用户名: 密码: 验证码:
相对论性等离子体输运性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在相对论重离子碰撞实验中测量输运系数对认识强作用物质即核物质与夸克物质的性质具有重要意义。其中一个重要的发现是剪切粘滞系数与熵密度之比与弱耦合理论计算的结果相去甚远,而与强耦合情形使用引力规范场对偶理论计算得到的下限非常接近,由此可以判断RHIC和LHC实验中产生的夸克物质类似于完美液体。本文利用相对论性流体力学和经典和量子动理学理论在几个方面研究夸克胶子等离子体的输运性质。
     电磁性质是夸克胶子等离子体的一个重要特性。电磁信号与夸克胶子等离子体耦合较弱,一旦产生就几乎无作用地离开物质系统,所以它是探测夸克胶子的比较干净的信号。折射率是电磁波在等离子体里传播的一个重要物理量,它与介质的电磁响应性质相关。我们使用有限温度场论中的硬热圈重求和方法计算了夸克等离子体的介电常数和磁导率,由此得出可磁化和不可磁化等离子体的折射率。在可磁化等离子体里,磁导率和折射率存在频率极点ωmp,折射率对ω∈[k, ωmp]范围内的频率呈现负值,此处K为波数,但是在此范围不存在传播模式。在不可磁化等离子体中磁导率和折射率总是正的。与此对照,在强耦合等离子体系统存在负折射率,这显示了弱耦合和强耦合等离子体系统的主要差别。
     理论上计算输运系数的通常方法是利用Kubo公式,它根据含时微扰论导出物理量的线性响应。利用Kubo公式和微扰理论可以逐级计算多体系统的输运系数。与Kubo公式等价的方法是利用玻尔兹曼方程。假设系统偏离平衡不远,可以把玻尔兹曼方程线性化,通过比较动力学项和碰撞项得到输运系数。手征磁效应是相对论重离子碰撞实验中重要的物理现象,同时也是解释重离子碰撞实验中观测到的电荷分离效应的理论之一。重离子实验中,两个带电重核相互对撞,在极短时间内可以产生高达1018高斯的强电磁场。带正(负)电的夸克的自旋会在强磁场下极化至磁场(磁场反)方向。如果忽略夸克的质量,则夸克的手征性以及螺旋度都是固定的,比如右手(左手)正粒子的螺旋度是+1(一1),即该粒子自旋沿着动量(动量反)方向,对于反粒子则相反。但由于量子三角反常(手征反常),在某个事例中,左右手粒子的数目会不同,从而会产生沿着磁场方向的电流。这种现象就是手征磁效应。与此效应类似,重离子碰撞中也存在手征电分离效应,即在电场方向会诱导出一个手征流,其比率即手征电导率σe。我们使用线性化玻尔兹曼方程计算了σe,发现它随μ和μA呈非平庸行为,但对二者的依赖具有对称性,并且当μ和μA趋于零时,σe对μ和μA呈线性依赖,与文献中的结果一致。
     由Wigner函数可以导出量子输运理论,这是研究量子多体系统输运性质的基本方法。我们采用Wigner函数,系统地研究了(2+1)维(2维空间和1维时间)下含有宇称破缺的费米子系统的量子输运过程。为了简化计算,我们忽略了粒子间的相互作用,并且采用梯度展开的方法,得到了一阶无耗散流体力学的各个输运系数。首先,我们得到了含有温度和化学势依赖的Hall电导率,所得结果与有限温度QED计算结果一致。其次,我们还自然地得到了含有涡旋效应的输运过程,这些涡旋效应都是以往不曾发现的。所得的结果,将有助于人们更加深刻地认识(2+1)维量子电动力学系统,同时也对凝聚态物理中石墨烯的研究有所帮助和借鉴。
Transport properties of quark and nuclear matter in high energy heavy ion colli-sions provide important information for the nature of strong interaction. One surprising discovery of the experiment of relativistic heavy ion collisions at Brookhaven National Laboratory and at CERN-LHC is the experimental data for the ratio of shear viscosi-ty to entropy density are very close to the lower limit given by the gravity-gauge field duality. This means the quark gluon plasma produced at RHIC and LHC is a strongly coupled system like a perfect liquid. The work of this thesis is to study the transport properties of the quark gluon plasma in relativistic fluid dynamics and classical and quantum kinetic theory with focus on a few respects.
     The electromagnetic probes such as photons are expected to provide clean sig-natures for the quark gluon plasma in heavy ion collisions due to their instant emis-sions once produced. These thermal photons contain undistorted information about the space-time trace of the new state of matter formed in such collisions. One of the most important electromagnetic properties of a plasma is the refractive index which measures the speed of electromagnetic wave in a medium relative to vacuum. We calculate the refractive index within the Hard-Thermal-Loop perturbation theory via the electric per-mittivity and the magnetic permeability. Since the quark gluon plasma is composed of electrically charged quarks instead of magnetic monopoles, the electric and magnetic sector do not play equal roles. We show that the physical definition and behavior of the magnetic permeability and then the refractive index can be very different due to specific magnetic response of the quark gluon plasma. Therefore a plasma can be classified into two types:magnetizable and non-magnetizable. In a magnetizable plasma the magne-tization is realistic, while in a non-magnetizable plasma it does not make physical sense any more. We calculate the refractive index and analyze their properties in these two types of plasmas. If the quark gluon plasma is magnetizable, we will show that there is a frequency pole ωmp in the magnetic permeability and then the refractive index, leading to the negative refractive index in the range ω∈[k, ωmp], where k is the wave number, but there are no propagating modes in the negative refractive index region. In a non-magnetizable plasma, and the magnetic permeability the refractive index are always positive.
     There are two methods to calculate transport coefficients. One method is the Kubo formula, which is an equation which expresses the linear response of an observable quantity due to a time-dependent perturbation. Another method equivalent to the Kubo formula is linearized Boltzmann equation. Suppose the distribution function can be expanded near equilibrium with respect to space-time derivative. Then we can derive the integral equation for the deviation part of the distribution, from which we can obtain the transport coefficients. Using the linearized Boltzmann equation, we calculate the conductivity of the chiral current due to electric field. Similar to the chiral magnetic effect, there is also a chiral electric effect in heavy ion collisions. The chiral conductivity is just the ratio of the chiral current to the electric field. The chiral conductivity depends on the chemical potential and chiral chemical potential in a non-trivial way. Our results are consistent to those obtained in other methods in literature.
     Quantum kinetic theory based on Wigner functions is a powerful tool to for trans-port phenomena. We investigate fluid-dynamics of a fermionic system in (2+1)-dimensions in a constant background electromagnetic field. We work in a quantum kinetic approach with gauge invariant Wigner function. A perturbative method is used to determine the Wigner function to the first order of the spatial derivative and electromagnetic field. The fermionic current induced by the magnetic field is obtained from the Wigner function which gives the Hall effect. The parity violating Hall electric conductivity is consistent to the previous result from quantum field theory. The vorticity term also emerges nat-urally. The entropy is proved to conserve indicating that this is a parity-violating and dissipationless system.
引文
[1]Peter Brockway Arnold, Guy D Moore, and Laurence G. Yaffe. Transport coefficients in high temperature gauge theories.2. Beyond leading log. JHEP,0305:051,2003.
    [2]T. D. Lee and G. C. Wick. Vacuum Stability and Vacuum Excitation in a Spin 0 Field Theory. Phys. Rev., D9:2291,1974.
    [3]Miklos Gyulassy and Larry McLerran. New forms of QCD matter discovered at RHIC. Nucl. Phys., A750:30-63,2005.
    [4]Peter F. Kolb, Josef Sollfrank, and Ulrich W. Heinz. Anisotropic transverse flow and the quark-hadron phase transition. Phys. Rev., C62:054909,2000.
    [5]Huichao Song and Ulrich W. Heinz. Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions. Phys. Rev., C77:064901,2008.
    [6]Matthew Luzum and Paul Romatschke. Conformal Relativistic Viscous Hydrodynamics:Applications to RHIC results at sqrt(sNN)= 200GeV.Phys.Rev., C78:034915,2008.
    [7]Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Ad-v.Theor.Math.Phys.,2:231-252,1998.
    [8]Edward Witten. Anti-de Sitter space and holography. Adv.Theor.Math.Phys.,2:253-291,1998.
    [9]S.S. Gubser, Igor R Klebanov, and Alexander M. Polyakov. Gauge theory correlators from noncritical string theory.Phys.Lett.,B428:105-114,1998.
    [10]P. Kovtun, D. T. Son, and A. O. Starinets. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett.,94:111601,2005.
    [11]Leo P Kadanoff and Paul C Martin. Hydrodynamic equations and correlation functions. Annals of Physics, 24(0):419-469,1963.
    [12]Sangyong Jeon. Hydrodynamic transport coefficients in relativistic scalar field theory. Phys.Rev., D52:3591-3642,1995.
    [13]Gert Aarts and Jose M. Martinez Resco. Transport coefficients from the 2PI effective action. Phys.Rev., D68:085009,2003.
    [14]Gert Aarts and Jose M. Martinez Resco. Transport coefficients in large N(f) gauge theories with massive fermions. JHEP,0503:074,2005.
    [15]Enke Wang and Ulrich W. Heinz. Nonperturbative calculation of the shear viscosity in hot phi**4 theory in real time. Phys. Leff.,B471:208-213,1999.
    [16]Enke Wang and Ulrich W. Heinz. Shear viscosity of hot scalar field theory in the real time formalism. Phys.Rev., D67:025022,2003.
    [17]M. E. Carrington, De-fu Hou, and R. Kobes. Shear viscosity in phi**4 theory from an extended ladder resum-mation. Phys. Rev., D62:025010,2000.
    [18]E.A. Calzetta, B.L. Hu, and S.A. Ramsey. Hydrodynamic transport functions from quantum kinetic theory. Phys.Rev., D61:125013,2000.
    [19]Manuel A. Valle Basagoiti. Transport coefficients and ladder summation in hot gauge theories. Phys.Rev., D66:045005,2002.
    [20]Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Transport coefficients in high temperature gauge theories.1. Leading log results. JHEP,0011:001,2000.
    [21]Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Effective kinetic theory for high temperature gauge theories. JHEP,0301:030,2003.
    [22]Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory. Reading, USA:Addison-Wesley (1995) 842 p.
    [23]Sangyong Jeon and Laurence G. Yaffe. From quantum field theory to hydrodynamics:Transport coefficients and effective kinetic theory. Phys.Rev., D53:5799-5809,1996.
    [24]Peter Brockway Arnold, Caglar Dogan, and Guy D. Moore. The bulk viscosity of high-temperature QCD. Phys. Rev., D74:085021,2006.
    [25]Zhe Xu and Carsten Greiner. Shear viscosity in a gluon gas. Phys. Rev. Lett.,100:172301,2008.
    [26]Jiunn-Wei Chen, Hui Dong, Kazuaki Ohnishi, and Qun Wang. Shear Viscosity of a Gluon Plasma in Pertur-bative QCD. Phys. Lett., B685:277-282,2010.
    [27]Jiunn-Wei Chen, Jian Deng, Hui Dong, and Qun Wang. How Perfect a Gluon Plasma Can Be in Perturbative QCD? Phys. Rev., D83:034031,2011.
    [28]Jiunn-Wei Chen, Jian Deng, Hui Dong, and Qun Wang. Shear and Bulk Viscosities of a Gluon Plasma in Perturbative QCD:Comparison of Different Treatments for the gg<->ggg Process. Phys.Rev., C87:024910,2013.
    [29]Jiunn-Wei Chen, Yen-Fu Liu, Yu-Kun Song, and Qun Wang. Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature-Leading-Log Results. Phys.Rev., D87:036002,2013.
    [30]Jiunn-Wei Chen, Yen-Fu Liu, Shi Pu, Yu-Kun Song, and Qun Wang. Negative Off-Diagonal Conductivities in a Weakly Coupled Quark Gluon Plasma. Phys.Rev., D88:085039,2013.
    [31]Jean-Sebastien Gagnon and Sangyong Jeon. Leading order calculation of electric conductivity in hot quantum electrodynamics from diagrammatic methods. Phys.Rev., D75:025014,2007.
    [32]Jean-Sebastien Gagnon and Sangyong Jeon. Leading Order Calculation of Shear Viscosity in Hot Quantum Electrodynamics from Diagrammatic Methods. Phys.Rev., D76:105019,2007.
    [33]Stephen L. Adler. Axial vector vertex in spinor electrodynamics. Phys. Rev.,177:2426-2438,1969.
    [34]J. S. Bell and R. Jackiw. A PCAC puzzle:pi0→gamma gamma in the sigma model. Nuovo Cim., A60:47-61, 1969.
    [35]R.D. Peccei and Helen R Quinn. Constraints Imposed by CP Conservation in the Presence of Instantons. phys.Rev.,D16:1791-1797,1977.
    [36]Steven Weinberg. A New Light Boson? Phys.Rev.Lett.,40:223-226,1978.
    [37]R.D. Pisarski and L.G. Yaffe. THE DENSITY OF INSTANTONS AT FINITE TEMPERATURE. Phys.Lett., B97:110-112,1980.
    [38]Larry D. McLerran, Emil Mottola, and Mikhail E. Shaposhnikov. Sphalerons and Axion Dynamics in High Temperature QCD. Phys.Rev., D43:2027-2035,1991.
    [39]V. Skokov, A. Yu. Illarionov, and V. Toneev. Estimate of the magnetic field strength in heavy-ion collisions. IntJ.Mod.Phys., A24:5925-5932,2009.
    [40]Dmitri Kharzeev. Parity violation in hot QCD:Why it can happen, and how to look for it. Phys.Lett, B633:260-264,2006.
    [41]Dmitri Kharzeev, R.D. Pisarski, and Michel H.G. Tytgat. Possibility of spontaneous parity violation in hot QCD. Phys.Rev.Lett.,81:512-515,1998.
    [42]D. Kharzeev and A. Zhitnitsky. Charge separation induced by P-odd bubbles in QCD matter. Nucl.Phys., A797:67-79,2007.
    [43]Dmitri E. Kharzeev, Larry D. McLerran, and Harmen J. Warringa. The Effects of topological charge change in heavy ion collisions:'Event by event P and CP violation'. Nucl.Phys., A803:227-253,2008.
    [44]Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa. The Chiral Magnetic Effect. Phys.Rev., D78:074033,2008.
    [45]Dmitri E. Kharzeev and Dam T. Son. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions. Phys.Rev.Lett.,106:062301,2011.
    [46]D. T. Son and Ariel R. Zhitnitsky. Quantum anomalies in dense matter. Phys. Rev., D70:074018,2004.
    [47]B.I. Abelev et al. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation. Phys.Rev.Lett.,103:251601,2009.
    [48]B.I. Abelev et al. Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev., C81:054908,2010.
    [49]Panos Christakoglou. Charge dependent azimuthal correlations in Pb-Pb collisions at √SNN=2.76 TeV. J.Phys., G38:124165,2011.
    [50]Johanna Erdmenger, Michael Haack, Matthias Kaminski, and Amos Yarom. Fluid dynamics of R-charged black holes. JEEP,01:055,2009.
    [51]Nabamita Banerjee et al. Hydrodynamics from charged black branes. JHEP,01:094,2011.
    [52]Mahdi Torabian and Ho-Ung Yee. Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries. JHEP,08:020,2009.
    [53]Anton Rebhan, Andreas Schmitt, and Stefan A. Stricker. Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model. JHEP,1001:026,2010.
    [54]Tigran Kalaydzhyan and Ingo Kirsch. Fluid/gravity model for the chiral magnetic effect. Phys. Rev. Lett., 106:211601,2011.
    [55]Dam T. Son and Piotr Surowka. Hydrodynamics with Triangle Anomalies. Phys.Rev.Lett.,103:191601,2009.
    [56]Shi Pu, Jian-hua Gao, and Qun Wang. A consistent description of kinetic equation with triangle anomaly. Phys.Rev., D83:094017,2011.
    [57]A. V. Sadofyev and M. V. Isachenkov. The chiral magnetic effect in hydrodynamical approach. Phys. Lett., B697:404-406,2011.
    [58]Dmitri E. Kharzeev and Ho-Ung Yee. Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations. Phys.Rev., D84:045025,2011.
    [59]Xu-Guang Huang and Jinfeng Liao. Axial Current Generation from Electric Field:Chiral Electric Separation Effect. Phys.Rev.Lett.,110:232302,2013.
    [60]H. T. Elze, M. Gyulassy, and D. Vasak. TRANSPORT EQUATIONS FOR THE QCD QUARK WIGNER OPERATOR. Nucl. Phys., B276:706-728,1986.
    [61]H. T. Elze, M. Gyulassy, and D. Vasak. The QCD quark Wigner operator and semiclassical transport equations. In *Santa Fe 1986, Proceedings, Hadronic matter in collision* 454-465. (see Conference Index).
    [62]D. Vasak, M. Gyulassy, and H. T. Elze. QUANTUM TRANSPORT THEORY FOR ABELIAN PLASMAS. Annals Phys.,173:462-492,1987.
    [63]Ulrich W. Heinz. QUARK-GLUON TRANSPORT THEORY. PART 2. COLOR RESPONSE AND COLOR CORRELATIONS IN A QUARK-GLUON PLASMA. Ann. Phys.,168:148,1986.
    [64]Ulrich W. Heinz. Quark-Gluon Transport Theory. Part 1. the Classical Theory. Ann. Phys.,161:48,1985.
    [65]Ulrich W. Heinz. QUARK-GLUON TRANSPORT THEORY. Nucl. Phys., A418:603c-612c,1984.
    [66]Jian-Hua Gao, Zuo-Tang Liang, Shi Pu, Qun Wang, and Xin-Nian Wang. Chiral Anomaly and Local Polar-ization Effect from Quantum Kinetic Approach. Phys.Rev.Lett.,109:232301,2012.
    [67]Jian-hua Gao, Shi Pu, and Qun Wang. Some issues of chiral anomaly in quantum kinetic approach. J.Phys.Conf.Ser.,432:012010,2013.
    [68]Stanley Deser, R. Jackiw, and S. Templeton. Topologically Massive Gauge Theories. Annals Phys., 140:372-411,1982.
    [69]A.N. Redlich. Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions. Phys.Rev.Lett., 52:18,1984.
    [70]A.N. Redlich. Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions. Phys.Rev., D29:2366-2374,1984.
    [71]A. J. Niemi and G. W. Semenoff. Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times. Phys. Rev. Lett.,51:2077,1983.
    [72]Gerald V. Dunne. Aspects of Chern-Simons theory.1998.
    [73]Alberto Nicolis and Dam Thanh Son. Hall viscosity from effective field theory.2011.
    [74]Omid Saremi and Dam Thanh Son. Hall viscosity from gauge/gravity duality. JHEP,1204:091,2012.
    [75]Carlos Hoyos and Dam Thanh Son. Hall Viscosity and Electromagnetic Response. Phys.Rev.Lett., 108:066805,2012.
    [76]Jiunn-Wei Chen, Nien-En Lee, Debaprasad Maity, and Wen-Yu Wen. A Holographic Model For Hall Viscosity. Phys.Lett., B713:47-52,2012.
    [77]Terence Delsate, Vitor Cardoso, and Paolo Pani. Anti de Sitter black holes and branes in dynamical Chern-Simons gravity:perturbations, stability and the hydrodynamic modes. JHEP,1106:055,2011.
    [78]Taro Kimura and Tatsuma Nishioka. The Chiral Heat Effect. Prog. Theor.Phys.,127:1009-1017,2012.
    [79]Jiunn-Wei Chen, Shou-Huang Dai, Nien-En Lee, and Debaprasad Maity. Novel Parity Violating Transport Coefficients in 2+1 Dimensions from Holography. JHEP,1209:096,2012.
    [80]N. Read. Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x)+ip(y) paired superfluids. Phys.Rev.B,79:045308,2009.
    [81]J.E. Avron, R. Seiler, and P.G. Zograf. Viscosity of quantum Hall fluids. Phys.Rev.Lett.,75:697-700,1995.
    [82]J. E. Avron. Odd viscosity. J. Stat. Phys.,92:543-557,1998.
    [83]N. Read and E. H. Rezayi. Hall viscosity, orbital spin, and geometry:Paired superfluids and quantum hall systems. Phys. Rev. B,84:085316, Aug 2011.
    [84]Taylor L. Hughes, Robert G. Leigh, and Eduardo Fradkin. Torsional response and dissipationless viscosity in topological insulators. Phys. Rev. Lett.,107:075502, Aug 2011.
    [85]Kristan Jensen, Matthias Kaminski, Pavel Kovtun, Rene Meyer, Adam Ritz, et al. Parity-Violating Hydrody-namics in 2+1 Dimensions. JHEP,1205:102,2012.
    [86]G. Agakichiev et al. Enhanced production of low mass electron pairs in 200-GeV/u S-Au collisions at the CERN SPS. Phys.Rev.Lett.,75:1272-1275,1995.
    [87]R. Rapp, G. Chanfray, and J. Wambach. Medium modifications of the rho meson at CERN SPS energies. Phys.Rev.Lett.,76:368-371,1996.
    [88]R. Rapp, G. Chanfray, and J. Wambach. Rho meson propagation and dilepton enhancement in hot hadronic matter. Nucl.Phys., A617:472-495,1997.
    [89]R. Arnaldi et al. First measurement of the rho spectral function in high-energy nuclear collisions. Phys.Rev.Lett.,96:162302,2006.
    [90]Hendrik van Hees and Ralf Rapp. Comprehensive interpretation of thermal dileptons at the SPS. Phys.Rev.Lett.,97:102301,2006.
    [91]Jorg Ruppert, Charles Gale, Thorsten Renk, Peter Lichard, and Joseph I. Kapusta. Low mass dimuons pro-duced in relativistic nuclear collisions. Phys.Rev.Lett.,100:162301,2008.
    [92]R. Arnaldi et al. Evidence for radial flow of thermal dileptons in high-energy nuclear collisions. Phys.Rev.Lett., 100:022302,2008.
    [93]A. Adare et al. Dilepton mass spectra in p+p collisions at s**(1/2)=200-GeV and the contribution from open charm. Phys.Lett.,B670:313-320,2009.
    [94]A.Adare et al. Detailed measurement of the e+e- pair continuum in p+p and Au+Au collisions at (?)= 200 GeV and implications for direct photon production. Phys.Rev., C81:034911,2010.
    [95]Antonio Amariti, Davide Forcella, Alberto Mariotti, and Giuseppe Policastro. Holographic Optics and Neg-ative Refractive Index. JHEP,1104:036,2011.
    [96]Xian-Hui Ge, Kwanghyun Jo, and Sang-Jin Sin. Hydrodynamics of RN AdS4 black hole and Holographic Optics. JHEP,1103:104,2011.
    [97]Xin Gao and Hong-bao Zhang. Refractive index in holographic superconductors. JHEP,1008:075,2010.
    [98]Francesco Bigazzi, Aldo L. Cotrone, Javier Mas, Daniel Mayerson, and Javier Tarrio. D3-D7 Quark-Gluon Plasmas at Finite Baryon Density. JHEP,1104:060,2011.
    [99]Antonio Amariti, Davide Forcella, Alberto Mariotti, and Massimo Siani. Negative Refraction and Supercon-ductivity. JHEP,1110:104,2011.
    [100]Viktor G Veselago. The electrodynamics of substances with simultaneously negative values of img [http://ej.iop.org/images/0038-5670/10/4/r04/toceps.gif]ε and μ. Soviet Physics Uspekhi,10(4):509,1968.
    [101]R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verification of anegative index of refraction. Science, 292(5514):77-79,2001.
    [102]D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305(5685):788-792,2004.
    [103]Evan J. Reed, Marin Soljacic, and John D. Joannopoulos. Reversed doppler effect in photonic crystals. Phys. Rev. Lett.,91:133901, Sep 2003.
    [104]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science,314(5801):977-980,2006.
    [105]Igor A. Shovkovy. Magnetic Catalysis:A Review. Lect.Notes Phys.,871:13-49,2013.
    [106]A.N. Sisakian, O. Yu. Shevchenko, and S.B. Solganik. Chiral and parity anomalies at finite temperature and density. Nucl.Phys.,B518:455-472,1998.
    [107]A. J. Niemi and G. W. Semenoff. Fermion Number Fractionization in Quantum Field Theory. Phys. Rept., 135:99,1986.
    [108]W. Israel and J. M. Stewart. Transient relativistic thermodynamics and kinetic theory. Ann. Phys., 118:341-372,1979.
    [109]L. Bonora and P. Cotta-Ramusino. Some remarks on brs transformations, anomalies and the cohomology of the lie algebra of the group of gauge transformations. Communications in Mathematical Physics,87(4):589-603, 1982.
    [110]Cumrun Vafa and Edward Witten. Parity Conservation in QCD. Phys.Rev.Lett.,53:535,1984.
    [111]Thomas D. Cohen. Spontaneous parity violation in QCD at finite temperature:On the Inapplicability of the Vafa-Witten theorem. Phys.Rev., D64:047704,2001.
    [112]A.A. Belavin, Alexander M. Polyakov, A.S. Schwartz, and Yu.S. Tyupkin. Pseudoparticle Solutions of the Yang-Mills Equations. Phys.Lett., B59:85-87,1975.
    [113]Gerard't Hooft. Symmetry Breaking Through Bell-Jackiw Anomalies. Phys.Rev.Lett.,37:8-11,1976.
    [114]G?kce Basar, Gerald V. Dunne, and Dmitri E. Kharzeev. Instantons and sphalerons in a magnetic field. Nu-cl.Phys., A904-905:988c-991c,2013.
    [115]Sergei A. Voloshin. Parity violation in hot QCD:How to detect it. Phys.Rev., C70:057901,2004.
    [116]Dmitri E. Kharzeev. Topologically induced local P and CP violation in QCD x QED. Annals Phys., 325:205-218,2010.
    [117]P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, and M.I. Polikarpov. Numerical evidence of chiral magnetic effect in lattice gauge theory. Phys.Rev., D80:054503,2009.
    [118]Bo-Yu Hou. gauge invarient current in nonabel gauge theory(in chinese). physics letter(chinese),26(5):433, 1977.
    [119]J. David Brown and Jr. York, James W. Quasilocal energy and conserved charges derived from the gravitational action. Phys.Rev.,D47:1407-1419,1993.
    [120]V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B,69:165112, Apr 2004.
    [121]H. Arthur Weldon. Covariant calculations at finite temperature:The relativistic plasma. Phys. Rev. D, 26:1394-1407, Sep 1982.
    [122]Paul Romatschke and Michael Strickland. Collective modes of an anisotropic quark gluon plasma. Phys.Rev., D68:036004,2003.
    [123]Paul Romatschke and Michael Strickland. Collective modes of an anisotropic quark-gluon plasma II. Phys.Rev., D70:116006,2004.
    [124]Stanislaw Mrowczynski and Markus H. Thoma. Hard loop approach to anisotropic systems. Phys.Rev., D62:036011,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700