用户名: 密码: 验证码:
从含铁尘泥回收铁的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国钢铁工业所需的铁矿石自给率仅46%左右,国内铁矿石资源严重短缺,必须扩大开发利用二次铁矿资源。2009年我国钢产量为5.65亿吨,含铁尘泥占钢产量的8%~12%,这一丰富的铁资源利用不当,是对铁资源的巨大浪费。高炉瓦斯灰、瓦斯泥和转炉红尘是冶金企业排放的大宗含铁尘泥,目前主要通过返回烧结的办法循环利用。这些尘泥极其细小,携带的部分有害杂质未充分去除,因此,对烧结工艺乃至高炉炼铁均有负面影响,有必要寻求利用含铁尘泥的新方法、新工艺。
     本文以包钢高炉瓦斯灰、瓦斯泥和转炉红尘为对象,在分析三种原料成分特征的基础上,提出了弱磁选、高梯度强磁选以及焙烧—磁选等工艺回收铁精矿,进行了工艺矿物学和试验条件研究,对三种工艺进行了对比。
     工艺矿物学研究表明,高炉瓦斯灰TFe31%,C33.65%;瓦斯泥TFe42.4%,C16.15%;转炉红尘TFe54.8%,三种含铁尘泥铁氧化物以Fe_2O_3为主。各种磁选工艺获得的最佳指标如下:(1)弱磁选:瓦斯灰铁精矿品位55%、回收率60%;瓦斯泥铁精矿品位61%、回收率31%;转炉红尘铁精矿品位61%、回收率16%。(2)高梯度强磁选:瓦斯灰铁精矿品位53%、回收率75%;瓦斯泥铁精矿品位51%、回收率42%;转炉红尘铁精矿品位57%、回收率72%。(3)磁化焙烧—弱磁选:瓦斯灰和转炉红尘按碳过量6%配成混合料,经焙烧铁精矿品位61%,回收率86%;瓦斯泥焙烧后铁精矿品位61%、回收率89%。因此,从技术上看,磁化焙烧—弱磁选工艺优于弱磁选、高梯度强磁选工艺。
At present, self-sufficiency rate of iron ore required by China’s steel industry is about 46%. In order to resolve a serious shortage of domestic iron ore resources, it is necessary to exploit and utilize secondary iron ore resources. In 2009, Steel production in china reached about 0.565 billion tons, through 8% to 12% of which is iron-bearing dusts (IB dusts). It is a huge waste about iron resources if these dusts can’t be utilized properly. Most of the IB dusts, such as blast furnace dust, blast furnace sludge and converter dust, are currently utilized in metallurgy enterprises through return to sintering. Because these dusts are extremely small in size and contains harmful impurties, they have a negative impact on sintering and blast furnace process. It is necessary to develop a new method or routine to exploit the IB dusts.
     In this article, three types of separation processes have been proposed and compared to recover iron concentrate from the IB dusts as follows: low intensity magnetic separation, high gradient intensity magnetic separation and magnetization roasting-magnetic separation. Studies on process mineralogy showed, TFe was 31% and C content was 33.65% in blast furnace dust; TFe was 42.4% and C content was 16.15% in blast furnace sludge; TFe was 54.8% in converter dust; and iron oxides was mainly Fe_2O_3 in all three dusts.
     Using low intensity magnetic separation, we got the best magnetic indicator: iron concentrate grade of blast furnace dust was 55% and iron recovery rate was 60%; iron concentrate grade of blast furnace sludge was 61% and iron recovery rate was 31%; iron concentrate grade of converter dust was 61% and iron recovery rate was 16%. Moreover, using high gradient intensity magnetic separatio, we got the best magnetic indicator: iron concentrate grade of blast furnace dust was 53% and iron recovery rate was 75%; iron concentrate grade of blast furnace sludge was 51% and iron recovery rate was 42%; iron concentrate grade of converter dust was 57% and iron recovery rate was 72%. Lastly, using magnetization roasting-low intensity magnetic separation, we got the best magnetic indicator: mixture iron concentrate grade of blast furnace dust and converter dust which mass ratio was 6%.Iron concentrate grade was 61% and iron recovery rate was 86%; iron concentrate grade of blast furnace sludge was 61% and iron recovery rate was 89%.
引文
[1]李维兵,刘保平,陈占金等.我国红铁矿选矿技术研究现状及发展方向[J].金属矿山,2005,(3):1-6.
    [2]余永富,张汉泉.我国钢铁发展对铁矿石选矿科技发展的影响[J].武汉理工大学学报,2007,(1): 1-7.
    [3]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,(3):11-13.
    [4]张径生.我国铁矿资源开发利用现状及发展趋势[J].钢铁,2007,17(1):1-6.
    [5]石磊,陈荣欢,王如意.钢铁工业含铁尘泥的资源化利用现状与发展方向[J].中国资源综合利用,2008,26(2):12-15.
    [6]任亚峰,余永富.难选红铁矿磁化焙烧技术现状及发展方向[J].金属矿山,2005,(11):20-23.
    [7] Chao Li, Henghu Sun, Jing Bai, et al. Innovative methodology for comprehensive utilization of iron ore tailings. Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting [J]. Journal of Hazardous Materials, 2009, inprint.
    [8]周建军,朱庆山,王化军等.某鲕状赤褐铁矿流化床磁化焙烧—磁选工艺[J].过程工程学报,2009,9(2):307-313.
    [9]白丽梅,刘丽娜,李萌等.张家口地区鲕状赤铁矿还原焙烧—磁选试验研究[J].中国矿业,2009,18(3):83-87.
    [10]陈甲斌.中国铁矿资源未来供需态势与国外供矿前景[J].矿产保护与利用,2005,4(2):5-8.
    [11]彭会清,王代军.高效环保节约和谐开发鄂西高磷铁矿综述[J].矿业快报,2007,15-18.
    [12]张径生.我国铁资源开发利用现状及发展趋势[J].钢铁,2007,42(2):1-6.
    [13]罗立群,张泾生.我国炼铁原料市场的分析研究明[J].武汉理工大学学报,2005,27(9):67-69.
    [14]王亨炎.浅谈铁矿石资源对我国钢铁工业的影响及对策[J].国外金属矿山,2002,5:6-10.
    [15]周宏春,王瑞江,陈仁义.中国矿产资源形势与对策研究[M].北京:科学出版社,2005,3.
    [16]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛,2005,12(4):242-247.
    [17]周劲.我国钢铁工业发展规模与能源支撑能力研究[J].中国经贸刊,2005,(8):16.
    [18]邹健.我国铁矿资源形式与可持续供给的对策建议[J].矿业工程,2003,(1):1-4.
    [19]陶敏.选矿手册[M].北京:冶金工业出版社,1990,15-32.
    [20]许时.矿石可选性研究[M].北京:冶金工业出版社,1990,29-30.
    [21]王常任.磁电选矿[M].北京:冶金工业出版社,1992,32-39.
    [22]黄晓燕,余永富.铁选矿评述[J].有色金属选矿部分2001增刊,2001,90-97.
    [23]刘阅兵.赤铁矿选矿新工艺试验研究[D].昆明:昆明理工大学,2007,15-17.
    [24]韩跃新,袁致涛,李艳军等.我国金属矿山选矿技术进展及发展方向[J]..金属矿山,2006,(1):34-40.
    [25] Shao Y. Magnetic Flocculation of Hematite Minerals [J]. Magnetic and Electrical Separation, 1997, (7):227.
    [26]宋雄,余中平.中国铁矿资源利用现状及其保证程度[J].地质与勘探,1998,34(2):1-4.
    [27]邱显冰.冶金含铁尘泥的基本特征与再资源化[J].安微冶金科技职业学院学校,2004,14(3):54-56.
    [28]甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003,(2):62-64.
    [29]王全利.含铁尘泥的综合利用[J].包钢科技,2002,28(6):75-77.
    [30]王常任.磁电选矿[M].北京:冶金工业出版社,2002,1-8.
    [31]朱俊士.选矿试验研究与产业化[M].北京:冶金工业出版社,2004,419-420.
    [32]邱俊,吕宪俊,陈平等.铁矿选矿技术[M].北京:化学工业出版社,2008,125-130.
    [33]张艳娇,刘广学,赵平等.贾家堡子微细粒磁铁矿选矿试验研究[J].金属矿山,2009,(1):59-61.
    [34]何桂春.高梯度磁选机铠装螺线管磁系磁场特性的边界单元法研究[M].长沙,中南工业大学,1999,67-98.
    [35] Armstrong A. G, Fan M. W, Simkin J, Trowbradge C. W, Automatic Optimization of magnet Design Using the Boundary Integral Method[J]. EEE, 1982, 18(2): 620-623.
    [36] Watson J. H. P, Beharrell P. A. Extracting values from mine dumps and tailings[J]. Minerals Engineering, 2006, 19(15):1580-1587.
    [37] Shao Y, Veasey T. J, Rowson N. A. Wet High Intensity Magnetic Separation of IronMinerals[J]. Magnetic and Electrical Separation, 1996, 8(1):45-51.
    [38] Maliy V. M, Bogdanova I. P. High~intensity Magneric Separation of Limontite Iron Oers[J]. Magnetic and Electrical Separation, 1992, (4):47-59.
    [39]王常任,王智.微细粒磁介质磁场特性研究方法的探讨[J].金属矿山,1982,(2):19-29.
    [40] Gareth G. P. Magnetic design considerations for devices and partices used for biological high~gradient magnetic separation(HGMS)[J]. Tounal of Magnetism and Magnetic Materials, 2001, 225(2):262-276.
    [41] Rikers R. A, Rem P. Improved method for prediction of heavy metal recoveries from soil using high intensity magnetic separation(HIMS)[J]. International Journal of Mineral Processing, 1998, 54(3):165-182.
    [42]吴世清,巫竹盛等.我国磁选设备的现状及发展方向[J].金属矿山增刊,2004,(10):36-39.
    [43]陈剑,李晓波.高梯度磁选机的发展现状及应用[J].矿业工程,2005,3(4):24-25.
    [44]熊大和,刘建平.Slon脉动与振动高梯度磁选机新进展[J].金属矿山,2006,(7):4-7.
    [45]熊大和.SLon磁选机分选东鞍山氧化铁矿石的应用[J].金属矿山,2003,(6):21-24.
    [46]熊大和.Slon型立环脉动高梯度磁选机分离红矿的研究与应用[J].金属矿山,2005,(8):24-29.
    [47]陈广振,赵通林,陈中航.新型磁选设备—磁选环柱的研制[J].金属矿山,2006,(25):35-38.
    [48]熊大和.SLon型磁选机在齐大山选矿厂的应用[J].金属矿山,2002,(4):42-44.
    [49]李彪译.稀土磁选设备及应用进展[J].国外选矿快报,1997,(16):1-6.
    [50]杨守业,刘永振,张振宇.选新设备和发展趋势[C].第三届全国选矿设备学术会议论文集,北京:冶金工业出版社,1995:29-41.
    [51] M. I. NASR and M. A. YOUSSEF. Optimization of Magnetizing Reduction and Magnetic Separation of Iron Ores by Experimental Design[J]. ISIJ International, 1996, 36(6):631-639.
    [52] Kawahara.Masayasu, Mitsuo. Toshiharu, Shirane. Yoshinori, et. Dilute sulphuric~acid leaching of garnierite ore after magnetic~roasting the ore mixed with iron powder[J]. International Journal of Mineral Processing, 1985, 19(7):285-296.
    [53] EI~TAWIL. S. Z., Morsi. I. M., Yehia. A. and Francis. A. A. Alkali Reductive Roasting of Ilmenite ore[J]. Canadian Metallurgical Quarterly, 1996, 35(1):31-37.
    [54] Uwadiale, G. G. O. O. Magnetizing reduction of iron ores[J]. Mineral Processing and Extractive Metallurgy Review, 1992, 11(1):1-19.
    [55]酒少武,徐德龙,李辉等.悬浮态磁化焙烧菱铁矿粉料试验研究[J].金属矿山,2008,(8):33-36.
    [56]周建军,朱庆山,王化军等.某鲕状来褐铁矿流化床磁化焙烧—磁选工艺[J].过程工程学报,2009, 9(2):307-313.
    [57]古德生,胡家国,王新民.加入WTO后对我国矿山企业环境保护问题的思考[J].金属矿山增刊,2003,15(8):1-4.
    [58]邱显冰.冶金含铁尘泥的基本特征与再资源化[J].安徽冶金科技职业学院学报,2004,14(3):54-56.
    [59]徐柏辉,王二军,杨剧文.高炉瓦斯灰提铁提碳研究[J].矿产保护与利用,2007,(3):51-54.
    [60]王玉香,赵通林.瓦斯泥物料性质及选别方法的试验研究[J].鞍山钢铁学院学报,1995,18(3):16-21.
    [61]张启溶.炼钢转炉尘泥的处理方法[J].冶金矿山与设计,1994,(6):8-14.
    [62]王常任.磁电选矿[M].北京:冶金工业出版社,2006,5:60.
    [63]王成行,童雄,孙吉鹏.某鲕状赤铁矿磁化焙烧—磁选试验研究[J].金属矿山,2009,(5):57-59.
    [64]傅崇说.有色冶金原理(第2版)[M].北京:冶金工业出版社,2005:23-87.
    [65] N. R. Allen. Effect of roasting temperature on the magnetism of ilmenite [J]. Physical Separation in Science and Engineering, 2003, 12(2) :103-121.
    [66] Z. Cui, Q. Liu, T. H. Etsell.Magnetic properties of ilmenite, hematite and oilsand minerals after roasting [J]. Minerals Engineering, 2002, 15:1121-1129.
    [67]张晓冬.酒钢弱磁选精矿品位的影响因素及改善措施[J].金属矿山,1997,(7):18-20.
    [68]高伟,刘玉江,段其福.单一弱磁选工艺金属回收率指标与产品质量的关系[J].金属矿山,2001,(3):27-29.
    [69]张鉴.白云鄂博共生矿选矿技术现状与展望[J].包钢科技,2005,31(4):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700