用户名: 密码: 验证码:
基于PEG及聚磷酸酯的刷形嵌段共聚物的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗对治疗各种基因疾病(包括遗传性疾病、感染性疾病和癌症等)具有潜在的疗效,有着重要的发展前景。安全、高效、稳定的基因载体是基因治疗中的一个重要方向。基因载体的制备和控制释放涉及材料学、分子生物学、医学及高分子化学等领域,具有重要的理论意义和潜在的应用价值,非病毒阳离子型基因载体因其具有较高的负载效率而受到广泛的关注。本论文利用亲水性刷形聚合物的诸多优点,即具有表面防污、屏蔽电荷、降低复合物的自聚集、降低载体毒性、延长载体在体内的循环时间、且使载体具有抗蛋白非特异吸附性能,结合磁性纳米粒子、还原敏感二硫键、生物可降解聚磷酸酯、荧光分子香豆素的优点,设计合成了一系列刷形聚合物,用于构建多重响应性基因载体。对刷形聚合物的结构设计、合成表征、生物相容性以及作为基因载体的性能进行了研究。论文的主要内容分为以下几个方面:
     (1)利用聚阳离子修饰的磁性纳米子、刷形聚阴离子以及DNA,通过静电作用,构建磁响应性复合基因载体。首先采用氧阴离子引发聚合,制备含胆固醇的阳离子聚合物,即末端含胆固醇的聚[甲基丙烯酸-2-(N,N-二甲氨基)乙酯](Chol-PDMAEMA),再通过配体交换法,获得阳离子聚合物修饰的磁性纳米粒子,用于缩合DNA;通过原子转移自由基聚合(ATRP)和后修饰反应,制备含巯基(-SH)的刷形阴离子嵌段共聚物聚(聚乙二醇单甲醚甲基丙烯酸酯)-b-聚甲基丙烯酸(PPEGMA-b-PMAASH),与上述磁性阳离子载体作用,形成复合物载体,在双氧水或空气中O2作用下,-SH交联成二硫键(S-S),可将包载的DNA固定于聚合物载体中,提高了载体在血液循环过程中的稳定性,当载体到达细胞内还原环境中,在细胞内谷胱甘肽作用下,二硫键断裂,释放出包裹的DNA。利用核磁共振氢谱(1H NMR)和凝胶渗透色谱(GPC)对聚合物进行表征。通过琼脂糖凝胶电泳、zeta电位、动态激光光散射仪(DLS)、透射电镜(TEM)、细胞毒性测试,抗蛋白吸附测试以及转染测试对载体进行评价。
     (2)利用单电子转移活性自由基聚合(SET-LRP)和开环聚合(ROP)法,制备侧链接枝生物可降解聚磷酸酯的刷形嵌段共聚物(PHEMA-g-PEEP)-b-PDMAEMA。首先利用两步SET-LRP反应,获得甲基丙烯酸羟乙酯(HEMA)与甲基丙烯酸-2-(N,N-二甲氨基)乙酯(DMAEMA)的两嵌段共聚物PHEMA-b-PDMAEMA;再利用嵌段共聚物中PHEMA侧基上的羟基,对环状磷酸酯单体(EEP)进行开环接枝聚合,获得(PHEMA-g-PEEP)-b-PDMAEMA。利用1HNMR、31PNMR、红外光谱(FT-IR)和GPC对聚合物的结构进行表征。采用荧光探针法测试聚合物的临界聚集浓度(CAC)值,并且,通过琼脂糖凝胶电泳、zeta电位、DLS、TEM、细胞毒性以及体外转染测试对其作为基因载体的性质进行了评价。
     (3)结合开环聚合(ROP)、原子转移自由基聚合(ATRP)和点击化学(Click)反应,制备基于PEG刷形聚合物的荧光/pH响应的酸敏感型嵌段共聚物CE-PCL-a-(PDMAEMA-co-PPEGMA)。首先利用荧光分子7-(2’-羟基-3’-氯)丙烷-4-甲基香豆素(CE)的羟基开环单体己内酯(-CL),获得CE-PCL,接着,对CE-PCL端基的羟基进行修饰,使端基成为具有酸敏感缩醛基的缩醛-叠氮基团;另一方面,利用ATRP法合成端基为炔基的PPEGMA和PDMAEMA的刷形无规共聚物。通过“Click”反应,将上述两个嵌段共聚物的叠氮基团和炔基进行反应,获得酸敏感型嵌段共聚物CE-PCL-a-(PDMAEMA-co-PPEGMA)。这种具有荧光性的共聚物在水中可以自组装形成胶束,可以同时包载药物和基因,发挥协同作用,用于癌症治疗。利用1HNMR、FT-IR和GPC对聚合物进行结构表征。通过荧光探针法测定聚合物的临界聚集浓度(CAC),利用琼脂糖凝胶电泳、zeta电位、DLS、TEM、细胞毒性测试、药物释放以及内吞、转染测试等对所构建的载体及载体的荧光性能进行了评价。
     (4)利用两步原子转移自由基聚合(ATRP)法和后修饰反应,制备半乳糖修饰的阳离子型刷形共聚物P(PEGMEMA-co-PEGMAGal)-b-PDMAEMA。首先,通过ATRP法制备单体聚乙二醇单甲醚甲基丙烯酸酯(PEGMEMA)和聚乙二醇甲基丙烯酸酯(PEGMA)的无规共聚物P(PEGMEMA-co-PEGMA),再将其作为大分子引发剂,引发阳离子型单体DMAEMA进行ATRP反应,获得三组分两嵌段的阳离子型刷形共聚物P(PEGMEMA-co-PEGMA)-b-PDMAEMA。进一步地,利用PPEGMA侧链上的羟基键合肝靶向分子半乳糖,获得半乳糖修饰的阳离子型刷形嵌段共聚物P(PEGMEMA-co-PEGMAGal)-b-PDMAEMA。通过1H NMR、FT-IR以及GPC测试对聚合物的结构、分子量及分子量分布进行表征,通过凝胶阻滞电泳测试,研究了阳离子型刷形嵌段共聚物结合DNA的能力,利用zeta电位研究载体的表面电荷、通过细胞毒性试验测试了载体的生物相容性,并且对比了半乳糖修饰的阳离子型刷形嵌段共聚物P(PEGMEMA-co-PEGMAGal)-b-PDMAEMA与DNA形成的复合物对HeLa(子宫颈癌)和HepG2(肝癌)细胞的转染能力。
Gene therapy has been generally acknowledged as a promising treatment fornumerous hard curable diseases, including genetic diseases, infectious diseases, andcancer. Safety, efficiency and stability play the most challenging role in gene therapy.Preparation and controlled release of gene vector concern the materials science,molecular biology, medicine and polymer chemistry and other fields with importanttheoretical significance and potential applications. Non-viral cationic gene vectors arepromising due to their easily-adjustable and controlled structures, high condensationability. This thesis is mainly focused on the design and synthesis of PEGylated orpolyphosphoester (PPE) based brush-type copolymers for fabricating multi-responsivegene vectors, combining the advantages of brush-type copolymers, disulfide bond,magnetic nanoparticles, biodegradable PPE and fluorescent coumarin. It is reportedthat brush-type hydrophilic units on the surface of vectors can enhance their resistanceagainst self-aggregation, and nonspecific adsorption with proteins or serum-drivencomponents, also it can enhance the solubility of polyplexes and prolong the lifetime inblood circulation because the abundant periphery highly flexible chains stericallyprevent undesirable interactions of the vectors with negatively-charged components inbloodstream. The present work can be summarized as follows:
     (1) A novel magnetic-responsive complex composed of polycation, DNA andpolyanion has been constructed via electrostatic interaction. The magneticnanoparticles (MNPs) were first coated with a polycation, poly[2-(dimethylamino)ethyl methacrylate] end-capped with cholesterol moiety(Chol-PDMAEMA), and then binded with DNA through electrostatic interaction, thecomplexes were further interacted with the brush-type polyanion, namelypoly[poly(ethylene glycol)methyl ether methacrylate]-block-poly[methacrylic acidcarrying partial mercapto groups](PPEGMA-b-PMAASH). The resulting magneticparticle/DNA/polyion complexes could be stabilized by oxidizing the mercapto groupsto form cross-linking shell with bridging disulfide (S-S) betweenPPEGMA-b-PMAASHmolecular chains. The interactions among DNA,Chol-PDMAEMA coated MNPs and PPEGMA-b-PMAASHwere studied by agarosegel retardation assay. The complexes were fully characterized by means of zetapotential, transmission electron microscopy (TEM), dynamic light scattering (DLS)measurements, cytotoxicity assay, anti-nonspecific protein adsorption and in vitrotransfection tests.
     (2) A novel kind of pH-sensitive brush-tpye copolymer,[poly(2-hydroxyethylmethacrylate)-graft-poly(ethylethylene phosphate)]-block-poly[2-(dimethylamino)ethyl methacrylate][(PHEMA-g-PEEP)-b-PDMAEMA] with biodegradablepolyphosphoester as the side chains were synthesized via a combination ofsingle-electron transfer living radical polymerization (SET-LRP) and ring-openingpolymerization (ROP). The chemical structures were characterized by1H NMR,31PNMR, FT-IR, and GPC measurements.(PHEMA-g-PEEP)-b-PDMAEMA canself-assembled into aggregates served as a gene carrier. The brush-like PPE chainsprovide the carrier with good biocompatibility and biodegradability, as well as longcirculation lifetime. The interaction of (PHEMA-g-PEEP)-b-PDMAEMA and DNAwas studied by agarose gel retardation assay, and the formed complexes were furtherinvestigated by means of zeta potential, DLS and TEM measurements. In addition, thein vitro cytotoxicity and transfection tests were also investigated.
     (3) In this part, we report on a novel acid-cleavable and fluorescent cationic blockcopolymer CE-PCL-a-(PDMAEMA-co-PPEGMA) by a combination of atom transferradical polymerization (ATRP), ring-opening polymerization (ROP) and “Click”reaction. The cationic block copolymer CE-PCL-a-(PDMAEMA-co-PPEGMA) canself-assemble into micelles to load drug and DNA simultaneously to form complexeswith the brush-type PPEGMA on the surface. The drugs and DNA can be releasedafter the acetal linkage was cleaved under intracellular acid conditions. We studiedthese micelles as the drug and gene co-delivery vector by employing gel retardationassay, zeta potential, DLS, TEM, and subsequently its in vitro drug release, in vitrocytotoxicity and transfection efficiency were tested. Fluorescence spectrometer wasused to evaluate the fluorescence of complex for detecting and locating the carrier.
     (4) A series of brush copolymer P(PEGMEMA-co-PEGMAGal)-b-PDMAEMAmodified by liver targeted galactose were prepared by two-step ATRP technique andesterification reaction activated by N, N’-carbonyldiimidazole (CDI) and furthermodified by galactosamine. The brush-type hydrophilic polymer can enhance theresistance against self-aggregation, prolong the lifetime in blood circulation andprevent non-specific adsorption of proteins. Meanwhile, the pH responsivePDMAEMA segment can be protonized to carry positive charges to condense DNA. Inaddition, the galactose ligands can enhance the endocytosis of complex by hepatocyteto increase the transfection efficiency. The chemical structures ofP(PEGMEMA-co-PEGMAGal)-b-PDMAEMA were characterized by1H NMR, FT-IR,and GPC measurements. The binding capacity of this cationic copolymer with DNAwas investigated by agarose gel electrophoresis, zeta potential, in vitro cytotoxicity andtransfection assay was tested.
引文
(1) Marshall, E. Gene therapy death prompts review of adenovirus vector. Science1999,286,2244-2245.
    (2) Miller, A. D. Cationic liposomes for gene therapy. Angew. Chem. Int. Ed.1998,37,1768-1785.
    (3) Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    (4) Park, H.-J.; Yang, F.; Cho, S.-W. Nonviral delivery of genetic medicine fortherapeutic angiogenesis. Adv. Drug Delivery Rev.2012,64,40-52.
    (5) Kang, H. C.; Huh, K. M.; Bae, Y. H. Polymeric nucleic acid carriers: currentissues and novel design approaches J. Controlled Release2012,164,256-264.
    (6) Merkel, O. M.; Zheng, M. Y.; Debus, H.; Kissel, T. Pulmonary gene deliveryusing polymeric nonviral vectors. Bioconjugate Chem.2012,23,3-20.
    (7) Sun, T. M.; Du, J. Z.; Yan, L. F.; Mao, H. Q.; Wang, J. Self-assembledbiodegradable micellar nanoparticles of amphiphilic and cationic blockcopolymer for siRNA delivery. Biomaterials2008,29,4348-4355.
    (8) Nabel, G. J. Genetic, cellular and immune approaches to disease therapy: past andfuture. Nat Med.2004,10,135-141.
    (9) Yue, Y. N.; Wu, C. Progress and perspectives in developing polymeric vectors forin vitro gene delivery. Biomater. Sci.2013,1,152-170.
    (10) Green, J. J.; Langer, R.; Anderson, D. G. A combinatorial polymer libraryapproach yields insight into nonviral gene delivery. Acc. Chem. Res.2008,41,749-759.
    (11) Zelphati, O.; Francis, C.; Szoka, J. Liposomes as a carrier for intracellulardelivery of antisense oligonucleatide: a real or magic bullet. J. Controlled Release1996,41,99-102.
    (12) Lasic, D. D.; Templeton, N. S. Liposomes in gene therapy. Adv. Drug Deliv. Rev.1996,20,221-225.
    (13) Huang, R. Q.; Ke, W. L.; Liu, Y.; Jiang, C.; Pei, Y. Y. The use of lactoferrin as aligand for targeting the polyamidoamine-based gene delivery system to the brain.Biomaterials2008,29,238-246.
    (14) You, Y. Z.; Manickam, D. S.; Zhou, Q. H.; Oupicky, D. Reduciblepoly(2-dimethylaminoethyl methacrylate): Synthesis, cytotoxicity, and genedelivery activity. J. Controlled Release2007,122,217-225.
    (15) Kawamura, K.; Oishi, J.; Kang, J-H.; Kodama, K.; Sonoda, T.; Murata, M.;Niidome, T.; Katayama Y. Intracellular signal-responsive gene carrier forcell-specific gene expression. Biomacromolecules2005,6,908-913.
    (16) Wu, G. Y.; Wu, C. H. Receptor-mediated in vitro gene transformation by asoluble DNA carrier system. J. Biol. Chem.1987,262,4429-4432.
    (17) Wu, G. Y.; Wu, C. H. Receptor-mediated gene delivery and expression in vivo. J.Biol. Chem.1988,263,14621-14624.
    (18) Katayose, S.; Kataoka, K. Water-soluble polyion complex associates of DNA andpoly(ethylene glycol)-poly(l-lysine) block copolymer. Bioconjugate Chem.1997,8,702-707.
    (19) Hartono, S. B.; Gu, W. Y.; Kleitz, F.; Liu, J.; He, L. Z.; Middelberg, A. P. J.; Yu,C. Z.; Lu, G. Q.; Qiao, Z. S. Poly-L-lysine functionalized large pore cubicmesostructured silica nanoparticles as biocompatible carriers for gene delivery.ACS Nano2012,6,2104-2117.
    (20) Zhou, D. Z.; Li, C. X.; Hu, Y. L.; Zhou, H.; Chen, J. T.; Zhang, Z. P.; Guo, T. Y.PLL/pDNA/P(His-co-DMAEL) ternary complexes: assembly, stability and genedelivery. J. Mater. Chem.2012,22,10743-10751.
    (21) Boussif, O.; Lezoualch, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.;Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transferinto cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A.1995,92,7297-7301.
    (22) Lungwitz, U.; Breunig, M.; Blunk, T.; Gopferich, A. Polyethylenimine-basednon-viral gene delivery systems. Eur. J. Pharm. Biopharm.2005,60,247-266.
    (23) Behr, J. P. The proton sponge: a trick to enter cells the viruses did not exploit.Chimia1997,51,34-36.
    (24) Wang, Y. H.; Zheng, M.; Meng, F. H.; Zhang, J.; Peng, R.; Zhong, Z. Y.Branched polyethylenimine derivatives with reductively cleavable periphery forsafe and efficient in vitro gene transfer. Biomacromolecules2011,12,1032-1040.
    (25) Godbey, W. T.; Wu, K. K.; Mikos, A. G. Size matters: molecular weight affectsthe efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater.Res.1999,45,268-275.
    (26) Yuk, S. H.; Cho, S. H.; Lee, S. H. pH/Temperature-responsive polymer composedof poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide).Macromolecules1997,30,6856-6859.
    (27) van de Wetering, P.; Cherng, J. Y.; Talsma, H.; Hennink, W. E. Relation betweentransfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethylmethacrylate)/plasmid complexes. J. Controlled Release1997,49,59-69.
    (28) Arigita, C.; Zuidam, N. J.; Crommelin, D. J.; Hennink, W. E. Association anddissociation characteristics of polymer/DNA complexes used for gene delivery.Pharm. Res.1999,16,1534-1541.
    (29) Zuidam, N. J.; Posthuma, G.; de Vries, E. T.; Crommelin, D. J.; Hennink, W. E.;Storm, G. Effects of physicochemical characteristics ofpoly[2-(dimethylamino)ethyl methacrylate]-based polyplexes on cellularassociation and internalization. J. Drug Target.2000,8,51-66.
    (30) Lin, S.; Du, F. S.; Wang, Y.; Ji, S. P.; Liang, D. H.; Yu, L.; Li, Z. C.Biomacromolecules2008,9,109-115.
    (31) Zhang, W. D.; Cheng, Q.; Guo, S. T.; Lin, D. S.; Huang, P. S.; Liu, J.; Wei, T.;Deng, L. D.; Liang, Z. C.; Liang, X. J.; Dong, A. J. Gene transfection efficacyand biocompatibility of polycation/DNA complexes coated with enzymedegradable PEGylated hyaluronic acid. Biomaterials2013,34,6495-6503.
    (32) Maclaughlin, F. C.; Mumper, R. J.; Wang, J. J.; Tagliaferria, J. M.; Gillb, I.;Hinchcliffe1, M.; Rollanda, A. P. Chitosan and depdymerized chitosan oligomersas condensing carriers for in vivo plasmid delivery. J. Controlled Release1998,56,259-272.
    (33) Mao, H.-Q.; Roy, K.; Troung-Le, V. L.; Janes, K. A.; Lin, K. Y.; Wang, Y.;Thomas August, J.; Leong, K. W. Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency. J. Controlled Release2001,70,399-421.
    (34) Richard, I.; Thibault, M.; De Crescenzo, G.; Buschmann, M. D.; Lavertu, M.Ionization behavior of chitosan and chitosan–DNA polyplexes iIndicate thatchitosan has a similar capability to induce a proton-sponge effect as PEI.Biomacromolecules2013,14,1732–1740.
    (35) Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications. Biomaterials2005,26,3995-4021.
    (36) Mah, C.; Zolotukhin, I.; Fraites, T. J.; Dobson, J.; Batich, C.; Byrne, B. J.Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo.Mol. Ther.2000,1, S239.
    (37) Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Krüger, A.;G nsbacher, B.; Plank, C. Magnetofection: enhancing and targeting gene deliveryby magnetic force in vitro and in vivo. Gene Ther.2002,9,102-109.
    (38) Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles:design and characterization, toxicity and biocompatibility, pharmaceutical andbiomedical applications. Chem. Rev.2012,112,5818-5878.
    (39) Plank, C. Nanomedicine: silence the target. Nat. Nanotech.2009,4,544-545.
    (40) Kim, J.; Lee, J. E.; Lee, S. H.; Yu, J. H.; Lee, J. H.; Park, T. G.; Hyeon,T.Designed fabrication of a multifunctional polymer nanomedical platform forsimultaneous cancer-targeted imaging and magnetically guided drug delivery.Adv. Mater.2008,20,478-483.
    (41) Zhang, H. Y.; Lee, M. Y.; Hogg, M. G.; Dordick, J. S.; Sharfstein, S. T. Genedelivery in three-dimensional cell cultures by superparamagnetic nanoparticles.ACS Nano2010,4,4733-4743.
    (42) Bae, K. H.; Lee, K.; Kim, C.; Park, T. G. Surface functionalized hollowmanganese oxide nanoparticles for cancer targeted siRNA delivery and magneticresonance imaging. Biomaterials2011,32,176-184.
    (43) Arsianti, M.; Lim, M.; Marquis, C. P.; Amal, R. Assembly ofpolyethylenimine-based magnetic iron oxide vectors: insights into gene delivery.Langmuir2010,26,7314-7326.
    (44) Yoo, H.; Moon, S. K.; Hwang, T.; Kim, Y. S.; Kim, J. H.; Choi, S. W.; Kim, J. H.Multifunctional magnetic nanoparticles modified with polyethylenimine and folicacid for biomedical theranostics. Langmuir2013,29,5962-5967.
    (45) Milner, S. T. Polymer brushes. Science1991,251,905-914.
    (46) Kawaguchi, S.; Akaike, K.; Zhang, Z.-M.; Matsumoto, H.; Ito, K. Water solublebottlebrushes. Polym. J.1998,30,1004-1007.
    (47) Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes:synthesis, characterization, and properties. Prog. Polym. Sci.2008,33,759-785.
    (48) Stals, P. J. M; Li, Y. C.; Burdyńska, J.; Nicola, R.; Nese, A.; Palmans, A. R. A.;Meijer, E. E.; Matyjaszewski, K.; Sheiko, S. S. How far can we push polymerarchitectures? J. Am. Chem. Soc.2013,135,11421-11424.
    (49) Lee, H. I.; Pietrasik, J.; Sheiko, S. S.; Matyjaszewski, K. Stimuli-responsivemolecular brushes. Prog. Polym. Sci.2010,35,24-44.
    (50) Lecommandoux, S.; Checot, F.; Borsali, R.; Schappacher, M.; Deffieux, A. Effectof dense grafting on the backbone conformation of bottlebrush polymers:determination of the persistence length in solution. Macromolecules2002,35,8878-8881.
    (51) Wintermantel, M.; Gerle, M.; Fischer, K.; Schmidt, M.; Wataoka, I. Molecularbottlebrushes. Macromolecules1996,29,978-983.
    (52) Dziezok, P.; Sheiko, S. S.; Fischer, K.; Schmidt, M.; Moller, M. Cylindricalmolecular brushes. Angew. Chem. Int. Ed.1997,36,2812-2815.
    (53) Vogt, A. P.; Sumerlin, B. S. An efficient route to macromonomers via ATRP andclick chemistry. Macromolecules2006,39,5286-5292.
    (54) Subbotin, A.; Saariaho, M.; Ikkala, O.; Ten Brinke, G. Elasticity of combcopolymer cylindrical brushes. Macromolecules2000,33,3447-3452.
    (55) Lanson, D.; Ariura, F.; Schappacher, M.; Borsali, R.; Deffieux, A. Application ofliving ionic polymerizations to the design of AB-type comb-like copolymers ofvarious topologies and organizations. Macromol. Res.2007,15,173-177.
    (56) Gao, H. F.; Matyjaszewski, K. Synthesis of molecular brushes by “grafting onto”method: combination of ATRP and click reactions. J. Am. Chem. Soc.2007,129,6633-6639.
    (57) Beers, K. L.; Gaynor, S. G.; Matyjaszewski, K.; Sheiko, S. S.; Moeller, M. Thesynthesis of densely grafted copolymers by atom transfer radical polymerization.Macromolecules1998,31,9413-9415.
    (58) Sumerlin, B. S.; Neugebauer, D.; Matyjaszewski, K. Initiation efficiency in thesynthesis of molecular brushes by grafting from via atom transfer radicalpolymerization. Macromolecules2005,38,702-708.
    (59) Venkatesh, R.; Yajjou, L.; Koning, C. E.; Klumperman, B. Novel brushcopolymers via controlled radical polymerization. Macromol. Chem. Phys.2004,205,2161-2168.
    (60) Nomura, E.; Ito, K.; Kajiwara, A.; Kamachi, M. Radical polymerization kineticsof poly(ethylene oxide) macromonomers. Macromolecules1997,30,2811-2817.
    (61) Berry, G. C.; Kahle, S.; Ohno, S.; Matyjaszewski, K.; Pakula, T. Viscoelastic anddielectric studies on comb-and brush-shaped poly(n-butyl acrylate). Polymer2008,49,3533-3540.
    (62) Deffieux, A.; Schappacher, M. Synthesis and characterization of star and combpolystyrenes using isometric poly(chloroethyl vinyl ether) oligomers as reactivebackbone. Macromolecules1999,32,1797-1802.
    (63) Schappacher, M.; Deffieux, A. New polymer chain architecture: synthesis andcharacterization of star polymers with comb polystyrene branches.Macromolecules2000,33,7371-7377.
    (64) Sumerlin, B. S.; Neugebauer, D.; Matyjaszewski, K. Initiation efficiency in thesynthesis of molecular brushes by grafting from via atom transfer radicalpolymerization. Macromolecules2005,38,702-708.
    (65) Advincula, R.; Zhou, Q.; Park, M.; Wang, S.; Mays, J.; Sakellariou, G.; Pispas, S.;Hadjichristidis, N. Polymer brushes by living anionic surface initiatedpolymerization on flat silicon (SiOx) and gold surfaces: homopolymers and blockcopolymers Langmuir2002,18,8672-8684.
    (66) Zhang, W. L.; Li, Y. L.; Liu, L. X.; Sun, Q. Q.; Shuai, X. T.; Zhu, W.; Chen, Y.M. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) andpoly(ε-caprolactone) as drug carriers with enhanced properties.Biomacromolecules2010,11,1331-1338.
    (67) Jiang, H.; Xu, F. J. Biomolecule-functionalized polymer brushes. Chem. Soc. Rev.2013,42,3394-3426.
    (68) Maruyama, A.; Ishihara, T.; Kim, J. S.; Kim, S. W.; Akaike, T. NanoparticleDNA carrier with poly (L-lysine) grafted polysaccharide copolymer andpoly(D,L-lactic acid). Bioconjug. Chem.1997,8,735-742.
    (69) Sato, A.; Chio, S. W.; Hirai, M.; Yamayosh, A.; Moriyama, R.; Yamano, T.;Takagi, M.; Kano, A.; Shimamoto, A.; Maruyama, A. Polymer brush-stabilizedpolyplex for a siRNA carrier with long circulatory half-life. J. Controlled Release2007,122,209-216.
    (70) üzgün, S.; Akdemir,.; Hasenpusch, G.; Maucksch, C.; Golas, M. M.; Sander,B.; Stark, H.; Imker, R.; Lutz, J.-F.; Rudolph, C. Characterization of tailor-madecopolymers of oligo(ethylene glycol) methyl ether methacrylate andN,N-dimethylaminoethyl methacrylate as nonviral gene transfer agents: influenceof macromolecular structure on gene vector particle properties and transfectionefficiency. Biomacromolecules2010,11,39-50.
    (71) Zhang, L.; Nguyen, T. L. U.; Bernard, J.; Davis, T. P.; Barner-Kowollik, C.;Stenzel, M. H. Shell-cross-linked micelles containing cationic polymerssynthesized via the RAFT process: toward a more biocompatible gene deliverysystem. Biomacromolecules2007,8,2890-2901.
    (72) Hao, Y.; Zhang, M. Z.; He, J. L.; Ni, P. H. Magnetic DNA vector constructedfrom PDMAEMA polycation and PEGylated brush-type polyanion withcross-linkable shell. Langmuir2012,28,6448-6460.
    (73) Tria, M. C. R.; Grande, C. D. T.; Ponnapati, R. R.; Advincula, R. C.Electrochemical deposition and surface-initiated RAFT polymerization: proteinand cell-resistant PPEGMEMA polymer brushes. Biomacromolecules2010,11,3422-3431.
    (74) Hu, F. X.; Neoh, K. G.; Kang, N. T. Synthesis of folic acid functionalizedPLLA-b-PPEGMA nanoparticles for cancer cell targeting. Macromol. RapidCommun.2009,30,609-614.
    (75) Yang, Y. Q.; Zheng, L. S.; Guo, X. D.; Qian, Y.; Zhang, L. J. pH-sensitivemicelles self-assembled from amphiphilic copolymer brush for delivery of poorlywater-soluble drugs. Biomacromolecules2011,12,116-122.
    (76) Ahmad, S. A.; Hucknall, A.; Chilkoti, A.; Leggett, G. J. Protein patterning byUV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate)brushes. Langmuir2010,26,9937-9942.
    (77) Venkataraman, S.; Zhang, Y.; Liu, L. H.; Yang, Y. Y. Design, syntheses andevaluation of hemocompatible pegylated-antimicrobial polymers withwell-controlled molecular structures. Biomaterials2010,31,1751-1756.
    (78) Estillore, N; Advincula, R. Solvent-responsive and free-standing films ofsemi-fluorinated block copolymer brushes via layer-by-layer depositedpolyelectrolyte macroinitiators. Macromol. Chem. Phys.2011,212,1552-1566.
    (79) Lee, H.; Pietrasik, J.; Sheikoc, S. S.; Matyjaszewski, K. Stimuli-responsivemolecular brushes. Prog. Polym. Sci.2010,35,24-44.
    (80) Yang, Y. Q.; Lin, W. J.; Zhao, B.; Wen, X. F.; Guo, X. D.; Zhang, L. J. Synthesisand physicochemical characterization of amphiphilic triblock copolymer brushcontaining pH-sensitive linkage for oral drug delivery. Langmuir2012,28,8251-8259.
    (81) Rastogi, A.; Nad, S.; Tanaka, M.; Mota, N. D.; Tague, M.; Baird, B. A.; Abru aH. D.; Ober, C. K. Preventing nonspecific adsorption on polymer brush coveredgold electrodes using a modified ATRP initiator. Biomacromolecules2009,10,2750-2758.
    (82) Zhou, Z. L.; Yu, P. P.; Geller, H. M.; Ober, C. K. Biomimetic polymer brushescontaining tethered acetylcholine analogs for protein and hippocampal neuronalcell patterning. Biomacromolecules2013,14,529-537.
    (83) Hlídková, H.; Horák, D.; Proks, V.; Ku erová, Z.; Pekárek, M.; Ku ka, J.PEG-modified macroporous poly(glycidyl methacrylate) and poly(2-hydroxyethylmethacrylate) microspheres to reduce non-specific protein adsorption. Macromol.Biosci.2013,13,503-511.
    (84) Fang, Y.; Xu, W.; Meng, X.-L.; Ye, X.-Y.; Wu, J.; Xu, Z. K.Poly(2-hydroxyethyl methacrylate) brush surface for specific and orientedadsorption of glycosidases Langmuir2012,28,13318-13324.
    (85) Xu, F. J.; Li, H. Z.; Li, J.; Eric Teo, Y. H.; Zhu, C. X.; Kang, E. T.; Neoh, K. G.Spatially well-defined binary brushes of poly(ethylene glycol)s formicropatterning of active proteins on anti-fouling surfaces. Biosens. Bioelectron.2008,24,773-780.
    (86) Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.;Jiang, L. Dual-responsive surfaces modified with phenylboronic acid-containingpolymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc.2013,135,7603-7609.
    (87) Zhou, F.; Li, D.; Wu, Z. Q.; Song, B.; Yuan, L.; Chen, H. Enhancing specificbinding of L929fibroblasts: effects of multi-scale topography of GRGDY peptidemodified surfaces. Macromol. Biosci.2012,12,1391-1400.
    (88) Li, X.; Wang, M. M.; Wang, L.; Shi, X. J.; Xu, Y. J.; Song, B.; Chen, H. Blockcopolymer modified surfaces for conjugation of biomacromolecules with controlof quantity and activity. Langmuir2013,29,1122-1128.
    (89) Liu, X. Q.; Du, J. Z.; Zhang, C. P.; Zhao, F.; Yang, X. Z.; Wang, J. Brush-shapedpolycation with poly(ethylenimine)-b-poly(ethylene glycol) side chains as highlyefficient gene delivery vector. Int. J. Pharm.2010,392,118-126.
    (90) Zhang, P.; Yang, J. H.; Li, W. C.; Wang, W.; Liu, C. J.; Griffith, M.; Liu, W. G.Cationic polymer brush grafted-nanodiamond via atom transfer radicalpolymerization for enhanced gene delivery and bioimaging. J. Mater. Chem.2011,21,7755-7764.
    (91) Wei, H.; Pahang, J. A.; Pun, S. H. Optimization of brush-like cationic copolymersfor nonviral gene delivery. Biomacromolecules2013,14,275-284.
    (92) Liu, J.; Xu, Y. L.; Yang, Q. Z.; Li, C.; Hennink, W. E.; Zhuo, R. X.; Jiang, X. L.Reduction biodegradable brushed PDMAEMA derivatives synthesized by atomtransfer radical polymerization and click chemistry for gene delivery. ActaBiomater.2013,9,7758-7766.
    (93) Zhao, Y. F.; Qin, Y. T.; Liang, Y.; Zou, H. J.; Peng, X.; Huang, H.; Lu, M.; Feng,M. Salt-induced stability and serum-resistance of polyglutamate polyelectrolytebrushes/nuclear factor-κB p65siRNA polyplex enhance the apoptosis andefficacy of doxorubicin. Biomacromolecules2013,14,1777-1786.
    (94) Lai, T. C.; Bae, Y.; Yoshida, T.; Kataoka, K.; Kwon, G. S. pH-sensitivemulti-PEGylated block copolymer as a bioresponsive pDNA delivery vector.Pharm. Res.2010,27,2260-2273.
    (95) Lou, X. D.; Detrembleur, C.; Jér me, R. Novel aliphatic polyesters based onfunctional cyclic (di)esters. Macromol. Rapid Commun.2003,24,161-172.
    (96) Leong, K. W.; Mao, H. Q.; Zhuo, R. X. Biodegradable polymers with aphosphoryl-containing backbone: Tissue engineering and controlled drug delivery.Chinese J. Polym. Sci.1995,13,289-314.
    (97) Heller, J.; Hoffman, A. S.“Drug delivery system”. In: Ratner, B. D.; Hoffman, A.S.; Schoen, F. J.; Lemons, J. E.; Editors. Biomaterials science: an introduction tomaterials in medicine.2nd ed. San Diego: Elsevier;2004. p.628-648.
    (98) Penczek, S.; Pretula, J.; Kaluzynski, K. Poly(alkylene phosphates): Fromsynthetic models of biomacromolecules and biomembranes towardpolymer-inorganic hybrids (mimicking biomineralization). Biomacromolecules2005,6,547-551.
    (99) Wang, Y. C.; Yuan, Y. Y.; Du, J. Z.; Yang, X. Z.; Wang, J. Recent progress inpolyphosphoesters: From controlled synthesis to biomedical applications.Macromol. Biosci.2009,9,1154-1164.
    (100) Monge, S.; Canniccioni, B.; Graillot, A.; Robin, J.-J. Phosphorus-containingpolymers: A great opportunity for the biomedical field. Biomacromolecules2011,12,1973-1982.
    (101) Iwasaki, Y.; Wachiralarpphaithoon, C.; Akiyoshi, K. Novel thermoresponsivepolymers having biodegradable phosphoester backbones. Macromolecules2007,40,8136-8138.
    (102) Iwasaki, Y.; Yamaguchi, E. Synthesis of well-defined thermoresponsivepolyphosphoester macroinitiators using organocatalysts. Macromolecules2010,43,2664-2666.
    (103) Zhao, Z.; Wang, J.; Mao, H. Q.; Leong, K. W. Polyphosphoesters in drug andgene delivery. Adv. Drug Delivery Rev.2003,55,483-499.
    (104) Lapienis, G.; Penczek, S. Kinetics and thermodynamics of the polymerization ofthe cyclic phosphate esters. II. Cationic polymerization of2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-propylene methyl phosphate). Macromolecules1974,7,166-174.
    (105) Lapienis, G.; Penczek, S. Kinetics and thermodynamics of anionic polymerizationof2-methoxy-2-oxo-1,3,2-dioxaphosphorinane. J. Polym. Sci., Part A: Polym.Chem.1977,15,371-382.
    (106) Huang, S. W.; Zhuo, R. X. Recent advances in polyphosphoester andpolyphosphoramidate-based biomaterials. Phosphorus, Sulfur Silicon Relat. Elem.2008,183,340-348.
    (107) He, F.; Zhuo, R. X.; Liu, L. J.; Jin, D. B.; Feng, J.; Wang. X. L. Immobilizedlipase on porous silica beads: preparation and application for enzymaticring-opening polymerization of cyclic phosphate. React. Funct. Polym.2001,47,153-158.
    (108) Yang, X.-Z.; Du, J.-Z.; Dou, S.; Mao, C.-Q.; Long, H.-Y.; Wang, J. Sheddableternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano2012,6,771-781.
    (109) Xiong, M.-H.; Bao, Y.; Yang, X.-Z.; Wang, Y.-C.; Sun, B. L.; Wang, J.Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery.J. Am. Chem. Soc.2012,134,4355-4362.
    (110)王育才.聚磷酸酯的控制合成及其在药物传递中的应用,中国科学技术大学博士学位论文,2010.
    (111) Liu, J. Y.; Huang, W.; Zhou, Y. F.; Yan. D. Y. Synthesis of hyperbranchedpolyphosphates by self-condensing ring-opening polymerization of HEEP withoutcatalyst. Macromolecules2009,42,4394-4399.
    (112) Zhou, Y. F.; Huang, W.; Liu, J. Y.; Zhu, X. Y.; Yan, D. Y. Self-assembly ofhyperbranched polymers and its biomedical applications. Adv. Mater.2010,22,4567-4590.
    (113) Liu, J. Y.; Pang, Y.; Huang, W.; Zhu, Z. Y.; Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y.Redox-responsive polyphosphate nanosized assemblies: a smart drug deliveryplatform for cancer therapy. Biomacromolecules2011,12,2407-2415.
    (114) Liu, X.; Ni, P. H.; He, J. L.; Zhang, M. Z. Synthesis and micellization ofpH/temperature-responsive double-hydrophilic diblock copolymerspolyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared viaROP and ATRP. Macromolecules,2010,43,4771-4781.
    (115) He, J. L.; Zhang, M. Z.; Ni, P. H. Rapidly in Situ forming polyphosphoester-basedhydrogels for injectable drug delivery carriers. Soft Matter2012,8,6033-6038.
    (116) Shao, H. Y.; Zhang, M. Z.; He, J. L.; Ni, P. H. Synthesis and characterization ofamphiphilic poly(ε-caprolactone)-b-polyphosphoester diblock copolymersbearing multifunctional pendant groups. Polymer2012,53,2854-2863.
    (117) Hao, Y.; He, J. L.; Zhang, M. Z.; Tao, Y. F.; Liu, J.; Ni, P. H. Synthesis andcharacterization of novel brush copolymers with biodegradable polyphosphoesterside chains for gene delivery. J. Polym. Sci., Part A: Polym. Chem.2013,51,2150-2160.
    (118) Pretula, J.; Kaluzynski, K.; Szymanski, R.; Penczek, S. Preparation ofpoly(alkylene H-phosphonate)s and their derivatives by polycondensation ofdiphenyl H-Phosphonate with diols and subsequent transformations.Macromolecules1997,30,8172-8176.
    (119) Penczek, S.; Pretula, J. High-molecular-weight poly(alkylene phosphates) andpreparation of amphiphilic polymers Thereof. Macromolecules1993,26,2228-2233.
    (120)李雄武,汪朝阳,侯晓娜,郑绿茵,赵海军.可降解磷酸酯聚合物的合成与应用研究进展.化学研究2006,17,97-100.
    (121)李峰,卓仁禧.一种含有氯乙氧功能基团的环状磷酸酯的酶促开环聚合.高等学校化学学报2004,25,1780-1782.
    (122) Wen, J.; Zhuo, R. X. Enzyme-catalyzed ring-opening polymerization of ethyleneisopropyl phosphate. Macromol. Rapid Commun.1998,19,641-642.
    (123) Xiao, C. S.; Wang, Y. C.; Du, J. Z.; Chen, X. S.; Wang, J.. Kinetics andmechanism of2-Ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiatedby stannous octoate. Macromolecules2006,39,6825-6831.
    (124) Zhang, S. Y.; Li, A.; Zou, J.; Lin, L. Y.; Wooley, K. L. Facile synthesis ofclickable, water-soluble, and degradable polyphosphoesters. ACS Macro. Lett.2012,1,328-333.
    (125) Zhang, S. Y.; Zou, J.; Zhang, F. W.; Elsabahy, M.; Felder, S. E.; Zhu, J. H.;Pochan, D. J. Wooley, K. L. Rapid and versatile construction of diverse andfunctional nanostructures derived from a polyphosphoester-based biomimeticblock copolymer system. J. Am. Chem. Soc.2012,134,18467-18474.
    (126) Zhang, S. Y.; Zou, J.; Elsabahy, M.; Karwa, A.; Li, A.; Moore, D. A.; Dorshow,R. B.; Wooley, K. L. Poly(ethylene oxide)-block-polyphosphester-basedpaclitaxel conjugates as a platform for ultra-high paclitaxel-loadedmultifunctional nanoparticles. Chem. Sci.2013,4,2122-2126.
    (127) Bender, A. T.; Beavo, J. A. Cyclic nucleotide phosphodiesterases: molecularregulation to clinical use. Pharmacol. Rev.2006,58,488-520.
    (128) Mao, H. Q.; Shipanova-Kadiyala, I.; Zhao, Z.; Dang, W. B.; Brown,; Leong, K. W.Biodegradable poly(terephthalate-co-phosphate)s: synthesis, characterization anddrug-release properties. J. Biomater. Sci. Polym. Ed.2005,16,135-161.
    (129) Tang, L.-Y.; Wang, Y.-C.; Li, Y.; Du, J.-Z.; Wang, J. Shell-detachable micellesbased on disulfide-linked block copolymer as potential carrier for intracellulardrug delivery. Bioconjugate Chem.2009,20,1095-1099.
    (130) Liu, J. Y.; Pang, Y.; Huang, W.; Huang, X. H.; Meng, L. L.; Zhu, X. Y.; Zhou, Y.F.; Yan, D. Y. Bioreducible micelles self-assembled from amphiphilichyperbranched multiarm copolymer for glutathione-mediated intracellular drugdelivery. Biomacromolecules2011,12,1567-1577.
    (131) Sun, T.-M.; Du, J.-Z.; Yao, Y.-D.; Mao, C.-Q.; Dou, S.; Huang, S.-Y.; Zhang,P.-Z.; Leong, K. W.; Song, E.-W.; Wang, J. Simultaneous delivery of siRNA andpaclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression.ACS Nano2011,5,1483-1494.
    (132) Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics incancer chemotherapy: mechanism of tumoritropic accumulation of proteins andthe antitumor agent smancs. Cancer Res.1986,46,6387-6392.
    (133) Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascularpermeability and the EPR effect in macromolecular therapeutics: a review. J.Controlled Release2000,65,271-284.
    (134) Vicent, M. J.; Ringsdorf, H.; Duncan, R. Polymer therapeutics: clinicalapplications and challenges for development preface. Adv. Drug Delivery Rev.2009,61,1117-1120.
    (135) Zhang, Y.; Chan, H. F.; Leong, K. W. Advanced materials and processing fordrug delivery: the past and the future. Adv. Drug Delivery Rev.2013,65,104-120.
    (136) Zhang, Q.; Ko, N. R.; Oh, J. K. Recent advances in stimuli-responsive degradableblock copolymer micelles: synthesis and controlled drug delivery applications.Chem. Commun.2012,48,7542-7552.
    (137) Liu, F.; Urban, M. W. Recent advances and challenges in designingstimuli-responsive polymers. Prog. Polym. Sci.2010,65,3-23.
    (138) Kim, S. Y.; Ha, J. C.; Lee, Y. M. Poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide)/poly(e-caprolactone)(PCL) amphiphilic blockcopolymeric nanospheres II. Thermo-responsive drug release behaviors. J.Controlled Release2000,65,345-358.
    (139) Zhang, G. Y.; Zhang, M. Z.; He, J. L.; Ni, P. H. Synthesis and characterization ofa new multifunctional polymeric prodrug paclitaxel–polyphosphoester-folic acidfor targeted drug delivery. Polym. Chem.2013,4,4515-4525.
    (140) Wang, J.; Mao, H.-Q.; Leong, K. W. A novel biodegradable gene carrier based onpolyphosphoester. J. Am. Chem. Soc.2001,123,9480-9481.
    (141) Wang, J.; Zhang, P.-C.; Mao, H.-Q.; Leong, K. W. Enhanced gene expression inmouse muscle by sustained release of plasmid DNA using PPE-EA as a carrier.Gene Ther.2002,9,1254-1261.
    (142) Wang, J.; Huang, S.-W.; Zhang, P.-C.; Mao, H.-Q.; Leong, K. W. Effect ofside-chain structures on gene transfer efficiency of biodegradable cationicpolyphosphoesters. Int. J. Pharm.2003,265,75-84.
    (143) Wang, J.; Gao, S.-J.; Zhang, P.-C.; Wang, S.; Mao, H.-Q.; Leong, K. W.Polyphosphoramidate gene carriers: effect of charge group on gene transferefficiency. Gene Ther.2004,11,1001-1010.
    (144) Li, Y.; Wang, J.; Lee, C. G. L.; Wang, C. Y.; Gao, S. J.; Tang, G. P.; Ma, Y. X.;Yu, H.; Mao, H.-Q.; Leong, K. W.; Wang, S. CNS gene transfer mediated by anovel controlled release system based on DNA complexes of degradablepolycation PPE-EA: a comparison with polyethylenimine/DNA complexes. GeneTher.2004,11,109-114.
    (145) Lu, Z.-Z.; Wu, J.; Sun, T.-M.; Ji, J.; Yan, L.-F.; Wang, J. Biodegradablepolycation and plasmid DNA multilayer film for prolonged gene delivery tomouse osteoblasts. Biomaterials2008,29,733-741.
    (146) Langer, R.; Vacanti, J. P. Tissue engineering. Science1993,260,920-926.
    (147) Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage.Biomaterials2000,21,2529-2543.
    (148) Yoshimotoa, H.; Shina, Y. M.; Teraia, H.; Vacanti, J. P. A biodegradablenanofiber scaffold by electrospinning and its potential for bone tissue engineering.Biomaterials2003,24,2077-2082.
    (149) Wan, A. C. A.; Mao, H.-Q.; Wang, S.; Leong, K. W.; Ong, L. K. L. L.; Yu, H.Fabrication of poly(phosphoester) nerve guides by immersion precipitation andthe control of porosity. Biomaterials2001,22,1147-1156.
    (150) Wang, S.; Wan, A. C. A.; Xu, X. Y.; Gao, S. J.; Mao, H. Q.; Leong, K. W.; Yu, H.A new nerve guide conduit material composed of a biodegradablepoly(phosphoester). Biomaterials2001,22,1157-1169.
    (151) Li, Q.; Wang, J.; Shahani, S.; Sun, D. D. N.; Sharma, B.; Elisseeff, J. H.; Leong,K. W. Biodegradable and photocrosslinkable polyphosphoester hydrogel.Biomaterials2006,27,1027-1034.
    (152) Wachiralarpphaithoon, C.; Iwasaki, Y.; Akiyoshi, K. Enzyme-degradablephosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cellmatrices. Biomaterials2007,28,984-993.
    (153) Yang, X.-Z.; Sun, T.-M.; Dou, S.; Wu, J.; Wang, Y.-C.; Wang, J. Blockcopolymer of polyphosphoester and poly(L-Lactic acid) modified surface forenhancing osteoblast adhesion, proliferation, and function. Biomacromolecules2009,10,2213-2220.
    (1) Marshall, E. Gene therapy death prompts review of adenovirus vector. Science1999,286,2244-2245.
    (2) Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    (3) Pan, X. G.; Wu, G.; Yang, W. L.; Barth, R. F.; Tjarks, W.; Lee, R. J. Synthesis ofcetuximab-immunoliposomes via a cholesterol-based membrane anchor fortargeting of EGFR. Bioconjugate Chem.2007,18,101-108.
    (4) Klok, H. A.; Hwang, J. J.; Iyer, S. N.; Stupp, S. I. Cholesteryl-(L-Lactic Acid)nbuilding blocks for self-assembling biomaterials. Macromolecules2002,35,746-759.
    (5) Futaki, S. Membrane-permeable arginine-rich peptides and the translocationmechanisms. Adv. Drug Delivery Rev.2005,57,547-558.
    (6) Licciardi, M.; Tang, Y.; Billingham, N. C.; Armes, S. P.; Lewis, A. L. Synthesis ofnovel folic acid-functionalized biocompatible block copolymers by atom transferradical polymerization for gene delivery and encapsulation of hydrophobic drugs.Biomacromolecules2005,6,1085-1096.
    (7) Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications. Biomaterials2005,26,3995-4021.
    (8) Mah, C.; Zolotukhin, I.; Fraites, T. J.; Dobson, J.; Batich, C.; Byrne, B. J.Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo.Mol. Ther.2000,1, S239.
    (9) Yiu, H. H. P.; McBain, S. C.; Lethbridge, Z. A. D.; Lees, M. R.; Dobson, J.Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48nanocomposite particles as a novel agent for magnet-assisted transfection. J.Biomed. Mater. Res. A2010,92,386-392.
    (10)Liao, Z. Y.; Wang, H. J.; Lv, R. C.; Zhao, P. Q.; Sun, X. Z.; Wang, S.; Su, W. Y.;Niu, R. F.; Chang, J. Polymeric liposomes-coated superparamagnetic iron oxidenanoparticles as contrast agent for targeted magnetic resonance imaging of cancercells. Langmuir2011,27,3100-3105.
    (11)Wintermantel, M.; Gerle, M.; Fischer, K.; Schmidt, M.; Kataoka, I.Molecularbottlebrushes. Macromolecules1996,29,978-983.
    (12)Maruyama, A.; Ishihara, T.; Kim, J. S.; Kim, S. W.; Akaike, T. Nanoparticle DNAcarrier with poly (L-lysine) grafted polysaccharide copolymer and poly(D,L-lacticacid). Bioconjugate Chem.1997,8,735-742.
    (13)Sato, A.; Chio, S. W.; Hirai, M.; Yamayosh, A.; Moriyama, R.; Yamano, T.; Takagi,M.; Kano, A.; Shimamoto, A.; Maruyama, A. Polymer brush-stabilized polyplexfor a siRNA carrier with long circulatory half-life. J. Controlled Release2007,122,209-216.
    (14)üzgün, S.; Akdemir,.; Hasenpusch, G.; Maucksch, C.; Golas, M. M.; Sander, B.;Stark, H.; Imker, R.; Lutz, J.-F.; Rudolph, C. Characterization of tailor-madecopolymers of oligo(ethylene glycol) methyl ether methacrylate andN,N-dimethylaminoethyl methacrylate as nonviral gene transfer agents: influence ofmacromolecular structure on gene vector particle properties and transfectionefficiency. Biomacromolecules2010,11,39-50.
    (15)Zhang, L.; Nguyen, T. L. U.; Bernard, J.; Davis, T. P.; Barner-Kowollik, C.; Stenzel,M. H. Shell-cross-linked micelles containing cationic polymers synthesized via theRAFT process: toward a more biocompatible gene delivery system.Biomacromolecules2007,8,2890-2901.
    (16)Yang, Y. Q.; Zheng, L. S.; Guo, X. D.; Qian, Y.; Zhang, L. J. pH-sensitive micellesself-assembled from amphiphilic copolymer brush for delivery of poorlywater-soluble drugs. Biomacromolecules2011,12,116-122.
    (17)Tria, M. C. R.; Grande, C. D. T.; Ponnapati, R. R.; Advincula, R. C.Electrochemical deposition and surface-initiated RAFT polymerization: Protein andcell-resistant PPEGMEMA polymer brushes. Biomacromolecules2010,11,3422-3431.
    (18)Hu, F. X.; Neoh, K. G.; Kang, N. T. Synthesis of folic acid functionalizedPLLA-b-PPEGMA nanoparticles for cancer cell targeting. Macromol. RapidCommun.2009,30,609-614.
    (19)Lee, H.; Pietrasik, J.; Sheikoc, S. S.; Matyjaszewski, K. Stimuli-responsivemolecular brushes. Prog. Polym. Sci.2010,35,24-44.
    (20)Gu, Z. X.; Yuan, Y.; He, J. L.; Zhang, M. Z.; Ni, P. H. Facile approach for DNAencapsulation in functional polyion complex for triggered intracellular genedelivery: design, synthesis, and mechanism. Langmuir2009,25,5199-5208.
    (21)Torres, M. M.; Jain, T. K.; Labhasetwar, V.; Leslie-Pelecky, D. L. Magnetic studiesof iron oxide nanoparticles coated with oleic acid and pluronic block copolymer. J.Appl. Phys.2005,97,10Q905(1-3).
    (22)Duan, H. W.; Kuang, M.; Wang, X. X.; Wang, Y. A.; Mao, H.; Nie, S. M.Reexamining the effects of particle size and surface chemistry on the magneticproperties of iron oxide nanocrystals: new insights into spin disorder and protonrelaxivity. J. Phys. Chem. C2008,112,8127-8131.
    (23)Niu, J.; Liu, Z. H.; Fu, L.; Shi, F.; Ma, H. W.; Ozaki, Y.; Zhang, X.Surface-imprinted nanostructured layer-by-layer film for molecular recognition oftheophylline derivatives. Langmuir2008,24,11988-11994.
    (24)Schaper, A.; Pietrasantal, L. I.; Jovin, T. M. Scanning force microscopy of circularand linear plasmid DNA spread on mica with a quaternary ammonium salt. NucleicAcids Res.1993,21,6004-6009.
    (25)van de Wetering, P.; Cherng, J. Y.; Talsma, H.; Hennink, W. E. Relation betweentransfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethylmethacrylate)/plasmid complexes. J. Controlled Release1997,49,59-69.
    (26)Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive polymers incontrolled drug delivery. Prog. Polym. Sci.2008,33,1088-1118.
    (27)Azzam, T.; Eliyahu, H.; Makovitzki, A.; Linial, M.; Domb, A. J. Hydrophobizeddextran-spermine conjugate as potential vector for in vitro gene transfection. J.Controlled Release2004,96,309-323.
    (1) Marshall, E. Gene therapy death prompts review of adenovirus vector. Science1999,286,2244-2245.
    (2) Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    (3) Park, H.-J.; Yang, F.; Cho, S.-W. Nonviral delivery of genetic medicine fortherapeutic angiogenesis. Adv. Drug Delivery Rev.2012,64,40-52.
    (4) Merkel, O. M.; Zheng, M. Y.; Debus, H.; Kissel, T. Pulmonary gene delivery usingpolymeric nonviral vectors. Bioconjugate Chem.2012,23,3-20.
    (5) Sun, T. M.; Du, J. Z.; Yan, L. F.; Mao, H. Q.; Wang, J. Self-assembledbiodegradable micellar nanoparticles of amphiphilic and cationic block copolymerfor siRNA delivery. Biomaterials2008,29,4348-4355.
    (6) Nabel, G. J. Genetic, cellular and immune approaches to disease therapy: past andfuture. Nat Med.2004,10,135-141.
    (7) Luo, D.; Saltzman, W. M. Synthetic DNA delivery systems. Nat. Biotechnol.2000,18,33-37.
    (8) Jeong, J. H.; Kim, S. W.; Park, T. G. Molecular design of functional polymers forgene therapy. Prog. Polym. Sci.2007,32,1239-1274.
    (9) Lasic, D. D.; Templeton, N. S. Liposomes in gene therapy. Adv. Drug Deliv. Rev.1996,20,221-225.
    (10)Huang, R. Q.; Ke, W. L.; Liu, Y.; Jiang, C.; Pei, Y. Y. The use of lactoferrin as aligand for targeting the polyamidoamine-based gene delivery system to the brain.Biomaterials2008,29,238-246.
    (11)You, Y. Z.; Manickam, D. S.; Zhou, Q. H.; Oupicky, D. Reduciblepoly(2-dimethylaminoethyl methacrylate): synthesis, cytotoxicity, and genedelivery activity. J. Controlled Release2007,122,217-225.
    (12)Mirosevich, J.; Cardoen, G.; Burke, B.; Costich, T.; Sill, K. Nonviral gene deliveryusing poly-D/L aspartate-diethylenetriamine cationic polymers and polyethyleneglycol: a two-step approach. J. Polym. Sci., Part A: Polym. Chem.2012,50,836-850.
    (13)Oba, M.; Miyata, K.; Osada, K.; Christie, R. J.; Sanjoh, M.; Li, W. D.; Fukushima,S.; Ishii, T.; Kano, M. R.; Nishiyama, N.; Koyama, H.; Kataoka, K. Polyplexmicelles prepared from u-cholesteryl PEG-polycation block copolymers forsystemic gene delivery. Biomaterials2011,32,652-663.
    (14)Oupicky, D.; Howard, K. A.; Koňák,.; Dash, P. R.; Ulbrich, K.; Seymour, L. W.Steric stabilization of poly-L-lysine/DNA complexes by the covalent attachment ofsemitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjugate Chem.2000,11,492-501.
    (15)Johnson, R. N.; Chu, D. S. H.; Shi, J.; Schellinger, J. G.; Carlson, P. M.; Pun, S. H.HPMA-oligolysine copolymers for gene delivery: Optimization of peptide lengthand polymer molecular weight. J. Controlled Release2011,155,303-311.
    (16)Wang, Y. C.; Yuan, Y. Y.; Du, J. Z.; Yang, X. Z.; Wang, J. Recent Progress inpolyphosphoesters: from controlled synthesis to biomedical applications Macromol.Biosci.2009,9,1154-1164.
    (17)Zhang, S. Y.; Zou, J.; Zhang, F. W.; Elsabahy, M.; Felder, S. E.; Zhu, J. H.; Pochan,D. J.; Wooley, K. L. Rapid and versatile construction of diverse and functionalnanostructures derived from a polyphosphoester-based biomimetic blockcopolymer system. J. Am. Chem. Soc.2012,134,18467-18474.
    (18)Iwasaki, Y.; Wachiralarpphaithoon, C.; Akiyoshi, K. Novel thermoresponsivepolymers having biodegradable phosphoester backbones. Macromolecules2007,40,8136-8138.
    (19)Zhao, Z.; Wang, J.; Mao, H. Q.; Leong, K. W. Polyphosphoesters in drug and genedelivery. Adv. Drug Deliver. Rev.2003,55,483-499.
    (20)Zhou, Y. F.; Huang, W.; Liu, J. Y.; Zhu, X. Y.; Yan, D. Y. Self-assembly ofhyperbranched polymers and its biomedical applications. Adv. Mater.2010,22,4567-4590.
    (21)Sun, T. M.; Du, J. Z.; Yao, Y. D.; Mao, C. Q.; Dou, S.; Huang, S. Y.; Zhang, P. Z.;Leong, K. M.; Song, E. W.; Wang, J. Simultaneous delivery of siRNA andpaclitaxel via a ‘two-in-one’ micelleplex promotessynergistic tumor suppression.ACS Nano2011,5,1483-1494.
    (22)Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-made dual pH-sensitivepolymer_doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am.Chem. Soc.2011,133,17560–17563.
    (23)Xiong, M.-H.; Li, Y.-J.; Bao, Y.; Yang, X. Z.; Hu, B.; Wang, J. Bacteria-responsivemultifunctional nanogel for targeted antibiotic delivery. Adv. Mater.2012,24,6175-6180.
    (24)He, J. L.; Zhang, M. Z.; Ni, P. H. Rapidly in situ forming polyphosphoester-basedhydrogels for injectable drug delivery carriers. Soft Matter2012,8,6033-6038.
    (25)Maruyama, A.; Ishihara, T.; Kim, J. S.; Kim, S. W.; Akaike, T. Nanoparticle DNAcarrier with poly (L-lysine) grafted polysaccharide copolymer and poly(D,L-lacticacid). Bioconjugate Chem.1997,8,735–742.
    (26)Sato, A.; Chio, S. W.; Hirai, M.; Yamayosh, A.; Moriyama, R.; Yamano, T.; Takagi,M.; Kano, A.; Shimamoto, A.; Maruyama, A. Polymer brush-stabilized polyplexfor a siRNA carrier with long circulatory half-life. J. Controlled Release2007,122,209-216.
    (27)Zhang, L.; Nguyen, T. L. U.; Bernard, J.; Davis, T. P.; Barner-Kowollik, C.; Stenzel,M. H. Shell-cross-linked micelles containing cationic polymers synthesized via theRAFT process: toward a more biocompatible gene delivery system.Biomacromolecules2007,8,2890-2901.
    (28)Yang, Y. Q.; Zheng, L. S.; Guo, X. D.; Qian, Y.; Zhang, L. J. pH-Sensitive micellesself-assembled from amphiphilic copolymer brush for delivery of poorlywater-soluble drugs. Biomacromolecules2011,12,116-122.
    (29)Libiszowski, J. K. K.; Penezek, S. Polymerization of cyclic esters of phosphoricacid. VI. Poly(alkyl ethylene phosphates). Polymerization of2-alkoxy-2-oxo-1,3,2-dioxaphospholans and structure of polymers. J. Polym. Sci., Polym. Chem. Ed.1978,16,1275-1283.
    (30)Levere, M. E.; Nguyen, N. H.; Leng, X. F.; Percec, V. Visualization of the crucialstep in SET-LRP. Polym. Chem.2013,4,1635-1647.
    (31)Nguyen, N. H.; Sun, H. J.; Levere, M. E.; Fleischmann, S.; Percec, V. Where isCu(0) generated by disproportionation during SET-LRP? Polym. Chem.2013,4,1328-1332.
    (32)Beers, K. L.; Boo, S.; Gaynor, S. G.; Matyjaszewski, K. Atom transfer radicalpolymerization of2-hydroxyethyl methacrylate. Macromolecules1999,32,5772-5776.
    (33)Robinson, K. L.; Khan, M. A.; de Paz Báňez, M. V.; Wang, X.; Armes, S. P.Controlled polymerization of2-hydroxyethyl methacrylate by ATRP at ambienttemperature, Macromolecules2001,34,3155-3158.
    (34)Kalyanasundaram, K.; Thomas, J. K. Environmental effects on vibronic bandintensities in pyrene monomer fluorescence and their application in studies ofmicellar systems. J. Am. Chem. Soc.1977,99,2039–2044.
    (35)Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediatedcellular response is size-dependent. Nat. Nanotechnol.2008,3,145-150.
    (36)Kabanov, A. V.; Nazarova, I. R.; Astafieva, I. V.; Batrakova, E. V.; Alakhov, V. Y.;Yaroslavov, A. A.; Kabanov, V. A. Micelle formation and solubilization offluorescent probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions.Macromolecules1995,28,2303-2314.
    (37)Schaper, A.; Pietrasantal, L. I.; Jovin, T. M. Scanning force microscopy of circularand linear plasmid DNA spread on mica with a quaternary ammonium salt. NucleicAcids Res.1993,21,6004-6009.
    (38)van de Wetering, P.; Cherng, J. Y.; Talsma, H.; Hennink, W. E. Relation betweentransfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethylmethacrylate)/plasmid complexes. J. Controlled Release1997,49,59-69.
    (39)Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive polymers incontrolled drug delivery. Prog. Polym. Sci.2008,33,1088-1118.
    (40)Lu, Z. Z.; Wu, J.; Sun, T. M.; Ji, J.; Yan, L. F.; Wang, J. Biodegradable polycationand plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts.Biomaterials2008,29,733-741.
    (1) Nabel, G. J. Genetic, cellular and immune approaches to disease therapy: past andfuture. Nat. Med.2004,10,135-141.
    (2) Mulligan, R. C. The basic science of gene therapy. Science1993,260,926-932.
    (3) Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    (4) Pack, D. W.; Hoffman, A. S.; Pun, S. Design and development of polymers forgene delivery. Nat. Rev. Drug Discov.2005,4,581-593.
    (5) Park, H.-J.; Yang, F.; Cho, S.-W. Nonviral delivery of genetic medicine fortherapeutic angiogenesis. Adv. Drug Delivery Rev.2012,64,40-52.
    (6) Pichon, C.; LeCam, E,; Guérin, B.; Coulaud, D.; Delain, E.; Midoux, P.Poly[Lys-(AEDTP)]: a cationic polymer that allows dissociation of pDNA/cationicpolymer pomplexes in a reductive medium and enhances polyfection. BioconjugateChem.2002,13,76-82.
    (7) Yue, Y. N.; Wu, C. Progress and perspectives in developing polymeric vectors forin vitro gene delivery. Biomater. Sci.2013,1,152-170.
    (8) Mirosevich, J.; Cardoen, G.; Burke, B.; Costich, T.; Sill, K. Nonviral gene deliveryusing poly-D/L aspartate-diethylenetriamine cationic polymers and polyethyleneglycol: A two-step approach. J. Polym. Sci., Part A: Polym. Chem.2012,50,836-850.
    (9) Liu, X.; Ni, P. H.; He, J. L.; Zhang, M. Z.“Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP”.Macromolecules2010,43,4771-4781.
    (10)Johnson, R. N.; Chu, D. S. H.; Shi, J.; Schellinger, J. G.; Carlson, P. M.; Pun, S. H.HPMA-oligolysine copolymers for gene delivery: Optimization of peptide lengthand polymer molecular weight. J. Controlled Release2011,155,303-311.
    (11)Kawamura, K.; Oishi, J.; Kang, J. H.; Kodama, K.; Sonoda, T.; Murata, M.;Niidome, T.; Katayama, Y. Intracellular signal-responsive gene carrier forcell-specific gene expression. Biomacromolecules2005,6,908-913.
    (12)Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review ofstimuli-responsive nanocarriers for drug and gene delivery. J. Controlled Release2008,126,187-204.
    (13)Sun, S. J.; Liu, W. G.; Cheng, N.; Zhang, B. Q.; Cao, Z. Q.; Yao, K. D.; Liang, D.C.; Zuo, A. J.; Guo, G.; Zhang, J. Y. A thermoresponsive chitosan-NIPAAm/vinyllaurate copolymer vector for gene transfection. Bioconjugate Chem.2005,16,972-980.
    (14)Cheng, R.; Meng, F. H.; Deng, C; Klok, H. A.; Zhong, Z. Y. Dual and multi-stimuliresponsive polymeric nanoparticles for programmed site-specific drug delivery.Biomaterials2013,34,3647-3657.
    (15)Han, G.; You, C.-C.; Kim, B.-J.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.;Rotello, V. M. Light-regulated release of DNA and its delivery to nuclei by meansof photolabile gold nanoparticles. Angew. Chem. Int. Ed.2006,45,165-3169.
    (16)Duceppe, N.; Tabrizian, M. Design and development of light-sensitivechitosan-based nanocarriers for gene delivery. Adv. Sci. Technol.2012,86,75-80.
    (17)Shenoy, D.; Little, S.; Langer, R.; Amiji, M. Poly(ethylene oxide)-modifiedpoly(beta-amino ester) nanoparticles as a pH-sensitive system for tumortargeteddelivery of hydrophobic drugs: part2. In vivo distribution and tumor localizationstudies. Pharm. Res.2005,22,2107-2114.
    (18)Donkuru, M.; Wettig, S. D.; Verrall, R. E.; Badeaa, I.; Foldvari, M. DesigningpH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. J.Mater. Chem.2012,22,6232-6244.
    (19)Felber, A. E.; Dufresne, M. H.; Leroux, J.-C. pH-sensitive vesicles, polymericmicelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev.2012,64,979-992.
    (20)Kommareddy, S.; Amiji, M. Preparation and evaluation of thiol-modified gelatinnanoparticles for intracellular DNA delivery in response to glutathione.Bioconjugate Chem.2005,16,1423-1432.
    (21)Gu, Z. X.; Yuan, Y.; He, J. L.; Zhang, M. Z.; Ni, P. H. Facile approach for DNAencapsulation in functional polyion complex for triggered intracellular genedelivery: design, synthesis, and mechanism. Langmuir2009,25,5199-5208.
    (22)Ding, M. M.; Li, J. H.; He, X. L.; Song, N. J.; Tan, H.; Zhang, Y.; Zhou, L. J.; Gu,Q.; Deng, H.; Fu, Q. Molecular engineered super-nanodevices: smart and safedelivery of potent drugs into tumors. Adv. Mater.2012,24,3639-3645.
    (23)Maruyama, A.; Ishihara, T.; Kim, J. S.; Kim, S. W.; Akaike, T.“Nanoparticle DNAcarrier with poly (L-lysine) grafted polysaccharide copolymer and poly(D,L-lacticacid)”. Bioconjugate Chem.1997,8,735-742.
    (24)Sato, A.; Chio, S. W.; Hirai, M.; Yamayosh, A.; Moriyama, R.; Yamano, T.; Takagi,M.; Kano, A.; Shimamoto, A.; Maruyama, A. Polymer brush-stabilized polyplexfor a siRNA carrier with long circulatory half-life. J. Controlled Release2007,122,209-216.
    (25)Hao, Y.; Zhang, M. Z.; He, J. L.; Ni, P. H. Magnetic DNA vector constructed fromPDMAEMA polycation and PEGylated brush-type polyanion with cross-linkableshell. Langmuir2012,28,6448-6460.
    (26)Zhou, Z. L.; Yu, P. P.; Geller, H. M.; Ober, C. K. Biomimetic polymer brushescontaining tethered acetylcholine analogs for protein and hippocampal neuronal cellpatterning. Biomacromolecules2013,14,529-537.
    (27)Hlídková, H.; Horák, D.; Proks, V.; Ku erová, Z.; Pekárek, M.; Ku ka, J.PEG-modified macroporous poly(glycidyl methacrylate) and poly(2-hydroxyethylmethacrylate) microspheres to reduce non-specific protein adsorption. Macromol.Biosci.2013,13,503-511.
    (28)Murray, R. D. H.; Mendez, J.; Brown, S. A. The natural coumarins: occurrence,chemistry and biochemistry; John Wiley&Sons: New York,1982.
    (29)Yourick, J. J.; Bronaugh, R. L. Percutaneous absorption and metabolism ofcoumarin in human and rat skin. J. Appl. Toxicol.1997,17,153-158.
    (30)Lee, S. W.; Kim, S.; Lee, B.; Kim, H. C.; Chang, T. Y.; Ree, M. A solublephotoreactive polyimide bearing the coumarin chromophore in the side group:photoreaction, photoinduced molecular reorientation, and liquid-crystal alignabilityin thin films. Langmuir2003,19,10381-10389.
    (31)Mishra, A.; Fischer, M. K. R.; B uerle, P. Metal-free organic dyes fordye-sensitized solar cells: from structure: property relationships to design rules.Angew. Chem. Int. Ed.2009,48,2474-2499.
    (32)Touisni, N.; Maresca, A.; McDonald, P. C.; Lou, Y. M.; Scozzafava, A.; Dedhar, S.;Winum, J.-Y.; Supuran, C. T. Glycosyl coumarin carbonic anhydrase IX and XIIinhibitors strongly attenuate the growth of primary breast tumors. J. Med. Chem.2011,54,8271-8277.
    (33)Ge, Z. S.; Wang, D.; Zhou, Y. M.; Liu, H. W.; Liu, S. Y. Synthesis oforganic/inorganic hybrid quatrefoil-shaped star-cyclic polymer containing apolyhedral oligomeric silsesquioxane core. Macromolecules2009,42,2903-2910.
    (34)Jiang, J. Q.; Shu, Q. Z.; Chen, X.; Yang, Y. Q.; Yi, C. Q.; Song, X. Q.; Liu, X. Y.;Chen, M. Q. Photoinduced morphology switching of polymer nanoaggregates inaqueous solution. Langmuir2010,26,14247-14254.
    (35)Satoh, K.; Poelma, J. E.; Campos, L. M; Stahla, B,; Hawker, C. J. A facile synthesisof clickable and acid-cleavable PEO for acid-degradable block copolymers. Polym.Chem.2012,3,1890-1898.
    (36)van de Wetering, P.; Cherng, J. Y.; Talsma, H.; Hennink, W. E. Relation betweentransfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethylmethacrylate)/plasmid complexes. J. Controlled Release1997,49,59-69.
    (37)Lee, E. S.; Gao, Z.; Bae, Y. H. Recent progress in tumor pH targetingnanotechnology. J. Controlled Release2008,132,164-170.
    (1) O’Neal, W. K.; Zhou, H. S.; Morral, N.; Langston, C.; Parks, R. J.; Graham, F. L.;Kochanek, S.; Beaudet, A. L. Toxicity associated with repeated administration offirst-generation adenovirus vectors does not cccur with a helper-dependent vector.Mol. Med.2000,6,179-195.
    (2) Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009,109,259-302.
    (3)郭妍,徐宇红,顾健人.阳离子聚合物载体在体内基因治疗中的应用.中国肿瘤生物治疗杂志2004,284,43-52.
    (4) Wang, D. A.; Narang, A. S.; Kotb, M.; Gaber, A. O.; Miller, D. D.; Kim, S. W.;Mahato, R. I. Novel branched poly(Ethylenimine)-cholesterol water-solublelipopolymers for gene delivery. Biomacromolecules2002,3,1197-1207.
    (5) Wang, Y.; Wang, L. S.; Goh, S. H.; Yang, Y. Y. Synthesis and characterization ofcationic micelles self-assembled from a biodegradable copolymer for genedelivery. Biomacromolecules2007,8,1028-1037.
    (6) Zhong, Z. Y.; Song, Y.; Engbersen, J. F. J.; Lok, M. C.; Hennink, W. E.; Feijen, J.A versatile family of degradable non-viral gene carriers based on hyperbranchedpoly(ester amine)s. J. Controlled Release2005,109,317-329.
    (7) Forrest, M. L.; Koerber, J. T.; Pack, D. W. A degradable polyethylenminederivative with low toxicity for highly efficient gene delivery. Bioconjugate Chem.2003,14,934-940.
    (8) Gosselin, M. A.; Guo, W. J.; Lee, R. J. Efficient gene transfer using reversiblycross-linked low molecular weight polyethylenimine. Bioconjugate Chem.2001,12,989-994.
    (9) Wang, J.; Mao, H. Q.; Leong, K. W. A novel biodegradable gene carrier based onpolyphosphoester. J. Am. Chem. Soc.2001,123,9480-9481.
    (10)Pan, X. G.; Wu, G.; Yang, W. L.; Barth, R. F.; Tjarks, W.; Lee, R. J. Synthesis ofcetuximab-immunoliposomes via a cholesterol-based membrane anchor fortargeting of EGFR. Bioconjugate Chem.2007,18,101-108.
    (11)Zhao, X. B.; Lee, R. J. Tumor-selective targeted delivery of genes and antisenseoligodeoxyribonucleotides via the folate receptor. Adv. Drug Deliv. Rev.2004,56,1193-1204.
    (12)叶树楠,杨述华,杨超.肿瘤靶向DNA载体-转铁蛋白-多聚乙烯亚胺体外介导小鼠IL-12基因转染小鼠骨肉瘤细胞的实验研究.中国骨肿瘤骨病2004,3,172-176.
    (13)Chiu, S. J.; Ueno, N. T.; Lee, R. J. Tumor-targeted gene delivery via anti-HER2antibody (Transtuzumab, Herceptin) conjugated polyethylenmine. J. ControlledRelease2004,97,357-369.
    (14)Sato, A.; Chio, S. W.; Hirai, M.; Yamayosh, A.; Moriyama, R.; Yamano, T.; Takagi,M.; Kano, A.; Shimamoto, A.; Maruyama, A. Polymer brush-stabilized polyplexfor a siRNA carrier with long circulatory half-life. J. Controlled Release2007,122,209-216.
    (15)Tria, M. C. R.; Grande, C. D. T.; Ponnapati, R. R.; Advincula, R. C.Electrochemical deposition and surface-initiated RAFT polymerization: Protein andcell-resistant PPEGMEMA polymer brushes. Biomacromolecules2010,11,3422-3431.
    (16)Zhou, Z. L.; Yu, P. P.; Geller, H. M.; Ober, C. K. Biomimetic polymer brushescontaining tethered acetylcholine analogs for protein and hippocampal neuronal cellpatterning. Biomacromolecules2013,14,529-537.
    (17)Grislain, L.; Couvreur, P.; Lenaerts, V.; Roland, M.; Deprez-Decampeneere D.;Speiser, P. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int. J.Pharm.1983,15,335-345.
    (18)Liang, H. F.; Chen, C. T.; Chen, S. C.; Kulkarni, A. R; Chiu, Y. L.; Chen, M. C.;Sung, H. W. Biomaterials2006,27,2051-2059.
    (19)Wu, J.; Sun, T.-M.; Zhu, Yang, X. Z.; Zhu, J.; Du, X. J.; Yao, Y. D.; Xiong, M.-H.;Wang, H. X.; Wang, Y.-C.; Wang, J. Enhanced drug delivery to hepatocellularcarcinoma with a galactosylated core-shell polyphosphoester nanogel. Biomater.Sci.,2013,1,1143-1150.
    (20)Lim, D. W.; Yeom, Y. I.; Park, T. G. Poly(DMAEMA-NVP)-b-PEG-galactose asgene delivery vector for hepatocytes. Bioconjugate Chem.2000,11,688-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700