用户名: 密码: 验证码:
癫痫脑电信号的非线性特征识别与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪80年代,随着非线性动力学理论的发展,非线性动力学被广泛地用于分析癫痫脑电信号。然而,由于基于混沌理论的非线性动力学分析方法需要假设脑电是低维混沌信号,对脑电信号的数据长度及平稳度要求较高,且对脑电信号中的噪声很敏感。为了克服传统非线性动力学方法的缺点,本文立足于癫痫脑电信号分析的要求,提出了新的方法用于刻画癫痫发作各阶段脑电信号的动力学特征变化。
     首先,结合传统递归图和排序递归图提出了混杂递归图方法分析失神发作脑电信号。该方法的新颖性在于定义时间序列的递归状态时,不仅考虑局部相空间距离而且考虑局部排序模式分布结构。仿真分析表明,基于混杂递归图的对角线结构分布的确定性测度DET,能够刻画模型参数的变化,并且抗噪声干扰能力更强。该方法用于分析大鼠失神发作间隙期、发作前期和发作期脑电信号的确定性特征,发现发作前期脑电信号的DET均值显著地大于发作间隙期,但显著地小于发作期。结果表明大鼠失神性癫痫发作前期脑电的确定性特性程度比发作间隙期脑电更高,但是比发作期脑电更低。
     其次,为了进一步调查失神性癫痫发作各阶段脑电信号隐藏的非线性动力学特征,基于脑电信号的排序模式分布特性,提出了一个新颖的相异性指数方法。该方法通过计算排序模式分布的距离来分析两段脑电信号的相异性。由神经元群模型模拟生成脑电信号,仿真分析相异性指数的性能。结合移动窗口技术,该方法用于分析110段大鼠失神发作脑电信号,其中58段失神发作脑电信号在其发作前相异性指数有显著地增加,能够成功地检测到发作前期状态,表明该方法可以用于检测失神发作脑电信号的动力学特征变化。
     再次,针对脑电同步分析在癫痫发作研究中的重要意义,基于排序模式分析提出了一个新颖的互信息估计方法。该方法通过对时间序列排序模式进行分类,来实现复杂的概率分布估计,从而直接估计出时间序列的信息量。通过耦合Henon映射模型和耦合神经元群模型模拟生成耦合时间序列,仿真分析排序互信息方法的性能。相比于传统的直方图方法,基于排序模式的互信息估计方法能够更好地刻画模型耦合系数的变化,而且抗噪声干扰能力更强。该方法应用于分析癫痫发作脑电信号,发现脑电信号间的互信息随着癫痫发作的开始而逐渐增加,在完全发作时达到最大。
     最后,提出了排序自互信息法用于刻画癫痫发作间隙期、发作前期和发作期脑电的动力学特征。仿真分析发现噪声和混沌序列的自互信息AMI(δ)值随着时滞偏移δ增大而衰减的速率不同,表明自互信息方法能够区别噪声和混沌序列。该方法用于分析癫痫发作各阶段脑电信号,发现发作间隙期、发作前期和发作期脑电的自互信息值分别在时滞偏移δ大约为5-6、7-8和9-10时达到稳定值。进一步结合线性判别分析,表明排序自互信息能够识别不同发作阶段的脑电信号。
Since the 1980s, new measures of epileptic EEG based on discipline of nonlinear dynamical systems (chaos) have been developed in the last decade. However chaos-based approaches need to assume that EEG data possesses a non-evolving low-dimensional attractor, and requires a long, stationary and noiseless EEG data to compute the reconstructed attractor’s properties. To overcome the drawbacks of traditional nonlinear methods and meet the requirement of epileptic EEG analysis, this dissertation develops new methods to characterize EEG changes in different epileptic seizure phases.
     Firstly, the hybrid recurrence plot (HRP), based on traditional recurrence plot (RP) and order recurrence plot (ORP), is proposed to analyze the absence EEG. The innovation of HRP is that the recurrence is defined not only by local phase space distance, but also by the local order patterns structure of a time series. The simulation results demonstrate that the determinism measure DET, based on the diagonal structure of HRP, can reveal the changes of model parameters; and the HRP method is much more robust against noise than the traditional RP and ORP methods. Furthermore, the HRP is applied to indicate the deterministic dynamics of EEG recordings at the seizure-free, pre-seizure and seizure states in genetic absence epilepsy rat. It is found that the DET values of pre-seizure EEG data are significantly higher than those of seizure-free intervals, but lower than those of seizure intervals. These results demonstrate that EEG epochs during pre-seizure intervals exhibit a higher degree of determinism than seizure-free EEG epochs, but lower than those in seizure EEG epochs in absence epilepsy rat.
     Secondly, in order to further investigate hidden nonlinear dynamic characteristics in EEG data for differentiating absence seizure phases, this dissertation proposes a novel dissimilarity measure based on the ordinal pattern distributions of EEG recordings. The dissimilarity between two EEG epochs can be qualified via a simple distance measure between the distributions of order patterns. A neural mass model is proposed to simulate EEG data and to valid the performance of the dissimilarity measure. Furthermore, the proposed dissimilarity measure is applied to analyze absence EEG data with moving-window technique, which show that this measure successfully detects pre-seizure phases prior to their onset in 58 out of 110 seizures. This suggested that the dissimilarity measure could be used to detect changes in the dynamics of absence EEG data.
     Thirdly, because the synchronization analysis of EEG recordings has a great role for the study of epileptic seizures, a novel method, based on order pattern analysis, is proposed to estimate the mutual information between EEGs. The proposed method calculates the probability distribution of time series based on the classification of order patterns to directly estimate the amount of information in time series. The coupled Henon map model and coupled neural mass model are proposed to generate coupled time series and to valid the performance of the proposed mutual information method. Compared to traditional histogram method, this proposed method is better for presenting the change of the coupling coefficient in coupled models, and is more robust to noise. Furthermore, the proposed mutual information estimation is applied to analyze epileptic EEG data, which show that mutual information between EEGs gradually increases until it reaches its maximum at full seizure.
     Finally, permutation auto mutual information (AMI) is proposed as a tool to evaluate the dynamic characteristics of EEG during seizure-free, pre-seizure and seizure phase, respectively. Simulation results show that the AMI rate of decrease with increasing delay shiftedδis different between noise and chaotic series, which demonstrates that AMI method could be able to distinguish between these two different series. Using this proposed method to analyze epileptic EEG data, the results show that the AMI(δ) gradually decrease and firstly reach to constant value about atδ=5-6,δ=7-8 andδ=9-10 in seizure-free, pre-seizure and seizure phase, respectively. Furthermore, combining the LDA classifier, the results confirm that the AMI method has potential in classifying the epileptic EEG recordings.
引文
1 W. Herbert, D. Leon, L. Brian. Special Issue on Epileptic Seizure Prediction. IEEE Trans. on Biomed. Eng., 2003, 50:537-539
    2 F. Mormann, R. Andrzejak, E. Elger, et al. Seizure prediction: the long and winding road. Brain, 2007, 130:314-333.
    3 W. Stacey, B. Litt. Technology Insight: neuroengineering and epilepsy-designing devices for seizure control. Nat Clin Pract Neurol., 2008, 4:190-201.
    4 L. Iasemidis. Epileptic Seizure Prediction and Control. IEEE Trans. on Biomed. Eng., 2003, 50(5):549-558
    5 L. Brian, E. Javier. Prediction of Epileptic Seizures. Lancet Neurol., 2002, 1:22-30
    6 R. S. Fisher, G. L. Krauss, E. Ramsay, et al. Assessment of vagus nerve stimulation for epilepsy: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology, 1997, 49:293-297.
    7 G. K. Motamedi, R. P. Lesser, D. L. Miglioretti. Optimizing parameters for terminating cortical after discharges with pulse stimulation. Epilepsia, 2002, 43:836-846.
    8贾文艳,高上凯,高小榕.癫痫发作预测研究的新进展.生物医学工程学杂, 2004, 21(2):325-328
    9 K. Lehnertz, B. Litt. The First International Collaborative Workshop on Seizure Prediction: summary and data description. Clin Neurosurg., 2005, 52:127-134.
    10 P. Uhlhaas, W. Singer. Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron, 2006, 52: 155-168.
    11 K. Aihara, G. Malsumolo. Chaotic Oscillation and Bifurcation in Squid Giant Axons. A. Holden (ed), Chaos. Manchester: Manchester University Press, 1986:257-269.
    12贺太纲,卢广文,李建萍.脑电中的混沌.生物医学工程学杂志, 2000,17(2):209-213
    13 W. Pritchard, D. Duke. Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci., 1992, 67(1-4):31-80.
    14 K. Lehnertz. Epilepsy and nonlinear dynamics. J. Biol. Phys., 2008, 34:253-266.
    15 C. Stam. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol., 2005, 116(10):2266-2301.
    16 A. Babloyantz, J. Salazar, C. Nicolis. Evidence of Chaotic dynamics of brain activity during the sleep cycle. Phys Lett A, 1985, 111:152-156.
    17 P. Rapp, I. Zimmerman, A. Alano et al. Experimental studies of chaotic neural behaviour cellular activity and electroencephalographic signal. H. Othmer (ed), Nonliner Oscillations in Biology and Chemistry, Lecture notes in Biomathematics. Berlin: Springer, 1985:175-205.
    18 A. Babloyantz. Chaotic dynamics in brain activity. E. Basar (ed), Dynamics of sensory and cognitive processing by the brain. Berlin: Springer, 1988:196-202.
    19 J. Roschke, E. Basar. The EEG is not a simple noise strange attractors in intracranial structures. E. Basar (ed), Dynamics of sensory and cognitive processing by the brain. Berlin: Springer, 1988:203-216.
    20 A. Soong, G. Stuart. Evidence of Chaotic dynamics underlying the human alpharhythm electroencephalogram. Biol Cybern.,1989, 2:55-62.
    21 J. Eckmann, D. Ruelle. Fundamental limitation for estimating dimension and Lyapunov exponents in dynamical systems. Physica D, 1992, 56:185-187.
    22 P. Rapp. Chaos in Neurosciences, cautionary tales from the frontier. Biologist, 1993, 40:89-94.
    23 A. Osborne, A. Provenzale. Finite correlation dimension for stochastic systems with power-law spectra. Physica D, 1989, 35:357-381.
    24田心,杨福生.脑电的非线性动力学研究中的问题和进展.国外医学生物医学工程分册, 1999, 22(4):193-198.
    25 W. Pritchard, D. Duke, K. Krieble. Dimensional analysis of resting human EEGⅡ: surrogate data testing indicates nonlinearity but not low - dimensional chaos, Psychophysiology, 1995, 32:486-491.
    26 J. Hughes. Progress in predicting seizure episodes with nonlinear methods. Epilepsy Behav., 2008, 12(1):128-135.
    27 J. Zhang, C. Zheng, A. Xie. Bispectrum Analysis of Focal Ischemic Cerebral EEG Signal Using Third-order Recursion Method. IEEE Trans. on Biomed. Eng., 2000, 47:352-359.
    28万柏坤,郑旭媛,朱欣,等.癫痫脑电特征波的综合检测分类方法研究.中国生物医学工程学报, 2002, 21(3):215-218.
    29 H. Liu, T. Zhang, F. Yang. A multistage, multimethod approach for automatic detection and classification of epileptiform EEG. IEEE Trans. on Biomed. Eng., 2002, 49:1557-1566.
    30 X. Li, J. Li, X. Yao. Complexity and synchronization of EEG with Parametric modeling. IEEE Workshop on Life Science Data Mining 2004, Brighton, UK, 1-4 Nov. 2004. 2004:34-38.
    31宋毅军,田心.经颅磁刺激对癫痫病灶脑电相关维数的影响.生物物理学报, 2003, 19(4):383-387.
    32 J. Martinerie, C. Adam, M. Le Van Quyen, et al. Epileptic Seizures can be Anticipated by Non-linear Analysis. Nat. Med., 1998, 4:1173-1176.
    33 M. Le Van Quyen, J. Martinerie, M. Baulac, et al. Anticipating Epileptic Seizures in Real Time by a Non-linear Analysis of Similarity between EEG Recordings. NeuroReport, 1999, 10:2149-2155.
    34孟欣,徐京华,顾凡及.癫痫病人脑电信号的奇异谱.生物物理学报, 2001, 17(1):86-90.
    35 F. Lopes da Silva, J.P. Pijn, P. Boeijinga. Interdependence of EEG signals: linear vs. nonlinear associations and the significance of time delays and phase shifts. Brain Topogr., 1989, 2:9-18.
    36 E. Pereda, R.Q. Quiroga, J. Bhattacharya. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 2005, 77:1-37.
    37 C.J. Stam, B.W. van Dijk. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D, 2002, 163:236-251.
    38 M. Rosenblum, A. Pikovsky, J. Kurths, et al. Phase synchronization: from theory to data analysis. F. Moss, S. Gielen. (Eds.), Handbook of Biological Physics, Neuro-Informatics and Neural Modelling. Amsterdam: Elsevier Science, 2001 4:279-321.
    39 M. London, A. Schreibman, M. Hausser, et al. The information efficacy of a synapse. Nat. Neurosci., 2002, 5:332-340.
    40 T. Jung, S. Makeig, M. Stensmo, et al. Estimating alertness from the EEG power spectrum. IEEE Trans on Biomed Eng, 1997, 44(1):60-69.
    41 P. Forgacs, H. Von Gizycki, M. Harhula, et al. The wavelet transformed EEG: a new method of trial-by-trial evaluation of saccade-related cortical activity. Suppl Clin Neurophysiol., 2006, 59:183-189.
    42 S. Slobounov, C. Cao, W. Sebastianelli. Differential effect of first versus second concussiveepisodes on wavelet information quality of EEG. Clin Neurophysiol., 2009, 120(5):862-867.
    43 A. Wolf, J. B. Swift, H. L. Swinney, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16:285-317.
    44 J.P. Eckmann, S. Kamphorst, D. Ruelle. Recurrence Plots of Dynamical Systems. Europhysics Letters, 1987, 5:973-977.
    45 J. P. Zbilut, A. Giuliani, C. L. Webber Jr. Recurrence Quantification Analysis and Principal Components in the Detection of Short Complex Signals. Phys. Lett. A, 1998, 237:131-135.
    46 J. P. Zbilut, A. Giuliani, C. L. Webber Jr. Recurrence Quantification Analysis as an Empirical Test to Distinguish Relatively Short Deterministic versus Random Number Series. Phys. Lett. A, 2000, 267:174-178.
    47 N. Thomasson, T. J. Hoeppner, C. L. Webber Jr, et al. Recurrence quantification in epileptic EEGs. Physics Letters A, 2001, 279(1-2):94–101.
    48 R. Acharya, O. Faustand, N. Kannathal, et al. Non-linear analysis of EEG signals at various sleep stages. Computer Methods and Programs in Biomedicine, 2005, 80(1):37-45..
    49 N. Marwan, A. Meinke. Extended Recurrence Plot Analysis and its Application to ERP Data. Int. J. Bifurcat. Chaos, 2004, 14(2):761-771.
    50 O. Rosso. Entropy changes in brain function. Int J Psychophysiol., 2007, 64(1):75-80.
    51 S.M. Pincus. Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disord, 2006, 8:430-440.
    52 S.M. Pincus. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A, 1991, 88(6):2297-2301.
    53 J.S. Richman, J.R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol., 2000, 278(6):2039-2049.
    54 C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett., 2002, 88(17):174102.
    55 S.M. Pincus, B.H. Singer. Randomness and degrees of irregularity. Proc Natl Acad Sci U S A, 1996, 93(5):2083-2088.
    56 D. Zhang, H. Ding, Y. Liu, et al. Neurodevelopment in newborns: a sample entropy analysis of electroencephalogram. Physiol Meas., 2009, 30(5):491-504.
    57 I. Rezek, S. Roberts. Stochastic complexity measures for physiological signal analysis. IEEE Trans on Biomed Eng., 1998, 45(9):1186-1191.
    58董国亚,吴祈耀.应用近似熵对睡眠脑电进行分期的研究.北京生物医学工程, 1999, 4:8-13
    59 X. Li, S. Cui, L.J. Voss. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology, 2008, 109(3):448-456.
    60 W. Lawrence. Synchronous neural oscillations and cognitive processes. TRENDS in Cognitive Sciences, 2003, 7:553-559.
    61 T. Womelsdorf, J.M. Schoffelen, R. Oostenveld, et al. Modulation of neuronal interactions through neuronal synchronization. Science, 2007, 316:1609-1612.
    62 F. Varela, J. P. Lachaux, E. Rodriguez, et al. The brainweb: phase synchronization and large scale integration. Nat. Rev.Neurosci., 2001, 2:229-239.
    63 A. Schnitzler and J. Gross, Normal and pathological oscillatory communication in the brain, Nat. Rev.Neurosci., 2005, 6:285-296.
    64 T. Koenig, L. Prichep, T. Dierks, et al. Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging., 2005, 26(2):165-171.
    65 F. Benard, R. Jonathan, R. Hustinx. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin. Nucl. Med., 2003, 33(2):148-162.
    66 R.V. Parsey, J.J. Mann. Applications of positron emission tomography in psychiatry. Semin. Nucl. Med., 2003, 33(2):129-135.
    67 J. Gale, R. Amirnovin, Z. Williams, et al. From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease. Neurosci Biobehav Rev., 2008, 32(3):378-387.
    68 T. Brismar. The human EEG--physiological and clinical studies. Physiol Behav., 2007, 92(1-2):141-147.
    69 C. Marzano, M. Ferrara, E. Sforza, et al. Quantitative electroencephalogram (EEG) in insomnia: a new window on pathophysiological mechanisms. Curr Pharm Des., 2008, 14(32):3446-3455.
    70 J.A. Vastino, H.L. Swinney. Information transport in spatiotemporal systems. Phys. Rev. Lett. 1988, 60:1773-1776.
    71 J. Xu, Z. Liu, R. Liu, et al. Information transmission in human cerebral cortex. Physica D, 1997, 106:363-374.
    72 C.E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal, 1948, 27:379-423.
    73 R. Steuer, J. Kurths, C.O. Daub, et al. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics, 2002, 18:231-240.
    74 J. Rissanen, T.P. Speed, B.Yu. Density estimation by stochastic complexity. IEEE Trans. Inform. Theory, 1992, 38:315-323.
    75 M. Palus, A. Stefanovska. Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys. Rev. E, 2003, 67:055201.
    76 D.R. Brillinger, A. Guha. Mutual information in the frequency domain. Journal of Statistical Planning and Inference, 2007, 137:1076-1084.
    77 T. Trappenberg, J. Ouyang, A. Back. Input variable selection: mutual information and linear mixing measures, IEEE Trans. Knowledge Data Eng., 2006, 18:37-46.
    78李颖洁,石菁,朱春妍,等.心算任务下脑电信息传输.上海大学学报(自然科学版), 2007, 13:439-443.
    79童勤业,庞加利. EEG的信息熵分析.生物物理学报, 1993, 9(4):645-650.
    80 J. Jeong, J.C. Gore, B.S. Peterson. Mutual information analysis of the EEG in patients with Alzheimer's disease. Clin Neurophysiol., 2001, 112(5):827-835.
    81 M. Palus, V. Komarek, T. Prochazka, et al. Synchronization and information flow in EEG of epileptic patients. IEEE Eng. Med. Biol. Mag., 2001, 20:65-71.
    82 S.H. Na, S.H. Jin, S.Y. Kim. The effects of total sleep deprivation on brain functional organization: mutual information analysis of waking human EEG. Int J Psychophysiol., 2006, 62(2):238-242.
    83 Z.J. Wang, Lee PW, McKeown MJ. A novel segmentation, mutual information network framework for EEG analysis of motor tasks. Biomed Eng Online, 2009, 8:9.
    84 P.J. Franaszczuk, G.K. Bergey. An autoregressive method for the measurement of synchronization of interictal and ictal EEG signals. Biol. Cybern., 1999, 81:3-9.
    85 C.C. Jouny, P.J. Franaszczuk, G.K. Bergey. Signal complexity and synchrony of epileptic seizures: is there an identifiable preictal period?. Clinical Neurophysiology, 2005, 116:552-558.
    86 C. Allefeld, J. Kurths. An approach to multivariate phase synchronization analysis and its application to event-related potentials: Synchronization Cluster Analysis. Int. J. Bifurcation Chaos,2004, 14:417-426.
    87 C. Carmeli, M.G. Knyazeva, G.M. Innocenti, et al. Assessment of EEG synchronization based on state-space analysis. NeuroImage, 2005, 25:339-354.
    88 P. Seba. Random Matrix Analysis of Human EEG Data. Phys. Rev. Lett., 2003, 91(19):198104.
    89 M. Muller, G. Baier. Detection and characterization of changes of the correlation structure in multivariate time series. Phys Rev E, 2005, 71:046116.
    90 M. Muller, K. Wegner, U. Kummer, et al. Quantification of cross correlations in complex spatiotemporal systems. Phys Rev E, 2006, 73:046106.
    91 S. Viglione, V. Ordon, W. Martin, et al. Epileptic seizure warning system. U.S. Patent 3,863,625, 1973.
    92 L. Iasemidis, J.C. Sackellares, Phase Space Topography and the Lyapunov Exponent of Ectrocorticograms in Partial Seizures. Brain Topogr., 1990, 2:187-201.
    93 K. Lehnertz, C. Elger, Can Epileptic Seizures be Predicted? Evidence from Nonlinear Time Series Analysis of Brain Electrical Activity. Phys. Rev. Lett., 1998, 80:5019-5022.
    94 S. Noachtar, J. Remi. The role of EEG in epilepsy: a critical review. Epilepsy Behav., 2009, 15(1):22-33.
    95 F. Lopes da Silva, W. Blanes, S. Kalitzin, et al. Epilepsies as a dynamical disease of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia, 2003, 44:72-83.
    96 K. Lehnertz, C. Elger. Spatio-temporal Dynamics of the Primary Epileptogenic Area in Temporal Lobe Epilepsy Characterized by Neuronal Complexcity Loss. Electroencephalogr. Clin. Neurophysiol., 1995, 95:108-117.
    97 D. Scott, S. Schiff. Predictability of EEG Interictal Spikes. Biophys. J., 1995, 69: 1748-1757.
    98 K. Schindler, R. Wiest, M. Kollar, et al. EEG Analysis with Simulated Neuronal Cell Models Helps to Detect Pre-seizure Changes. Clin. Neurophysiol., 2002, 113:604-614.
    99 V. Navarro, J. Martinerie, M. Le Van Quyen, et al. Seizures Anticipation in Human Neocortical Partial Epilepsy. Brain, 2002, 125:640-655.
    100 T. Maiwald, M. Winterhalder, A. Aschenbrenner-Scheibe, et al. Comparison of Three Nonlinear Seizure Prediction Methods by Means of the Seizure Prediction Characteristic. Physica D, 2004, 194:357-368.
    101 L. Iasemidis, K. Pappas, R. Gilmore, et al. Preictal entrainment of a critical cortical mass is a necessary condition for seizure occurrence. Epilepsia, 1996, 37:90.
    102 F. Mormann, R.G.. Andrzejak, T. Kreuz, et al. Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients. Phys. Rev. E, 2003, 67:021912.
    103 K. Schindler, H. Leung, C.E. Elger, et al.. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain, 2007, 130:65-77.
    104 Y. Futatsugi, J. Riviello Jr. Mechanisms of generalized absence epilepsy. Brain Dev., 1998, 20(2):75-79.
    105 H.K. Meeren, J.P. Pijn, E.L. Van Luijtelaar, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci., 2002, 22(4):1480-1495.
    106 A. Aarabi, F. Walloisb, R. Grebe. Does spatiotemporal synchronization of EEG change prior to absence seizures? Brain Research, 2008, 1188:207-221.
    107 F. Amor, S. Baillet, V. Navarro, et al. Cortical local and long-range synchronization interplay in human absence seizure initiation, Neuroimage, 2009, 45(3):950-962.
    108 J.P. Eckmann, D. Ruelle. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D, 1992, 56:185-187.
    109 C.L. Webber Jr, J.P. Zbilut. Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol, 1994, 76:965-973.
    110 N. Marwan, M.C. Romano, M. Thiel, et al. Recurrence plots for the analysis of complex systems. Physics Reports, 2007, 438:237-329.
    111 Y.H. Cao, W.W. Tung, J.B. Gao. Detecting dynamical changes in time series using the permutation entropy. Phys Rev E, 2004, 70:046217.
    112 A. Groth. Visualization of coupling in time series by order recurrence plots. Phys. Rev. E, 2005, 72:046220.
    113 F. Takens. Detecting strange attractors in turbulence. D.A. Rand, L.S. Young (eds). Dynamical systems and turbulence. Lecture Notes in Mathematics, Springer-Verlag 1981, 898:336.
    114 C. Letellier. Estimating the Shannon entropy : recurrence plots versus symbolic dynamics. Phys. Rev. Lett., 2006, 96:254102.
    115 L.L. Trulla, A. Giuliani, J.P. Zbilut, et al. Recurrence quantification analysis of the logistic equation with transients. Physics Letters A, 1996, 223(4):255-260.
    116 F. H. Lopes da Silva, A. Hoek, H. Smith, et al. Model of brain rythmic activity. Kybernetic, 1974, 15:27-37.
    117 B. Jansen, G. Zouridakis, M. Brandt. A Neurophysiologically-based Mathematical Model of Flash Visual Evoked Potentials. Biol. Cybern., 1993, 68:275-283.
    118 F. Wendling, J. Bellanger, F. Bartolomei, et al. Relevance of Nonlinear Lumped-parameter Models in the Analysis of Depth-eeg Epileptic Signals. Biol. Cybern., 2000, 83:367-378.
    119 L. Danober, C. Deransart, A. Depaulis, et al. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol, 1998, 55:27-57.
    120 P. Polack, I. Guillemain, E. Hu, et al. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci, 2007, 27:6590-6599.
    121 L. Matassini, H. Kantz, J. Ho?yst, et al. Optimizing of recurrence plots for noise reduction. Phys Rev E, 2002, 65:021102.
    122 M. Thiel, M. Romano, J. Kurths, et al. Influence of observational noise on the recurrence quantification analysis Physica D, 2002, 171:138-152.
    123 K. Keller, M. Sinn. Ordinal analysis of time series. Physica A, 2005, 356:114-120.
    124 O. Rosso, H. Larrondo, M. Martin, et al. Distinguishing noise from chaos. Phys Rev Lett, 2007, 99:154102.
    125 M. Staniek, K. Lehnertz. Parameter Selection for Permutation Entropy Measurements. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17:3729-3734.
    126 J. Amigo, S. Zambrano, M. Sanjuan. True and false forbidden patterns in deterministic and random dynamics. EPL, 2007, 79:50001.
    127 H. Scharfman. The neurobiology of epilepsy. Curr Neurol Neurosci Rep., 2007, 7(4):348-354.
    128 Y. Fujiwara-Tsukamoto, Y. Isomura. Neural mechanism underlying generation of synchronous oscillations in hippocampal network. Brain Nerve., 2008, 60(7):755-762.
    129 I. Baruchi, V. Volman, N. Raichman, et al. The emergence and properties of mutualsynchronization in in vitro coupled cortical networks. Eur J Neurosci., 2008, 28(9):1825-1835.
    130 C.C. Chen, J.C. Hsieh, Y.Z. Wu, et al. Mutual-information-based approach for neural connectivity during self-paced finger lifting task. Hum Brain Mapp., 2008, 29(3):265-280.
    131 E. Olofsen, J. Sleigh, A. Dahan. Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth., 2008, 101(6):810-821.
    132 A.M. Fraser, H.L. Swinney. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986, 33:1134-1140.
    133 T. Schreiber, A. Schmitz. Surrogate time series. Physica D, 2000, 142:346-382.
    134 J. Theiler, S. Eubank, A. Longtin, et al. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 1992, 58:77-94.
    135 A. Politi, A. Torcini. Periodic orbits in coupled Henon maps: Lyapunov and multifractal analysis. Chaos. 1992, 2(3):293-300.
    136 A. Stefanski. Quantifying the synchronizability of externally driven oscillators. Chaos. 2008, 18(1):013106.
    137 Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol., 2001, 112(7):1201-1218.
    138 B. Schelter, M. Winterhalder, T. Maiwald, et al. Do false predictions of seizures depend on the state of vigilance? A report from two seizure prediction methods and proposed remedies. Epilepsia, 2006, 47:2058-2070.
    139 F. Benedetti, D. Arduino, S. Costa, et al. Loss of expectation-related mechanisms in Alzheimer’s disease makes analgesic therapies less effective. Pain, 2006, 121:133-144.
    140 S.H. Na, S.H. Jin, S.Y. Kim, et al. EEG in schizophrenic patients: mutual information analysis Clin. Neurophysiol., 2002, 113:1954-1960.
    141 B. Pompe, P. Blidh, D. Hoyer, et al. Using mutual information to measure coupling in the cardiorespiratory system. IEEE Eng. Med. Biol. Mag., 1998, 17:32-39.
    142 D. Hoyer, B. Frank, B. Pompe, et al. Analysis of complex physiological systems by information flow: a time scale-specific complexity assessment. Biomed Tech., 2006, 51(2):41-48.
    143 M. Palus. Coarse-grained entropy rates for characterization of complex time series. Physica D,1996, 93:67-77.
    144 M. Palacios, H. Friedrich, C. Gotze, et al. Changes of autonomic information flow due to idiopathic dilated cardiomyopathy. Physiol. Meas., 2007, 28:677-688.
    145 C. Gomez, R. Hornero, D. Abasolo, et al. Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information. Comput Methods Programs Biomed., 2007, 87(3):239-247.
    146 D. Abasolo, J. Escudero, R. Hornero, et al. Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer's disease patients. Med Biol Eng Comput., 2008, 46(10):1019-1028.
    147 J. Escudero, R. Hornero, D. Abasolo. Interpretation of the auto-mutual information rate of decrease in the context of biomedical signal analysis. Application to electroencephalogram recordings. Physiol Meas., 2009, 30(2):187-199.
    148 M. Kyperountas, A. Tefas, I. Pitas. Weighted piecewise LDA for solving the small sample size problem in face verification. IEEE Trans Neural Netw., 2007, 18(2):506-519.
    149 M. Henon. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 1976, 50:69-77.
    150 C. Grebogi, E. Ott, J. Yorke. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D, 1983, 7:181-200.
    151 E.N. Lorentz. Deterministic nonperiodic flow. Journal of the Atmosphairic Sciences. 1963, 20:130-141.
    152 O.E. Rossler. An equation for continuous chaos. Physics Letters A, 1976, 57:397-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700