用户名: 密码: 验证码:
涟钢烧结除尘灰资源化利用关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结除尘灰作为一种非常有价值的二次资源,它的利用不仅符合钢铁企业节能减排的政策要求,同时可以为钢铁企业带来非常大的经济效益。
     本研究对涟钢130m2烧结机1、2、3号电场除尘灰分别进行了选矿试验研究。对三种除尘灰进行粒度分析的结果可知,三种除尘灰都属于细粒级除尘灰,平均粒径从1号到3号依次降低,平均粒径分别为:0.106mm、0.102mm、0.064mm;化学分析结果表明,三种除尘灰S、P含量比较低,便于选矿获取高质量的铁精矿。三种除尘灰的有用成分TFe含量分别为:53.11%、49.32%、23.22%,Pb含量分别为:0.40%、1.39%、20.64%,说明
     1号与2号除尘灰将以回收铁为主,而3号除了需要回收铁之外,铅也是必须回收的成分。3种除尘灰XRD分析可知,灰中含铁矿物主要是磁铁矿、赤铁矿等。3号除尘灰铁分低,而弱磁性铁矿物含量相对较高,需要先焙烧再磁选。
     通过磨矿—湿式磁选试验可知,将1号除尘灰磨矿后分别进行弱磁与强磁,最终获得的磁选总精矿铁品位为62.01%,铁回收率达92.57%; 2号除尘灰磨矿后磁选,最终获得的综合精矿铁品位为57.47%,回收率达92.38%。
     3号除尘灰焙烧—磁选试验研究表明:以褐煤为还原剂,用量为7%,最佳的焙烧温度为850℃,焙烧时间为60min,将焙砂磨至-0.038mm占73.25%,弱磁场强控制在150KA/m,获得的精矿铁品位为:53.88%,回收率为84.25%,精矿铅品位为:1.75%,磁选尾矿铅品位为:29.72%。
     对磁选尾矿进行浮选提铅试验研究的最佳铅精矿品位为34.14%,回收率为76.27%,此时浮选尾矿中的铅品位仍然还有19.09%,这说明浮选对于磁选尾矿中的铅分离并不是非常有效。通过对尾矿的XRD分析可知,尾矿中的Pb存在形式复杂,其中以PbO_2为主,因此应进行酸浸提铅。试验研究的结果表明:以稀盐酸和高浓度的NaCl为酸浸介质,快速升温至80℃,搅拌速度维持在500r/min,保持加热过程中液固比为12:1,酸浸时间60min,铅的平均浸取率达96%。
     磁选尾矿中含有约14%的Fe,将在酸浸液中循环累积。试验中研究了酸浸液中Fe~(3+)浓度对铅的浸出的影响,试验表明,酸浸液中的Fe~(3+)对铅的浸取会有一定的影响,应在循环过三次之后,通过加碱使溶液中的Fe~(3+)沉淀滤出,然后再将上清液返回到酸浸系统中参与配制酸浸液。
As a kind of important second resource, utilization of the sintering dust not only meet the political requirement of energy saving and discharge decreasing, but also bring the iron and steel makers a big economic benefit.
     In the paper, we have done benefication research on No.1、2、3 electrode dust made by 130m2 sintering machine. Through size analysis of these 3 dusts, we know that all these 3 dusts were fine particle dusts whose average size from 1 to 3 is 0.106mm, 0.102mm, 0.064mm respectively; and the chemical analysis shows that, the S, P content in this 3 dusts is relatively low which is easy to obtain high-quality Fe concentrate after benefication. As to the valuable elements like Fe, the content in this 3 dusts is 53.11%、49.32%、23.22%, the Pb content in these 3 dusts is 0.40%、1.39%、20.64%, all the information above suggests that recover Fe is the main target for No.1 and 2 dust, however as for No.3 dust, we need not only recover the Fe but also think of recover the Pb. XRD result of this 3 dusts tells us that, the Fe-bearing ores existed in this 3 dusts are mainly magnetite, hematite and so on. Besides No.3 dust has a lower content of Fe and non-magnetic ore takes up the most, so we have to use the roast and magnetic separation.
     The result of wet magnetic separation tells us that after low intensity magnetic separation and high intensity magnetic separation, we can get concentrate with 62.01% of TFe, and the recovery of Fe reach up to 92.57%; as to No.2 dust, under the optimum condition of benefication, concentrate with 57.47% of Fe grade as well as 92.38% of recovery will be obtained.
     The result of roasting-magnetic separation shows that the best conditions are: make the lignite be the reducer, 7% of the dosage, roasting temperature 850℃, roasting time 60min , grind granularity -0.038mm make up 73.25% of the total, maintain the magnetic field intensity at 150KA/m, we will obtain the fine with 51.12% of TFe, and recovers Fe as much as 84.25% of the total, besides the content of Pb in the fine is 1.75%, but 29.72% in the gangue, all the information above shows that the gangue of magnetic separation can be the material of recovering Pb.
     The flotation separation for recovering Pb to the magnetic separation gangue showed that under the optimum conditions we can get Pb concentrate with 34.14% for the grade and 76.27% for the recovery, yet Pb grade in the flotation gangue is still as much as 19.09%, that shows flotation actually is not the effective solution to separating Pb. Through the XRD analysis we learn that Pb has different existing forms in the gangue and PbO_2 as the most one, so we did acid leaching to recover Pb. The result showed that: dilute hydrochloric acid and NaCl of high concentration acted as the acid leaching media, raise the temperature as soon as possible to 80℃, keep the stirring rate at 500r/min, the liquid-solid ratio stay at 12:1, reacted about 60min, finally we got 96% of leaching rate .
     the magnetic separation gangue has around 14% of the Fe, which will accelerate in the leaching solution after recycling. In the paper we did research on influence caused by Fe ion in the liquor, the result tell that, Fe ion really has a certain impact on Pb leaching so after recycled for 3 times we need to add alkali to precipitate Fe and then filtrate the sedimentation, after which the supernatant can go back to the acid leaching system to make up new leaching solution.
引文
[1]冯伟.浅析我国铁矿石资源可持续发展战略[J].四川地质学报,2010,30(1):1-3.
    [2]王傲松.高炉布袋除尘灰的基础性能与应用研究[D].济南:山东大学,2009.
    [3]顾文飞等.宝钢固体废弃物资源化综合利用的现状和发展方向[J].宝钢技术,2005,(3):1-4.
    [4]卢育莹.中国钢铁业对外反倾销绩效评估[D].北京:外对经济贸易大学,2009.
    [5]王璐.如何综合利用工业固废弃物服务城市循环经济—以平顶山市为例[J].资源导刊,2007,(7):5-8.
    [6]刘会晓.基于循环经济的钢铁产业评价指标体系研究[D].唐山:河北工业大学,2008.
    [7]马刚平.首钢除尘灰特性分析及综合利用技术研究[J].工业安全与环保,2006,(1): 10-11.
    [8]郭明彬.攀钢马家田尾矿选铁、选钛工艺研究[J].攀枝花科技与信息,2007,(4): 3-7.
    [9] I.F.Kurunov.prospects for the use of Non-agglomerated iron-bearing materials in the blast furnace(survey)[J]. metallurgist,2003,47(5):179-191.
    [10]李静.济钢烧结除尘灰制浆及炼钢铁污泥综合利用[D].西安:西安建筑科技大学,2006.
    [11]郭子杰.烧结除尘灰的造球试验与综合利用[J].冶金环境保护,2001,(1):85-86.
    [12] Zhu, Xingyuan. Comprehensive utilization of slag at Anshan Iron and Steel Co.[J]. Kang T'ieh/Iron and Steel (Peking), 1988, 23(7): 60-62.
    [13]陈利兵.莱钢除尘灰综合利用技术的开发与应用[J].莱钢科技,2009,(3):12-14.
    [14] Yamaguchi T. Nomura T. characterization and sintering of ferrite raw material powders. Tokyo: Center for Academic publications Japan(CAPJ): 1982,45.
    [15]华旭军.气力输送烧结除尘灰技术应用探讨[J].河南冶金,2009,(1):26-28.
    [16]苑兴庭.高炉喷吹除尘灰的初步研究[D].沈阳:东北大学,2006.
    [17] Cen,Yongquan. Development of disposal and application of iron and steel slag [J]. Iron and Steel. 1994,29(5): 71-74.
    [18]张清岑.钢铁厂含铁尘泥回收利用新途径研究[J].矿产综合利用,1996,(5):11-14.
    [19]贺建峰.济钢炼钢炼铁污泥的处理和应用[J].烧结球团,2002,(9):1-2.
    [20]陈泉源,柳欢欢.钢铁工业固体废弃物资源化途径[J].矿冶工程,2007,27(3):49-56.
    [21]邹方敏.炼钢炼铁除尘污泥直接应用于烧结配料的实践[J].工业安全与防尘,2003,(3):17-19.
    [22]白仕平.高炉瓦斯泥高效利用的研究[D].重庆:重庆大学,2007.
    [23]阳海彬.低品位含锌物料直接制备纳米氧化锌的半工业性试验研究[D].重庆:重庆大学,2004.
    [24]庞永莉.菱铁矿流态化磁化焙烧技术的开发与研究[D].西安:西安建筑科技大学,2006.
    [25]龚国华.闪速磁化焙烧法处理大冶铁矿强磁选低品位铁精矿[D].武汉:武汉理工大学,2004.
    [26]吴铿,窦力威,姚克虎,等.高炉粉尘在铁浴熔融还原发泡过程的研究[J].中国环境科学, 2001,21(4): 335-338.
    [27]刘彦丽.浅谈FASTMET炼铁技术[J].河北冶金. 2005,(149): 3-4.
    [28] H.J.Lehmkuhler,H.Staeubner,R.H.Hanewald. Reclamation of iron and steel-making Dusts,Sludge and Scales using the INMETCO Technology[C]. Pretreatment and Reclaimation of Dusts,Sludge and Scales in steel Plants,McMaster Symposium No. 21,May 1993. 237.
    [29] Green R.B AREX. direct reduction iron and steel maker[J].1992,19(4):20.
    [30] HYL Co.HYL DRI-HBI Production for 1997, shows 4.7% increase, HYL report ,1998(1):3-6.
    [31] R.steffen. state of the art technology of direct and smelting reduction iron ores[J]. LA Revuede, 1998(3):34.
    [32]王宏军.超细粒氰化尾渣多金属浮选试验研究与实践[J].金属矿山,2003,(3):50-52.
    [33]杨学林.高锑铅阳极泥处理新工艺[D].长沙:中南大学,2004.
    [34]王献科.利用炼钢烟尘钢渣生产聚合硫酸铁[J].钢铁研究,1995,(1):44-47.
    [35]汪文生,冯莲军,潘旭方等.某铁厂高炉瓦斯泥分选技术研究[J].金属矿山,2005,(增刊):486-488.
    [36]李志峰,林七女,董晓春等.烧结机头除尘灰生产氯化钾的应用研究[J].中国资源合理利用,2010,28(2):13-15.
    [37]庞文杰.国外电弧炉烟尘处理技术现状及发展[J].矿冶工程,2004,(4):40-43.
    [38]路海波.电弧炉炉尘综合处理技术及应用[J].钢铁研究学报,2006,(7):1-5.
    [39]查立敏.从废弃防腐涂料中回收锌的工艺研究[D].陕西:西北大学,2009.
    [40] V.A.Mymrin, H.A.Ponte. structure formation of slag-soil construction materials[J]. materials and structures,2005,(38):107-113.
    [41]张启磊.新型水处理填料的研制及其应用研究[D].济南:山东大学,2008.
    [42]邹宽,林高平,胡林光.使用水力旋流器回收高炉瓦斯泥[J].中国冶金,2003,(70): 97-100.
    [43] Palencia I, Romero R, Iglesias N, etal. Recycling EAF Dust Leaching Residue to The Furnace: A Simulation Study[J]. JOM, 1999, 51(8): 28-32.
    [44]阮彩群.铸造烟尘治理技术[J].工业安全与环保,2009,(6):13-14.
    [45]彭兵,张传福,彭及.电弧炉粉尘的治理[J].矿产综合利用,2000,(4):33-37.
    [46]李明阳.电炉粉尘综合利用的研究[D].重庆:重庆大学,2006.
    [47]胡永平,孙体昌.高炉瓦斯泥的回收利用[J].环境工程,1996,14(6):49-53.
    [48]鼓志坚,郑银珠等.水钢混合型除尘灰造小球二次利用试验研究[J].矿产综合利用,2010, (2):41-45.
    [49] Ryan Robinson. High temperature properties of by-product cold bonded pellets containing blast furnace flue dust [J]. Thermochimica Acta, 2005, 432: 112-123.
    [50]沈腊珍.利用钢厂除尘制备铁系颜料等的方法及现状[J].现代涂料与涂装,2003,(3):13-16.
    [51]崔静.利用除尘灰分离碳粉制备活性碳粉制备活性碳及其改性应用研究[D].天津:天津大学, 2006.
    [52]沈腊珍.利用钢厂除尘灰合成纳米级磁性氧化铁黑颜料的研究[D].天津:天津大学,2003.
    [53] Miller, G.A. and Azad, S. influence of solid type on stabilization with cement kiln dust, Cement and building materials 4(2)(march 2000)89-97.
    [54]林国海.钢铁厂固体废物环境管理与影响评价[D].沈阳:东北大学,2005.
    [55]郭子杰.烧结除尘灰的造球试验与综合利用[J].冶金环境保护,2001,(1):13-15.
    [56]朱德庆.强化制粒对高铁低硅混合料烧结的影响[J].烧结球团,2003,(1):9-13.
    [57] Panigraphy, S.C. Rigard, M J, Poveromo, J.J, etal. Evaluation of Carol Concentrate and pellet chips as sinter plant, Ironmaking conference prcoceedings, Vol.51,Pub.by iron and steel society,Inc. Pennsylvania, USA,1992, 79-88.
    [58]张华卫,王连昌.莱钢矿建公司冷固结球团配加除尘灰的研究[J].烧结球团,1999,24(4):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700