用户名: 密码: 验证码:
生物反馈中脑电信号分析及其在癫痫治疗中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是一种常见的慢性神经系统疾病,发病率约占世界人口的1%,其中25%左右的患者属于难治性癫痫。对这部分病人,已经开始采用脑电生物反馈训练方法缓解其癫痫病情与减少发作频度。论文从神经电生理角度出发,研究难治性癫痫病人经生物反馈训练后脑电参数的变化情况,并探讨生物反馈训练对神经疾病的治疗机制与疗效评估方法。
     论文首先进行了难治性癫痫患者的脑电生物反馈训练实验,训练方案为强化患者C4导联处12~15Hz的感觉运动节律波,同时抑制4~8Hz的theta波。实验组21例患者的反馈治疗有效率为76.2%。论文还对治疗效果较好的其中6例患者跟踪采集了患者在反馈前、中、后不同时期的的长程、多导脑电记录。
     为了用电生理指标评估生物反馈的疗效,论文将功率谱估计引入反馈前后脑电记录的分析中。结果表明:6个难治性癫痫患者在经过一定疗程的脑电生物反馈治疗后,其电生理指标SMR功率/theta功率的变化非常严格的契合了反馈方案,印证了神经信息反馈训练的脑电自我调节机制及其对行为习性的治疗效用,解决了目前对脑电生物反馈疗效的评价多局限于患者症状改善的问题。
     因为非线性动力学方法比传统方法更能反映大脑的状态变化,论文将非线性分析方法——近似熵与相关维数引入到病例反馈训练前后的脑电信号分析中,结果表明在接受反馈训练大约1个月左右的时间后,所有病例在几乎所有导联处,其脑电信号的近似熵和相关维数都比反馈治疗前增加。说明生物反馈训练有助于皮层神经元群体电生理活动向更加混沌的状态转化,通过提高系统自身的混沌性(近似熵、相关维数增加)来增强其抗应激能力,改善癫痫病态症状。
     论文还设计开发了一套脑电生物反馈系统,能够实现脑电信号的采集、反馈阈值的设定、反馈参数的提取、反馈动画的驱动播放,以及病例与系统管理等功能。反馈参数的设置中加入了商用系统中没有的非线性反馈参数。对系统的测试表明设计开发的脑电系统满足各项功能要求。
Epilepsy is a common serious neurological disorder. Approximately 1% of the world population suffers from this chronic disease, among them about 25% are intractable to current medical and/or surgical therapies. For these patients, EEG biofeedback (also called neurofeedback) is an effective therapy that can help in seizure control. To assess the effects of EEG biofeedback on brain electrophysiology and to determine how biofeedback works, different EEG measurements are applied to explore the variations in EEG signals recorded from epileptic patients taking biofeedback training.
     21 patients with intractable epilepsy were trained to increase production of sensorimotor rhythm (SMR, 12–15 Hz) activity and decrease production of theta (4–8 Hz) wave activity with one scalp electrode placed on the position C4. The treatment effective rate was 76.2%. To evaluate the effects of the treatment using EEG analysis, 16-channel EEG recordings of six patients were acquired before a patient received biofeedback training and after about 10 training sessions, others were acquired at different times over the treatment duration.
     In this dissertation, the EEG power spectral density (PSD) was used to evaluate the differences in EEG signals before and after biofeedback. After sessions of treatment, the EEG SMR to theta PSD ratio calculated from the C4 electrode site became larger than that before treatment, which agrees well with the biofeedback protocol. This result verified the self-regulatory mechanism of neurofeedback, so that we could evaluate the efficacy of neurofeedback from a new perspective other than the reduction of seizure frequency.
     Since nolinear EEG measurements can reflect more information in changes of brain function state than linear measurements, the variations of approximate entropy (ApEn) and correlation dimension (D2) were also explored. The results demonstrated that the ApEn and D2 over the 16-channel EEG recordings all increased about one month later compared with those of the EEG recordings before training. This reveals that biofeedback training can increase the degree of random electrical activity of the cortical neuron population, so that the symptoms of epilepsy are improved and seizures alleviated. Thus the ApEn and D2 criterions can be used to evaluate the effect of EEG biofeedback. It may give an indication of the electrophysiologic basis of EEG biofeedback.
     A set of EEG biofeedback system was developed, which has functions of EEG signal acquisition, threshold setting, feature extraction, animation and mp3 playing, system and patient database management and so on. Nonlinear EEG measurements were incorporated into this biofeedback system, which mainly consists of linear frequency parameters at present. The result of system testing proves that the system could satisfy the requirements of biofeedback training.
引文
[1] Sandra A L. Neurological disease and epilepsy. Current Obstetrics & Gynaecology. 2002, 12:138 -143
    [2]解学孔.癫痫病学.北京:人民卫生出版社, 1995
    [3] Commission on Epidemiology and Prognosis, International League Against Epilepsy. Guidelines for epidemiologic studies on epilepsy. Epilepsia. 1993, 34(4):592–596
    [4]郭玉璞,王维治.神经病学.第2版.北京:人民卫生出版社, 2006
    [5]王学峰.癫痫定义及分类:历史、内涵、新观念.中华全科医师杂志. 2007, 6(12):711-714
    [6] Joyce A C, Katrien D R, Orrin D, et al. A systematic review of the behavioral effects of levetiracetam in adults with epilepsy, cognitive disorders, or an anxiety disorder during clinical trials. Epilepsy & Behavior. 2003, 4(2): 124-132
    [7] Witte H, Iasemidis L D, Litt B. Special issue on epileptic seizure prediction. IEEE Trans Biomed Eng. 2003, 50(5): 537-539
    [8] Ure J A, PerassoloM. Update on the pathophysiology of epilepsies. J Neurol Sci. 2000, 177 : 12-17
    [9]程记伟,白宇.癫痫的药物治疗进展.现代医药卫生. 2008, 24(4):540-541
    [10]王萍,任榕娜.抗癫痫药物的毒副作用.国际内科学杂志. 2007,34(2): 91-94
    [11] Shaefi S, Harkness W. Current status of surgery in the management of epilepsy. Epilepsia. 2003, 44:43–47
    [12] Sisodiya S, Lin W R, Harding B, et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 2002, 125:22-31
    [13] International League Against Epilepsy. ILAE commission report.The epidemiology of the epilepsies: future directions. Epilepsies. 1997,38(5): 614
    [14] Razran, G. The observable unconscious and the inferable conscious in current Soviet psychophysiology: Interoceptive conditioning, semantic conditioning, and orienting reflex. Psychological Review. 1961, 68: 81-147
    [15] Kamiya, J. Conditioned descrimination of the EEG alpha rhythm in humans. Paper presented at the Western Psychological Association, San Francisco, 1962
    [16] Basmajian J V. Biofeedback:Principles and practice for clinicians. Williams & Wilkins, 3 edition,1989
    [17]戴福强.生物反馈临床应用.健康心理学. 1995,3(2):45-47
    [18] Siknner B F. Operant behavior. American Psychologist. 1963, 18(8) :503-515
    [19] Dong Y, Mao J J, Shang G, et ac. Acetylcholine release in the hippocampus during the operant conditioned reflex and the footshock stimulus in rats. Neuroscience Letters. 2004, 369:121–125
    [20] Bota M, Dong H W, Swanso L W. Brain architecture management system. Neuroinformatics. 2005, (3):15–48
    [21] Brodal P. The basal ganglia in the central nervous system: structure and function. NY, USA: Oxford University Press, 1992
    [22] Miller N E. Learning of Visceral and Glandular Responses. Science. 1969,163: 434-445
    [23]王庭槐.生物反馈及其机理进展.医学信息. 2002, 10(15):610-614
    [24] McGrady A. Good news - bad press: applied psychophysiology in cardiovascular disorders. Biofeedback Self Regul. 1996, 21 (4): 335-346
    [25]邹明德.探索脑电α波生物反馈技术.北京生物医学工程. 2000, 19(1):39-41
    [26] Sharpley C F. Maintenance and generalizability of laboratory-based heart rate reactivity control training. Journal of Behavioral Medicine. 1994, 17:309-329
    [27]轧铸,季红光,王海明.生物反馈及其临床应用.中国行为医学科学. 1997, 6(1):74-76
    [28] http://www.bfbgames.com/biofeedback/
    [29] kamiya J. Control of states of consciousness:Ⅱ.Attainment throught external feedback augmenting control of psychophysiological variables. Archives of genral psychiatry. 1971, 25:436-441
    [30] Lehrer P M, Carr R, Sargunaraj D. Stress management techniques: Are they all equivalent, or do they have specific effects?. Biofeedback and Self-Regulation. 1994, 19:353-401
    [31] Saunders J T, Cox D J, Teates C D. Thermal biofeedback in the treatment of intermittent claudication in diabetes: A case study. Biofeedback and Self-Regulation. 1994, 19:337-345
    [32] Montgomery G T. Slowed respiration training. Biofeedback and Self-Regulation. 1994,19:211-225
    [33] Lubar J F, Swartwood M, Donnell P. Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA socores, behavioral ratings, and WISC-R performance. Biofeedback and self-regulation. 1995, 20:83-99
    [34] Swingle P G. Neurofeedback treatment of pseudoseizure disorder. Biological Psychiatry. 1998, 44(11): 1196-1199
    [35] Nash J K. Treatment of ADHD with neurotherapy. Clin Electroencephalogr. 2000,31:30-37
    [36] Egner T, Zech T F, Gruzelier J H. The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology. 2004, 115(11): 2452-2460
    [37] Egner T, Gruzelier J H. EEG Biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology. 2004, 115(1):131-139
    [38] Weaver M T, Mcgrady A. A provisional model to predict blood pressure response to biofeedback assisted relaxation. Biofeedback and self-regulation. 1995, 20(3):229-240
    [39]张苏范,毕希名等,生物反馈,北京:北京科学技术出版社,1987:90-104
    [40] Rice K M, Blanchard E B, Purcell M. Biofeedback treatments of generalized anxiety disorder: preliminary results. Biofeedback and self-regulation. 1993, 18(2):93-105
    [41] Siegfried O, Caroline G. Biofeedback-the Ultimate Self-Help Discipline, http://www.eegspectrum.com/
    [42]伟利国,梁淼.多导生物反馈仪肌电信号提取电路的设计.北京理工大学学报. 2003, 23(1):116-119
    [43] Steriade M, gloor P, Llinas R R, et al. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol. 1990, 76:481-508
    [44] Silberstein R B. Neuromodulation of neuocotical dynamics. In P. L. Nunez(Ed.), Neocortical dynamics and human EEG rhythms. New York: Oxford University Press, 1995:591-627
    [45] Lubar J O, Lubar J E. Electroencephalographic Biofeedback of SMR and Beta for Treatment of Attention Deficit Disorders in Clinical Setting. Biofeedback and Self-Regulation. 1984, 9(1):1-23
    [46] Lubar J F, Swartwood J N,Timmerman D L. Quantitative EEG and auditory event-related potentials in the evaluation of attention-deficit/hyperactivity for neurofeedback training. J. Psychoed Assess ADHD Special.1995:143-160
    [47]李雪霓,王玉凤.注意力变量检查(TOVA)在中国的初步应用.中国心理卫生杂志. 2000, 14(3):149
    [48]陈一心,林节,焦公凯,等.脑电反馈治疗注意缺陷多动障碍儿童的有效性分析.中国行为医学科学. 2003, 12(5):513-515
    [49]张英. EEG生物反馈治疗ADHD疗效特点的随访研究[硕士学位论文].西安:西安交通大学, 2001
    [50] Middendorf M, McMillan G R, Calhoun G L, et al. Brain-computer interface based on the steady-state visual-evoked response. IEEE trans. Rehab. Eng. 2000, 8:211-214
    [51] McMillan G R, Calhoun G L. Direction brain interface utilizing self-regulation of steady-state visual evoked response. Proc. RESNA’95. 1995, 693-695
    [52] Wolpaw J R, McFarland D J, et al. An EEG-based brain-computer interface for cursor control. Electroenceph. Clin. Neurophysiol. 1991, 78:252-259
    [53]程明.基于脑电信号的脑-计算机接口的研究[博士学位论文].北京:清华大学生物医学工程系, 2004
    [54] Seifert A R, Lubar J F. Reduction of epileptic seizures through EEG biofeedback training. Biological Psychology. 1975,3(3):157-184
    [55] Uhlmann C, Froscher W. Biofeedback treatment in patients with refractory epilepsy: changes in depression and control orientation. Seizure. 2001,10(1):34-38
    [56] Walker J E, Kozlowski G P. Neurofeedback treatment of epilepsy. Child and Adolescent Psychiatric clinics of north America 2005; 4(1):163–176
    [57] Monderer R S, Harrison D M, Haut S R. Neurofeedback and epilepsy. Epilepsy & Behavior. 2002, 3(3):214–218
    [58] Brody S, Rau H, K?hler F. Slow cortical potential biofeedback and the startle reflex. Biofeedback and Self-Regulation. 1994, 19:1-11
    [59] Rockstroh B, Elbert T, Birbaumer N, et al. Cortical self-regulation in patients with epilepsies. Epilepsy Research. 1993,14(1):63–72
    [60] Birbaumer N, Elbert T, Canavan A G, et al. Slow potentials of the cerebral cortex and behavior. Physiological Reviews. 1990, 70(1):1–41
    [61] Kotchoubey B, Strehl U, Birbaumer N, et al. Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia. 2001, 42(3):406-416
    [62] Sterman M B, Friar L. suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalogr. Clin. Neurophysiol. 1972, 33:89-95
    [63] Sterman M B, Macdonald L R, Stone R K. Biofeedback training of the sensorimotor EEG rhythm in man: effects on epilepsy. Epilepsia. 1974, 15(3):395–416
    [64] Sterman M B, Macdonald L R. Effects of central cortical EEG feedback training on incidence of poorly controlled seizures. Epilepsia. 1978, 19(3):207–222
    [65] Sterman M B. Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clin Electroencephalogr. 2000, 31(1):45–55
    [66] Kuhlman W N. EEG biofeedback training of epileptic patients: clinical and electroencephalographic analysis. Electroencephalogr Clin Neurophysiol. 1978, 45(6):699–710
    [67] Lubar J F, Shabsin H S, Natelson S E. EEG operant conditioning in intractable epileptics. Arch Neurol. 1981, 38(11):1700–1704
    [68] Lantz D, Sterman M B. Neuropsychological assessment of subjects with uncontrolled epilepsy: effects of EEG biofeedback training. Epilepsia. 1988, 29(2):163-171
    [69] Andrews D J, Schonfeld W H. Predictive factors for controlling seizures using a behavioral approach. Seizure. 1992, 1(2):111-116
    [70] Egner T, Sterman M B. Neurofeedback treatment of epilepsy: from basic rationale to practical application. Expert Rev. Neurotherapeutics. 2006, 6(2):247-257
    [71] Sterman M B. Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback self Regul. 1996,21:3-33
    [72] Fell J, Elfadil H, Klaver P. Covariation of spectral and nonlinear EEG measures with alpha biofeedback. Intern J Neuroscience. 2002, 112(9):1047–57
    [73] Egner T, Gruzelier J H. EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin Neurophysiol. 2004,115(1):131-139
    [74] Egner T, Zech T F, Gruzelier J H. The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology. 2004, 115:2452-2460
    [75]胡广书.数字信号处理—理论、算法与实现.北京:清华大学出版社, 1997
    [76] Fernanda S. Application of nonlinear time series analysis technology to high frequency currency exchange data. Physica A:Statistical mechanics and its applications. 2002, 312(3-4):520-538
    [77]孟欣,欧阳楷.脑电信号的几个非线性动力学分析方法.北京生物医学工程. 1997, 16(3):135-140
    [78]田心,杨福生.脑电的非线性动力学研究中的问题和进度.国外医学生物医学工程分册. 1999, 22(4):193-198
    [79] Wyrwicka W, Sterman M B. Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiol. Behav. 1968,3:703-707
    [80]伍文清.神经反馈对难治性癫痫患者生活质量的影响[博士学位论文].北京:首都医科大学附属北京友谊医院, 2006
    [81] http://www.thoughttechnology.com/
    [82]赵龙莲,伍文清,胡广书.基于脑电反馈的难治性癫痫病人的近似熵研究.清华大学学报(自然科学版). 2009, 49(3): 411-415
    [83]缪晓波.基于脑电信号的认知动力学系统研究——线性/非线性方法及动态时—频—空分析[博士学位论文].重庆大学生物医学工程系, 2004
    [84] Kay S M. Mordern Spectral Estimation. Englewood Cliffs, NJ:Prentice-Hall,1987
    [85] Marple S L. Digital spectral analysis with applications. Englenood cliffs, NJ:Prentice-Hall,1987
    [86] Subasi A. Selection of optimal AR spectral estimation method for EEG signals using Cramer–Rao bound. Computers in Biology and Medicine. 2007, 37:183–194
    [87]姚天任,孙洪.现代数字信号处理.武汉:华中理工大学出版社, 1999
    [88]王兆源,周龙旗.一种基于自适应的脑电滤波技术.中国医学物理学杂志. 1995,16(4):237-238
    [89]龙飞,吴小培,范羚.基于独立分量分析的脑电噪声消除.生物医学工程学杂志. 2003, 20(3):479-483
    [90]王巧兰,季忠,秦树人.基于小波变换的脑电噪声消除方法. 2005,28(7):15-17
    [91]杨福生.生物医学信号处理.北京:清华大学出版社,1989:249-285
    [92] Bell A J, Sejnowske T J. An information maximization approach to blind separation and blind deconvolution. Neural Computation. 1995 (7) : 1129 - 1159.
    [93] Comon P. Independent component analysis. A new concept in Signal Processing. 1994, 36 :287– 314
    [94] Broadman A, Schlindwein F S, Rocha A P, et al. A study on the optimum order of autoregressive models for heart rate variability. 2002, 23: 324–336
    [95] Faust O, Acharya R U, Allen A R, et al. Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. ITBM-RBM 2008, 29:44–52
    [96] Abdulhamit S. Selection of optimal AR spectral estimation method for EEG signals using Cramer–Rao bound. Computers in Biology and Medicine. 2007,37(2): 183-194
    [97] Abdulhamit S, Ergun E, Ahmet A. Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection. Computer in Biology and Medicine 36 (2006) 195–208
    [98] Roschke J, Basar E. Dynamics of Sensory and Cognitive Processing by the Brain. Berlin: Springer, 1988: 203-211
    [99] Wolf A, Swift J B, et al. Determining Lyapunov exponents from a time series. Physica D. 1985, 16:285-317
    [100] Lempel L A, Ziv J. On the complexity of finite sequence. IEEE Trans. 1976, IT-22: 75-81
    [101] Pincus S M. Approximate entropy as a measure of system complexity. Proc Nati Acad Sci USA. 1991, 88(6):2297–2301
    [102] Diambra L, Bastos de Figueiredo J C, Malta C P. Epileptic activity recognition in EEG recording. Physica A. 1999, 273(3-4): 495-505
    [103]贾文艳.利用脑电信号分析进行癫痫发作预测的研究[博士学位论文].北京:清华大学生物医学工程系, 2005
    [104] Jelles B, van Birgelen J H, Sleaets J P, et a1. Decrease of non—linear structrue in the EEG of Alzheimer patients compared to healthy controls. Clin Neurophysiol. 1999, 110(7): 1159-1167
    [105] Pincus S M. Approximate entropy (ApEn) as a complexity measure. Chaos. 1995, 5(1): 110-117
    [106]杨福生,廖旺才.近似熵:一种适应于短数据的复杂性度量.中国医疗器械杂志. 1997, 21(5): 283-286
    [107] Goldberger A L, Mietus J E, Rigney D R, et al. Effects of head-down bed rest on complex heart rate variability:Response to LBNP testing. J Appl Physiol . 1994, 77(6):2863–2869
    [108]王庭槐,耿艺介.混沌动力学非线性分析方法在生物反馈研究中的应用.自然杂志. 2004, 26(4):223-226
    [109] Paramanathan P, Uthayakumar R. Application of fractal theory in analysi s of human electroencephalographic signals. Computers in Biology and Medicine. 2008, 38(3): 372-378
    [110] Molinari L, Dumermuth G. Once More: Dimension and Lyapunov Exponents for the Human EEG. Nonlinear Dynamical Analysis of the EEG. 1992: 140-151
    [111]江朝晖,冯焕清,刘大路,等.改进G-P算法与睡眠脑电的关联维.北京生物医学工程. 2004, 23(4):260-262
    [112] Xu N, Xu J H. The fractal dimension of EEG as a Physical measure of conscious human brain activities. Bulletin of Mathematical Biology.1988,50:559-565.
    [113] Roschke J, Aldenhol J. The dimensionality of human's electroencephalogram during sleep. Biol. Cybern. 1991, 64:307-313
    [114] Pritchard WS, et al. EEG-based neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures. Electroenceph. clin. Neurophysiol. 1994, 91:118-130
    [115]李林霞,霍小林,殷正刚.低频经颅磁刺激后脑电相关维数变化的分析.北京生物医学工程. 2006, 25(6):615-618
    [116]宋毅军,田心.经颅磁刺激对癫痫病灶脑电相关维数的影响.生物物理学报. 2003, 19(4):383-386
    [117] Takens F. Determing strange attractors in turbulence. Lecture notes in Mathematics (S0075-8434). 1981, 898: 361-381
    [118] Gibson J F, Farmer J, Casdagli M, et al. An analytic approach to practical state space reconstruction. Physica D. 1992,57:1-30
    [119]王妍,徐伟,曲继圣.基于时间序列的相空间重构算法及验证(一).山东大学学报(工学版). 2005,35(4):109-114
    [120] Grassberger P, Procacria I. Measuring the strangeness of strange attractor. Physica D. 1983(9): 189-208
    [121] Satoshi K, Mahito K, Takao M, et al. A fundamental bias in calculating dimensions from finite data sets. Physica D: Nonlinear Phenomena. 2000,141(3-4): 171-182
    [122]冯久超,徐英林.对脑干听觉诱发电位相关维数的研究.西南师范大学学报(自然科学版). 1996, 21(2): 145-150
    [123] Hubert P, Werner L, Friedemann P, et al. Fractal dimensions of short EEG time series in humans. Neuroscience Letters. 1997, 225:77-80
    [124] Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase space reconstruction using a geometrical construction. Phys. Rev. A. 1992, 45:3402-3411
    [125] Cao L Y, Mee A, Judd K. Dynamics from multivariate time series. Physica. D. 1998, 121(1-2) :75-88
    [126] Wodman G, Lehneertz K, Jansen P, et al. A fast general purpose algorithm for the computation of auto and cross-correlation integrals from single channel data. Physica D. 1998,121:65-74
    [127] Abarbanel H D J, Brown R, Sidorowich J J, et al. The analysis of observed chaotic data in physical systems. Reviews of modern physics. 1993, 65(4):1331-1392
    [128] Broomhead D S, King G P. Extracting Qualitative Dynamics from Experimental Data. Physica D. 1986, 20: 217- 236
    [129] Fraser A M, Wwinney H I. Independent coordinates for strange attractors from mutual information. Phys. Rew. A. 1986, 33:1134-1140
    [130] Roseenstein M T, Collins JJ. Reconstruction expansion as a geometry-based framework for choosing proper dalay times. Physica D. 1994:73:82-98
    [131]马红光,李夕海,王国华,等.相空间重构中嵌入维和时间延迟的选择.西安交通大学学报. 2004, 38(4):335-338
    [132]方良.非线性系统理论在脑电信号分析中的应用研究[硕士学位论文].重庆:重庆大学生物医学工程系, 2002
    [133] Kugiumtzis D. State space reconstruction parameter in the analysis of chotix time series the role of the time window length. Physica D. 1996,95:13-28
    [134] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows. Physica D. 1999, 127:48-60
    [135]诺萨普,维德姆斯,莱恩. Microsoft .NET FRAMEWORK 2.0应用开发基础.世界图书出版公司出版社. 2007
    [136] Aftanas L I, Golocheikine S A. Non-linear dynamic complexity of the human EEG during meditation. Neuroscience Letters. 2002, 330(2):143-146
    [137]刘秉正,彭建华.非线性动力学.北京:高等教育出版社, 2000
    [138] Hinterberger T, Veit R, Birbaumer N, et al . Neuronal mechanisms underlying control of a brain-computer interface. Eur. J. Neurosci. 2005, 21:3169-3181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700