclusion: Applications to petrology (ed. L.S.Hollister and M.L. Crawford).Min. Ass. Canada Short Course Handbook,6: 75-100
    70. Dai, J. X., Y. Song, C. S. Dai, and D. R. Wang, 1996. Geochemistry and accumulation of carbon dioxide gases in China: AAPG Bulletin, 80: 1615-1626.
    71. Hutcheon I and Abercrombie H., 1990. Carbon dioxide in clastic rocks and silicate hydrdrolysis. Geology, 18: 541-544
    72. Hanson, A. D., Zhang, S. C., Moldowan, J. M., Liang, D. G., Zhang, B. M., 2000. Molecular organic geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84: 1109-1128.
    
    
    73. Huang, B. J., Xiao, X. and Dong W. L., 2002a. Migration and accumulation of natural gases and their relationship to the formation of diapir structures in the Dongfang 1-1 gas field, South China Sea. Marine Petroleum Geology, (Accepted)
    74. Huang, B. J., Xiao, X. Zhang, M., 2002b. Geochemistry, grouping and origins of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea. Organic Geochemistry (Accepted).
    75. Huang, B. J., Xiao, X. and Dong W. L., 2002c. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry (Accepted).
    76. Hao Fang, Sun Yongchuan, Li Sitian and Zhang Qiming, 1995. Overpressure retardation of organic-matter maturation and hydrocarbon generation: A case study from the Yinggehai and Qiongdonnan basins, Offshore South China Sea. AAPG Bulleton, 79: 551-562
    77. Hao, F., S. T. Li, Y. C. Sun, and Q. M. Zhang, 1998, Geology, compositional heterogeneities and geochemical origin of the Yacheng Gas Field in the Qiongdongnan basin, South China Sea. AAPG Bulletin, 82: 1372-1384.
    78. Hill, R. J., Jenden, P. D., Tang, Y. C., Teerman, S. C., Kaplan, I. R., 1994. Influence of pressure on pylolysis of coals, in Mukhopadhyay, P. K., Dow, W. G., (Eds), Vitrinite Reflectance as a Maturity Parameter: Application and Limitation, American Chemical Society, ACS Symposium Series 570, p161-193.
    79. Hitchon B., 1974, Occurrence of natural gas in sedimentary basins. Natural Gases in Marine Sediments, 3: 195-225
    80. James A. T., 1983. Corelation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bulletin, 67: 1176-1191
    81. James A. T., et al., 1984, Microbial alteration of subsurface natural gas accumulations, AAPG Bulletin, 68: 957-960
    82. Kaplan I. R.(ed), 1974. Natural gases in narine sediments. Plemum Press, New York
    83. Karlsen D. A., Nedkvitne T., Larter S.R.,et. al., 1993, hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum reservoir filling history: Geochimica et CosmochimicaActa. 57: 3641-3659
    84. Li, M., Lin, R., Liao, Y., Snowdon, L. R., Wang, P., Li, P., 1999. Organic geochemistry of oils and condensates in the Kekeya field, Southwest Depression of the Tarim Basin (China). Organic Geochemistry, 30: 15-37.
    
    
    85. Li, M., Bao, J., Lin, R., Stasiuk, L., Yuan, M., 2001. Revised models for hydrocarbon generation, migration and accumulation in Jurassic coal measures of the Turpan Basin, NW China. Organic Geochemistry, 32: 1127-1152.
    86. Littke, R., B. Krooss, E. Idiz, and J. Frielingsdorf, 1995. Molecular nitrogen in natural gas accumulations: Generation fromsedimentary organic matter at high temperatures. AAPG Bulletin, 79: 410-430.
    87. Mango F. D., 1990a. The origin of light cycloalkanes in petroleum. Geochim. Cosmochim, Acta. 54: 23-27
    88. Mango F. D., 1990b. The origin of light hydrocarbon in petroleum: A kinetic test of the steady-state calalytic hypothesis. Geochim. Cosmochim, Acta. 54: 1315-1323
    89. Mattavelli L.,1983 Geochemistry and Habit of Natural Gas in Po Basin, Northen Italy. AAPG Bulletin, 67(12): 2239-2254
    90. MacDonald, G. J., 1983. The many origins of natral gas. Journal of Petroleum Geology, 5(4): 341-362
    91. Mckirdy D M and Chivas A R., 1992. Nonbioggraded aromatic condensate associated with volcanic supercritical carbon dioxide, Otway basin: on implication for primary migration from terrestrial organic matter. Organic Geochemistry, 18: 611-627
    92. McTavish, R. A., 1998. The role of overpressure in the retardation of organic matter maturation. Journal of Petroleum Geology, 21: 153-186.
    93. Mothinoux N., P. Landais, and B. Durand, 1986, Comparison between extracts from natural and artificial maturation series of Mahakam delta coals: Organic Geochemistry, 10: 648-650
    94. Noble, R. A., Alexander, R., Kagi, R. J., Knox, J., 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta ,49: 1241-1247.
    95. Pankina R G., et al., 1978. Origin of CO_2 in petroleum gases (from the isoptopic composition of carbon). International Geology Review, 21 (5): 535-539
    96. Philp, R. P., Gilbert, T. D., 1986. Biomarker distribution in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10: 73-84.
    97. Prince, L. C., and L. M. Wenger, 1992, The influence of pressure on petroleum generation and matruration as suggested by aqueous pyrolysis: Organic Gochemistry, 19: 141-159
    
    
    98. Roeder, E., Bodnar, R. J, 1980. Geologic pressure determinations from fluid inclusion studies. Ann. Rev. Earth. Planet. Sci. 8: 263-301.
    99. Roberts, S. J., and Nunn, 1995. Episodic fluid expulsion from geopressure sediments: Marine and Petroleum Geology, 12: 195-204
    100. Stahal W. J., 1977. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem. Geology, 20: 121-149
    101. Stahal W. J., 1979. Carbon isotopes in petroleum geochemistry. Lectures in Isotopes Geology, Springer-Verlag
    102. Stahal W. J., 1974. Carbon isotope frationation in natural gases. Nature, 251: 135-135
    103. Stahal W. J., 1981. Near-surface evidence of migration of natural gas from deep reservoirs and source rocks. AAPG Bulletin, 65: 1543-1550
    104. Swarbrick R. E., M. J. Osborne, D.Grunberger, G.S. Yardley, G.Macleod, and A.C.Aplin, 2000, Integrated study of the Judy Field (Block 30/7a)--an overpressured Central North Sea oil/gas field, Marine and Petroleum Geology, 17: 993-1010
    105. Scheoll M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Gochim. et Cosmochim. Acta, 44: 649-661
    106. Scheoll M., 1983. Genetic chatacterization of natural gases. AAPG, 67: 2225-2238
    107. Scheoll M., 1993. Isotope analysis of gas in gas field and gas storage operations. SPE Production Engineering, 8: 337-344.
    108. Van Aarssen, B.G.K., Zhang, Q., de Leeuw, J.W., 1992b. An unusual distribution of bicadinanes, tricadinanes and oliocadinanes in sediments from the Yacheng Gas-field, China. Organic Geochemistry, 18: 805-812.
    109. Whiticar M. J., E. Faber and M.Schoell, 1986. Biogenic methane formation in Marine and Freshwater Environments: CO_2 Reduction vs. Acetate Fermentation-isotope Evidence. Geochimica et Cosmochimica Acta, 50: 693-709
    110. Zhang Q.M., and Q.X., Zhang, 1991, Evidence of primary migration of condensate by molecular solution in aqueous phase in Yacheng field, offshore South China, Journal of Southeast Asian Earth Sciences, 5(1-4): 101-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700