用户名: 密码: 验证码:
低速磁悬浮列车牵引控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮列车是一种新型的轨道交通运输工具,它利用电磁吸力或电动斥力将列车悬浮在轨道上方,由直线电机驱动列车运动,与地面无机械接触,不产生摩擦损耗,运行维护简单方便,世界各国对其进行了广泛研究。我国磁悬浮列车技术正处于快速发展之中,低速磁悬浮列车作为城际轨道交通的优选方案,具有噪音小,施工难度较低等优点。使用直线感应电机驱动磁悬浮列车运动是低速磁悬浮列车的关键技术之一,研究适合于磁悬浮列车的直线感应电机的控制方式和牵引控制系统对于推动我国磁悬浮列车技术的发展和实用化具有现实意义。
     本文首先分析了用于磁悬浮列车的直线感应电机,建立了引入边缘效应的直线感应电机等效电路模型,在此基础上对恒流驱动下的单边型直线感应电机的气隙磁场数学模型进行三维分析,推导出单边型直线感应电机的推力和法向力的解析表达式。然后阐述了应用单边型直线感应电机驱动的磁悬浮列车的特点和对牵引系统的要求,通过理论分析和对直线感应电机力特性的仿真结果,确定恒电流恒滑差频率控制方式理论上能够实现提供推力的同时避免了法向力的过大波动而造成的对悬浮系统的干扰。由于磁悬浮列车牵引系统是一个动力分散系统,总的牵引力由分布在车体各处的动力单元提供,为了保证功率平衡,牵引控制系统必须协调各动力单元的推力。本文依据以上特点,给出了磁悬浮列车牵引控制系统方案。最后,设计实验对磁悬浮列车牵引控制系统进行检验。实验结果证明采用恒电流恒滑差频率控制方式能够实现直线感应电机的恒推力运行,在实验运行速度下法向力波动不大。牵引控制系统运行正常,能够满足设计要求。
Maglev train is a new type of vehicle on railway track. It is drived by linear motor. Levitated over the rails, the body of the train does not touch the ground, thus there exists no friction. Compared with the ordinary trains, it is easier to be maintained, so many researches on the maglev train have been conducted around the world. Nowadays, the technology of the maglev train in China is developing quickly, low speed maglev train enjoys the priortiy in railway transportation between cities and has a lot of advantages, such as lower noise in operation and less difficulty in construction. This thesis fouses on the controlling method of single-sided linear induction motor (SLIM) and the controlling system for the vehicle traction employed in the maglev train. As using SLIM to propel the maglev train is one of the key technologies of low speed maglev train, the present study has practical siginificance in promoting the development and the application of the technology of the maglev train.
    Firstly, the analysis of SLIM used in the maglev train is conducted and SLIM equivalent circuit model with end effect is established. Based on the model drived by constant current, the thesis carries out the three-dimensional analysis on SLIM's air-gap flux, as a result, the analytic expressions of the SLIM's thrust force and levitation force are derived. Then the thesis discusses the characteristics of the maglev train, whose drive force is SLIM, and its requirements for the traction system. By means of the theoretical analysis and simulation of SLIM's forces, the author reaches the conclusion that in theory controlling method with constant current and constant slip frequency can provide thrust force satisfactorily and at the same time avoid disturbance, generated by excessive fluctuation of normal force, on the levitation system. Because the thrust force is supplied by the drive units distributed in different parts of the train, in order to balance power among these units, the traction
    
    
    controlling system should coodinate thrust forces from these units. According to the characteristics discussed above, the controlling system design of the maglev train traction is offered hi this paper. Finally, an experiment is worked out to testify the design. The results show that the above-metioned controlling method can realize the operation of SLIM with a constant thrust force, that normal force does not fluctuate greatly at the specified speed and that the controlling system of the tranction operates regularly, meeting the requirements of the design.
引文
[1] 魏庆朝,孔永健.磁悬浮铁路系统与技术.北京:中国科学技术出版社,2003.
    [2] 刘华清等编译.德国磁悬浮列车Transrapid.成都:电子科技大学出版社,1995.
    [3] 连级三.磁浮列车原理及技术特征.电力机车技术,2001,(3):23-26.
    [4] 阎贯虹.直线电机在磁浮列车上的应用研究.西南交通大学硕士研究生学位论文.1995.
    [5] 叶云岳.直线电机原理与应用.北京:机械工业出版社,2000.
    [6] 叶云岳.直线电机技术手册.北京:机械工业出版社,2003.
    [7] M.波罗亚多夫 著.张春镐 译.直线感应电机理论.北京:科学出版社,1985.
    [8] S.A.Nasar,I.Boldea著.龙暇令 朱维衡 徐善纲 田立兴 译.直线电机.科学出版社,1982.
    [9] 郭庆鼎 王成元 周美文 孙廷玉 直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000.
    [10] 上海工业大学,上海电机厂.直线异步电动机.北京:机械工业出版社,1979.
    [11] 浙江大学电机教研室.直线感应电动机.北京:机械工业出版社,1979.
    [12] 陈宇明.高速磁悬浮列车用常导直线同步电机的研究.中国科学院电工研究所硕士研究生学位论文.2001.
    [13] 刘少克 常文森 尹力明.日本磁悬浮列车HSST-100运行试验综述.机车电传动,1997(6):29-31.
    [14] 严云升.TM1型机车的微机控制系统.机车电传动,1997(6):1-4.
    [15] 李夙.异步电动机直接转矩控制.北京:机械工业出版社,1994.
    [16] 雷银照.时谐电磁场解析方法.北京:科学出版社,2000.
    [17] 连汉雄.电磁场理论的数学方法 北京:北京理工大学出版社,1990.
    [18] 陈伯时 陈敏逊.交流调速系统.北京:机械工业出版社,1998.
    [19] 马小亮.大功率交—交变频调速及矢量控制技术.北京:机械工业出版社,1996.
    [20] 沈本荫.现代交流传动及其控制系统.北京:中国铁道出版社,1997,p76~p77.
    [21] 王楚 李椿 周乐柱.电磁学.北京:北京大学出版社,2000.
    [22] 朱仙福,罗会美,邵丙衡.磁悬浮列车的涡流制动问题.机印电传动,2001(4):32-40.
    [23] 金浩 穆华东.明珠线地铁车辆安全保护装置.机车电传动,2003(4):33-35.
    [24] 廖志明.直线电机与电磁铁试验台测控系统研究.西南交通大学硕士研究生学位论文.2003.
    
    
    [25] 孙涵芳.Intel 16位单片机.北京:北京航空航天大学出版社.1998.
    [26] 王沫然.MATLAB 6.0与科学计算.北京:电子工业出版社.2001.
    [27] 刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社.2003.
    [28] K.Yoshida, L. Shi, & T.Yoshida. Decoupled-control method of normal and thrust forces in linear induction motor for maglev vehicle marine-express ME-01, Department of Electrical and Electronic System Egnineering, 1999.
    [29] S.Yamamura, Theory of linear induction motors, Second Edition, University of Tokyo Press, 1978.
    [30] K. Adarniak, Krishnamoorthy Ananthasivam, Graham E. Dawson, Anthony R. Eastham, & Jacek E Gieras, The causes and consequences of phase unbalance in single-sided linear induction motor, IEEE Transaction Magnetics, Vol. MAG-24, pp. 3223-3233, 1988.
    [31] Luciano Martins Neto, Euler B. dos Santos, & Jose R. Camacho, Linear induction motors parameter determination on force development applications, IEEE Transaction. Magnetics, Vol. MAG-24, pp. 354-358, 2000.
    [32] S. Nakamura, Y., Takeuchi, M., & Takahashi, Experimental results of the single-sided linear induction motor, IEEE Transaction on Magnetics, Vol. MAG-15, pp. 1434-1436, 1979.
    [33] Takafumi KOSEKI, Kazuya HAYAFUNE, & Eisuke MASADA, Lateral motion of a short-stator type magnetic wheel, IEEE Transaction on Magnetics, Vol. MAG-23, pp. 2350-2352, 1987.
    [34] Changan Lu, Graham E. Dawson, & Tony R. Eatham, Dynamic performance of a linear induction motor with slip frequency control, CCECE/CCGEI, pp. 1057-1060, 1993.
    [35] Y. Ogino, Y. Murakaml, & M. Nakaoka, High performance ultra-low speed control of inverter-fed linear induction motor using vector control scheme, The European Power Electronics Association, pp. 464-467, 1993.
    [36] Kinjiro Yoshida, & Sakutaro Nonaka, Levitation forces in single-sided linear induction motors for high-speed ground transport, IEEE Transaction on Magnetics, Vol. MAG-11, pp. 1717-1719, 1987.
    [37] K.Adamiak, Krish Namoorthy Ananthasivam, Graham E. Dawson, Anthony R. Eastham, & Jacek F. Fieras, The causes and consequences of phase unbanlance in single-sided linear induction motor, IEEE Transactions on Magnetics, Vol. 24, No.6,
    
    pp. 3223-3233, 1988.
    [38] Adel Gastli, Improved field oriented control of an LIM having jointsin its secondary conductor, IEEE Transactions.on Energy Conversion, Vol. 17, No. 3, pp. 349-355, 2002.
    [39] A. K. Wallace, J. H. Parker, & G. E. Dawson, Slip control for LIM propelled transit vehicle, IEEE Transactions on Magnetics, Vol. MAG-16, No. 5, pp. 710-712, 1980.
    [40] Mi Ching Tsai, & Jeng Hu Chen, A practical implementation of a linear induction motor drive using new generation DSP controller, Proceedings of the 1999 IEEE International Conference on Control Applications, pp. 945-949,1999.
    [41] Atencia J., Martinez-Iturrald M., Martinez G., Garcia Rico A., & Fl(?)rez J., Control strategies for positioning of linear induction motor: tests and discussion, IEEE Transactions on Energy Conversion, pp. 1651-1655, 2003.
    [42] Changan Lu, G.. E. Dawson, & A. R. Eastham, An improved coupled-circuit model for linear induction motor, Proc. CCECE '92, Toronto, WA8. 32.1.
    [43] Chin-I Huang, Chen, Ko-Lo, Hou-Tsan Lee, & Li-Chen Fu, Nonlinear adaptivee backstepping motion control of linear induction motor, Proceedings of the American Control Conference, pp. 3099-3104, 2002.
    [44] Vincenzo Delli Colli, Roberto DiStefano, Fabrizio Marignetti, & Rong-Jong Wai, Nonlinear feedback control with sliding mode of a linear induction motor, IEEE Transactions on Energy Conversion, pp.226-231, 2002.
    [45] Masashi Kitamura, Noriaki Hino, Hideki Nihei, & Motoya Ito, A direct search shape optimization based on complex expressions of 2-dimensional magnetic fields and forces, IEEE Transactions on Magnetics, Vol. 34, No. 5, pp. 2845-2848, 1998.
    [46] K.Venkataratnam, & A. B. Chattopadhyay, Analysis of electromagnetic forces in a levitated short rotor LIM, IEEE Transactions on Energy Conversion, Vol. 17, No. 1, pp. 95-101, 2002.
    [47] Byung I1 Kwon, Kyung I1 Woo, Sol Kim, & Seung Chan Park, Analysis for dynamic characteristics of a single-sided linear induction motor having joints in the secondary conductor and back-iron, IEEE Transactions on Magnetics, Vol. 36, No.4, pp. 823-826, 2000.
    [48] D.-H. Im, E.-C. Park, & C.-T. Kim, Development of auto-conveyor system using linear inductin motor, National Vonvention I.E.E Japan-IAS, pp. I.85-I.91, 1990.
    [49] Kinjiro Yoshida, & Sakutaro Nonaka, Levitation forces in single-sided linear induction
    
    motor for high-speed ground transport, IEEE Transactions on Magnetics, Vol. Mag-11,No.6, pp. 1717-1719, 1975.
    [50] S. Nonaka, & N. Fujii. Simplified two-dimensional analysis of linear induction motors, IEEE Transactions on Magnetics, Vol. MAG-23, No.5, pp. 2832-2834, 1997.
    [51] Teruo Azukizawa, Mimpei Morishita, Shuji Kanda, Noboru Tamura, & Toyohiko Yokoyama.A linear induction motor control system for magnetically levitated carrier system, IEEE Transactions on Vehicular Technology, Vol. 38, No. 2, pp. 102-108, 1989.
    [52] Tadashi Yamaguchi, Yoshihiro Kawase, Makoto Yoshida, Youichi Saito, & Yasuharu Ohdachi, 3-D finite element analysis of a linear induction motor, IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3668-3671, 2001.
    [53] Byung-Ⅱ Kwon, & Kyung-Ⅱ Woo, Finite element analysis of direct thrust-controlled linear induction motor, IEEE Transactions on Magnetics, Vol. 35, pp. 1306-1309, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700