用户名: 密码: 验证码:
间歇交变磁场对等离子堆焊金属组织及性能影响机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的迅速发展和机械化、自动化程度的不断提高,对机械设备和零件磨损引起的危害越来越被人们重视,减少磨料磨损与提高机械使用寿命具有很大的经济意义。
     电磁作用焊接技术是近年来完善起来的一种新的焊接技术,应用也同趋广泛。根据外加间歇交变磁场粉末等离子弧堆焊焊接过程的非线性、多因素、非稳念、强耦合的特点,综合运用电磁学、磁性物理、焊接冶金等多种交叉学科的知识,运用非电量检测技术和有限元数值分析等方法建立了外加间歇交变磁场粉末等离子弧堆焊磁场的数学模型并进行了模拟仿真。建立了外加间歇交变磁场粉木等离子弧堆焊焊接过程中外加磁场及其分布的通用数学分析模型,采用有限元法计算了不同焊接条件下外加间歇交变磁场及其分布,分析了不同间歇交变磁场参数对外加间歇交变磁场及其分布的影响规律。其模拟结果与实际测量结果具有良好的一致趋势,从而验证了间歇交变磁场及其分布数值分析的模型是准确的,具有一定的通用性。
     外加纵向间歇交变磁场促使电弧旋转,改变等离子弧柱等离子流和电流密度的径向分布,影响母材的加热熔化和焊缝成形。外加横向间歇交变磁场改变了电弧的摆动频率。实践表明,利用外加磁场对焊接中熔滴的过渡、熔池金属的流动、熔池的结晶形核及结晶生长等过程有显著作用,使堆焊层的一次结晶组织细化,控制硬质相的分布,减小化学不均匀性,从而提高了堆焊层金属的硬度和耐磨性,全面改善堆焊层的性能。
     在等离子弧堆焊铁基、镍基合金粉末时外加纵向和横向间歇交变磁场,研究了外加间歇交变磁场对堆焊层组织的影响规律,系统地考察了不同磁场种类与堆焊层金属性能和微观组织之间的关系,着重叙述了外加间歇交变磁场对堆焊层金属凝固过程的作用机理,揭示了堆焊层中硬质相的形态分布,并做出了理论分析和研究探讨,得到以下主要结果:
     1、在适当的间歇交变磁场参数(励磁电流、磁场频率、磁场占空比)匹配作用下,堆焊层组织才能获得最佳的细化效果。
     2、没有施加磁场时,硬质相杂乱无章的分布;在最佳的问歇交变磁场参数作用下,堆焊层中硬质相细小且均匀分布,此时堆焊层金属的硬度和磨损量均达到最佳状态。
     3、由实验的结果可知:纵向间歇交变磁场作用下当磁场电流I_磁=3A、f=10Hz及μ=50%时,铁基堆焊层金属的硬度为HRC68,磨损量△G=0.0318g。纵向间歇交变磁场作用下当磁场电流I_磁=3A、f=10Hz及μ=50%时,镍基堆焊层金属的硬度为HRC52.4,磨损量△G=0.39g;横向间歇交变磁场作用下当磁场电流I_磁=3A、f=10Hz及μ=50%时,堆焊层金属性能达到最佳值,此时硬度HRC67.7,磨损量△G=0.0323g。横向间歇交变磁场作用下当磁场电流I_磁=3A、f=10Hz及μ=50%时,镍堆焊层金属性能达到最佳值,此时硬度HRC51.7,磨损量△G=0.42g。
With the rapid development of industry technology and continued increase of the degree of mechanization and automation, people pay more attention to hazard of parts wearing. It has a great economic significance that decrease grinding abrasion and increase mechanical wearing.
     Electromagnetic technology is applied to welding as a new welding method in recent years. The numerical analysis models of intermittent alternative magnetic field and its distribution are established at first time, and general control equation and boundary condition are presented, according to the characteristics of nonlinear, multi-factor, transient and strong coupling in the intermittent alternative magnetic field, by using non-electric quantity measuring techniques and finite-element analysis method. The general numerical simulation models of intermittent alternative magnetic field of plasma arc surfacing layer are constructed for the first time, which is suitable for calculating the distribution of intermittent alternative magnetic field. The models of distribution of intermittent alternative magnetic field have been validated by carrying out welding technology tests comprehensively. It is shown that the computed results are found to be in good agreement with the experimentally observed one or the precise analysis result.
     The applied intermittent alternative longitudinal magnetic field promotes arc revolution, changes plasma jet of arc column and radial distribution of density of arc, affects the heating and melting of base metal and formation of weld. The intermittent alternative transverse magnetic field has influence on the swing frequency of welding arc.Experience shows that the introduced magnetic field can give an effective intervention to the transition of droplet, flowing of molten bath metal, crystalline and nucleation of molten bath and the process of crystalline growth. The magnetic field promotes the refining degree of primary crystallization structure , decreases the chemistry non-homogeneity, So it can strengthen hardness and wearing resistance of weld metal overlay and improve quality of surfacing deposit.
     This paper talks about plasma arc surfacing Fe-based alloy powder, Ni-based alloy powder alloy powder on low carbon steel with applied intermittent alternative magnetic field. The effect of the intermittent alternative magnetic field on the surfacing deposit solidification structure and mechanical properties is studied and the relationship of different magnetic field types and material wearing resistance has been examined systematically. The mechanism for overlay welding metal during solidification by applied intermittent alternative magnetic field has been discussed intentionally. It shows the shape and distribution of hard phase in overlay welding, and makes theoretical analysis and preliminary discussion. Following are the main results:
     1、The optimum parameters( the current of magnetic field, the frequency of magnetic field and the duty ratio of magnetic field) of intermittent alternative magnetic field can greatly influence grain structure refinement in plasma overlay.
     2、The hard phase in weld metal overlay is distributed randomly without magnetic field;With the using intermittent alternative magnetic field, the hard phase in weld metal overlay is fine and distributed "the hexagon" in optimum parameters, then hardness and wear extent in weld metal overlay are higher.
     3、The result indicated: with the effect of intermittent alternative longitudinal magnetic field, when the optimum magnetic field electric current is 3A, magnetic field frequency is 10Hz and magnetic field duty ratio is 50%, hardness in Fe-based overlay is HRC68, wear loss△G=0.0318g. with the effect of intermittent alternative longitudinal magnetic field, when the optimum magnetic field electric current is 3A, magnetic field frequency is 10Hz and magnetic field duty ratio is 50%, hardness in Ni-based overlay is HRC52.4, wear loss△G=0.39g; with the effect of intermittent alternative transverse magnetic field, when the optimum magnetic field current is 3A, magnetic field frequency is10Hz and magnetic field duty ratio is 50%, hardness of Fe-based overlay is HRC67.7, wear loss△G=0.0323g. with the effect of intermittent alternative transverse magnetic field, when the optimum magnetic field current is 3A, magnetic field frequency is10Hz and magnetic field duty ratio is 50%, hardness of Ni-based overlay is HRC51.7, wear loss△G=0.42g.
引文
[1]邵荷生,张清理.金属的磨损与耐磨材料.北京:机械工业出版社,1988.
    [2]徐滨士,朱绍华,刘世参.材料表面工程.哈尔滨:哈尔滨工业大学出版社,2005.
    [3]崔信昌.等离子弧焊接和切割.北京:国防工业出版社,1988.
    [4]张清理.金属磨损和耐磨材料手册.北京:冶金工业出版社,1984.
    [5]铸铁手册编写组.铸铁手册.北京:机械工业出版社,1979.
    [6]董允,张延森.现代表面工程技术.北京:机械工业出版社,2000.
    [7]徐滨士.表面工程与维修.北京:机械工业出版社,1996.
    [8]王德权,胡毅均,李杰.阀门用钴基合金及堆焊工艺.阀门,2004,2(5):12-17.
    [9]刘政军,刘景铎,牟力军等.磁场强度对重熔层耐磨性的影响.焊接技术,2001,22(5):73-75.
    [10][苏]M.A.阿勃拉洛夫,P.Y.阿勃杜拉赫曼洛夫著.电磁作用焊接技术.北京:机械工业出版社,1988.
    [11]贾昌申,肖克民,殷咸青.焊接电弧的等离子流力研究.西安交通大学学报,1994,28(1):7-13.
    [12]张九海.小电流焊电弧磁控特性的研究.焊接学报,1990,11(1):43-49.
    [13]罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊接机理.金属学报,2001,37(2):212-216.
    [14]Yu Jianrong, Zhang Jiaying. Contracted effect of bell-shape welding arc and accompanied magnetic field with spiral pipe paper. Transactions of Nonferrous Metal Society of China, 1997, 7(2): 92-98.
    [15]Tse, Man HC, Yue HC, T.M. Effect of electric and magnetic fields on plasma control during CO_2 laser welding. Optics and Lasers in Engineering, 1999, 32(1):55-63.
    [16][日]近角聪信编.磁性体手册[中].杨膺善等译.北京:冶金工业出版社,1984.
    [17][日]近角聪信编.磁性体手册[上].杨膺善等译.北京:冶金工业出版社,1984.
    [18]戴道生,钱昆明.铁磁学[上].北京:科学出版社,1987.
    [19]郭贻诚.铁磁学.北京:人民教育出版社,1965.
    [20]李荫远,李国栋.铁氧体物理学.北京:科学出版社,1962.
    [21]Haydock R. Solid state physics. New York: Academic Press, 1980.
    [22]R. M. Bozorth.Ferromagnetism. Van Nostrand Co. Inc., 1951.
    [23]Maddox S J. Fatigue strength of welded structure. Cambridge: Abington Publishing, 1991.
    [24]R. Becker and W. Doring. Ferromagnetismus. Springer, Berlin, 1939.
    [25]Kou S, le Y. Improve weld quality by low frequency arc oscillation. Welding Journal, 1985,64(3):51-55.
    [26]贾昌申,肖克民.用电磁搅拌提高20g钢埋弧自动焊焊缝质量.电焊机,1987,18(4):14-17.
    [27]刘乐昕.电磁场作用下的铸铁表面重熔强化:(硕士学位论文).沈阳:沈阳工业大学,2001.
    [28]Ralph Mobner. Buoyant melt flows under the influence of steady and rotating magnetic fields. J.Ctyst.Growth.1999,6(197):341-354.
    [29]Yu.M.Gelfgat. Rotating magnetic fields as a means to control the hydrodynamics and heat transfer in the processes of bulk single crystal growth. Crystal Growth, 1999,8(198/199):165-169.
    [30]王学东,张伟强,时海芳.电磁搅拌技术的国内外发展现状.辽宁工程技术大学学报,2001,20(1):82-84.
    [31]张忠典,李冬青,尹孝辉等.外加磁场对焊接过程的影响.焊接学报,2002(3):76-82.
    [32]Brown D Cet al. Effect of electromagnetic stirring and mechanical vibration on arc welding. Welding Journal, 1962,41(2):41-50.
    [33]Tseng C F, Savage W F. The effect of arc oscillation in either the transverse or longitudinal direction has a beneficial effect on the fusion zone microstructure and tends to reduce Sensitivity to hot cracking. Welding Journal, 1971,50(12):777-785.
    [34]王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发.材料科学与工艺,2000,8(4):1-5.
    [35]李海刚,殷咸青,罗键等.用电磁搅拌提高LD10CS铝合金焊接接头的质量.焊接学报,1998,19(12):100-104.
    [36]殷咸青,李海刚,罗键.用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究.西安交通大学学报,1998,32(5):9l-95.
    [37]唐非,鹿安理,方慧珍等.一种降低残余应力的新方法——脉冲磁处理法.焊接学报,2000,21(2):29-31.
    [38]国旭明,钱百年,薛小怀等.电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响.金属学报,2000,36(2):177-180.
    [39]常云龙,陈德善.磁控等离子弧堆焊热源的研究.沈阳工业大学报,1997,19(5):49-52.
    [40]Asai. S. Recent development and prospect of electromagnetic processing of materials. Science and Technology of Advanced Materials, 2000, 1(4): 191-200.
    [41]杨道明.金属力学性能.北京:冶金工业出版社,1986.
    [42]罗键.外加纵向磁场GTAW焊接熔池流体流动与传热行为的研究:(博士学位论文).西安:西安交通大学,1999.
    [43]邢书明,徐亚荣,胡汉起等.电场和磁场作用下的金属凝固.特种铸造及有色合金,1998(6):37-40.
    [44]闵乃本编.晶体生长的物理基础.上海:上海科技出版社,1982.
    [45]梁百先编.电磁学教程.北京:高等教育出版社,1984.
    [46]O.Yilmaz. Abrasive wear of FeCr(M_7C_3-M_(23)C_6) reinforced iron based metal matrix composites. Material Science and Technology,2001,17(10):1285-1292.
    [47]刘政军.铁基高温耐磨等离子弧喷焊合金及耐磨机理的研究:(博士学位论文).天津:天津大学,1995.
    [48]R.T.C,Choo and J.Szekely. Vaporization kinetics and surface temperature in a mutually coupled spot gas tungsten arc weld and weld pool, Welding Journal, 1992,Vol.71, No.3,77-92.
    [49]J.W.Kim and S.J.Na: A Study on the Effect of Contact Tube-to-workpiece Distance on Weld Pool Shape in Gas Metal Arc Welding, Welding Journal, 1995,Vol.74, No.5.141-152.
    [50]M.Ushio and C.S.Wu: Mathematical Modeling of Three-dimensional Heat and Fluid Flow in a Moving Gas Metal Arc Weld Pool, Metall. Trans., 1984,Vol.28B, No.6, 509-516.
    [51]A.Block-Bolten and T.W.Eagar: Metai Vaporization from Weld Pools. Metall. Trans., 1997, Vol.15B,461-469.
    [52]J.C.Villafuerte and H.W.Ker: Electromagnetic Stirring and Grain Refinement in Stainless Steel GTA Welds, Welding Journal, 1990,Vol.69, No.1, 1-3.
    [53]W.Chen and B.A.Chin: Monitoring Joint Penetration Using Infrared sensing Techniques, Welding journal, 1990,Vol.69,No.4,181-185.
    [54]M.S.Engelman: Fluid Dynamic Analysis Package theoretical manual, Evanston Illinois Press, USA, 1987.
    [55]R.D.Pehlke: Summary of Thermal Properties for Casting Alloys and Mold Materials, Dept. of Material and Met.Eng, University of Michigan, Ann Arbor, Michigan 48109 ,USA, 1987,324-341.
    [56]Liu Zhengjun, Sun Jinggang, Influence of Magnetic Field on Microstructure and Properties of Ni60 Plasma Surfacing Layer, China Welding, 2005 Vol.14, No.2,145-148.
    [57]徐滨士,朱绍华,等编著.表面工程的理论与技术.北京:国防工业出版社,1999.
    [58]装甲兵工程学院编.徐滨士院士科研文选.北京:机械工业出版社,2001.
    [59]曲敬信,江泓宏主编.表面工程手册.北京:化学工业出版社,1998.
    [60]胡传炘主编.表面处理技术手册.北京:北京工业大学出版社,1997.
    [61]李金桂主编.现代表面工程技术.北京:国防工业出版社,2000.
    [62]胡传炘,宋幼慧编著.涂层技术原理及应用.北京:化学工业出版社,2000.
    [63]徐滨士主编.纳米表面工程.北京:化学工业出版社,2004.
    [64]徐滨士,刘世参编著.表面工程新技术.北京:国防工业出版社,2002.
    [65]毛钧杰,何建国.电磁场理论.长沙:国防科技大学出版社,1998.
    [66]牛中奇,朱满座,卢智远,路宏敏等.电磁场理论基础.北京:电子工业出版社,2001.
    [67]Bhag Singh Guru, Huseyin R. Hiziroglu. Electromagnetic Field Theory Fundamentals.北京:机械工业出版社,2002.
    [68]杨玉东.磁控靶向复合纳米微粒制备及性能研究:(博士学位论文).沈阳:中国科学院金属研究所,2005.
    [69]刘政军.程江波,苏允海等.电磁搅拌对堆焊层硬质相形态及性能的影响.热加工工艺,2005(4):53-55.
    [70]Edit by B Cantor and K.O.reilly. Solidification and casting solidification structure control by magnetic fields. Institute of Physics Publishing Bristol and Philadelphia, 1999.
    [71]A.Katsuki, R.Tokunaga. S.I.Watanabe. Chem. Lett, 1996,5(8):607-608.
    [72]P.De Rango, M.Lees, P.Lejay etal. Nature, 1991,349:770-772.
    [73]M.R.Lees, D.Bourgault, P.D.Rango et al. Philosophical Magazine B, 1992, 65(6): 1395-1404
    [74]黄小星.铝合金在脉冲磁场作用下的定向凝固技术研究:(硕士学位论文).西安:西北工业大学,2003.
    [75]董杰,崔建忠,刘晓涛等.低频电磁场参数对A1-10Zn-2.5Mg-2.5Cu-0.15Zr合金铸态组织和性能的影响.金属学报,2003,39(5):483-485.
    [76]刘德镇.现代射线检测技术.北京:中国标准出版社,1999.
    [77]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社,1998.
    [78]张北江.低频电磁场作用下铝合金半连续铸造工艺与理论研究:(博士学位论文).沈阳:东北大学,2002.
    [79]胡汉起.金属凝固.北京:冶金工业出版社,1985.
    [80]王晓东,赵恂,李廷举等.电磁搅拌法的研究与开发.材料科学与工艺,2000,4(8):55-58.
    [81]M.G.Mousavi, M.J.M.Hermans, I.M.Richardson, G.den Ouden. Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds. Science and Technology of Welding and Joining, 2003,8(4): 309-312.
    [82]殷咸青,罗键,李海刚.纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响.西安交通大学学报,1999,33(7):7l-74.
    [83]应小午,李午申,冯灵芝.电磁搅拌对超高硬度堆焊层组织和性能的影响.焊接,2004(3):20-23.
    [84]王晖.强磁场对合金中析出相凝固行为的影响:(博士学位论文).上海:上海大学,2002.
    [85]王晖,任忠呜,邓康等.磁场对Bi-Mn合金两相中MnBi相凝固组织的影响.金属学报,2002,38(1):41-46.
    [86]William H. Hayt, Jr., John A. Buck. Engineering Electromagnetics.北京:机械工业出版社,2002,123-126.
    [87]曹伟,徐立勤.电磁场与电磁波理论.北京:北京邮电大学出版社,1999.
    [88]吴万春.电磁场理论.北京:电子工业出版社.1985.
    [89]姚德淼,毛钧杰.微波技术基础.北京:电子工业出版社,1989.
    [90]顾瑞龙,沈民谊.微波技术与天线.北京:国防工业出版社,1980.
    [91]阎润卿,李英惠.微波技术基础.北京:北京理工大学出版社,1997.
    [92]李宗谦,佘京兆.微波工程基础.南京:东南大学出版社,1996.
    [93]Leonard. M. Magid, Electromagnetic Fields, Energy and Waves, by John Wiley and Sons, 1972.
    [94]P. Lorrain and D. R. Corson, Electromagnetic Fields and Waves, 1970.
    [95]David K. Cheng, Fields and Waves Electromagnetics, ADDISON-WESLEY Publishing Company, 1983.
    [96]L. Merrill, Introduction to Radar Systems, McGraw-Hill International Company, 2000.
    [97]Martin J. Feuerstein and Theodore S. Rappaport Wireless Personal Communication, Kluwer Academic Publishers, 1993.
    [98]宛得福.磁性理论及其应用.武汉:华中理工大学出版社,1996.
    [99]李卫,刘义荣.理论物理导论.北京:北京理工大学出版社,1994.
    [100]Yoon J S.The effect of Al composition on the microstructure and mechanical properties of WC-TiAlN superhard composite coating. Surf.Coat.Technol., 2001(596): 142-144.
    [101]Chen Y H.Synthesis and structure of smooth, superhard TiN/SiN_x multilayer coating with an equiaxed microstructure. Surf.Coat.Technol.,2001(209): 146-147.
    [102]Robert T Lund.The remanufacturing industry-hidden giant.Research Report of Manufacturing Engineering Department, Boston University, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700