用户名: 密码: 验证码:
Fe_3O_4纳米颗粒和微球的制备与磁热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米生物技术作为一种涵盖了生物学、化学和物理学的综合性跨领域技术,涉及到生物医药学等各领域方面的研究内容,迄今已取得了非常令人鼓舞的成就,并使得纳米生物医学技术成为纳米科技领域最引人注目、最有生命力的发展方向之一。其中,基于磁性纳米颗粒磁热效应的磁热疗在肿瘤的早期诊断与治疗中的应用,也受到了研究者的广泛关注,并取得了一定的研究成果。但是,对于磁性材料的选择仍存在较多争议,并且在磁热效应的机制研究中仍然缺乏一个令人信服的理论结果。本论文的主要工作是采用水热/溶剂热合成方法制备了多种粒径的表面氨基修饰的纳米Fe304颗粒与微球,对这些材料的性质与磁热效应进行了研究。主要内容和创新如下:
     一、采用单一制备方法水热法,通过工艺参数的调整与控制制备了10-100 nm不同直径的单分散的单晶Fe304颗粒。对其性质进行了表征与研究,发现表面氨基修饰使磁颗粒具有良好的亲水性;颗粒体系矫顽力以及有效各向异性等随尺寸变化的趋势在常温下满足D3/2关系,低温下满足D6关系,与随机各向异性模型(RAM)理论吻合。
     二、水热/溶剂热法一次性合成由不同粒径与形貌Fe304颗粒组成的微球,对微球生成机理进行了讨论与研究,对比研究了30 nm和50 nm颗粒以及由这两种尺寸球形颗粒组成的微球的磁热性能,发现微球的主要磁性能取决于其组成颗粒的尺寸与形貌,如具有相似的饱和磁化强度和矫顽力,但是微球的SAR值则小于相应的颗粒。磁滞损耗对颗粒与微球SAR的贡献都较小。
     三、系统研究了颗粒与微球的磁热效应。研究发现被琼脂凝胶固定住的颗粒体系与原始状态具有相同的磁热效应,排除了布朗弛豫的影响;通过磁滞损耗理论模型研究发现材料的磁热能力不完全依赖于其基本磁性能;磁热效应具有明显的尺寸依赖性,采用有效各向异性理论推导并修正了在超顺磁-单畴转变尺寸范围内颗粒的磁热机制,发现在此尺度范围内的损耗机制主要是奈尔弛豫过程,实验结果与理论模型基本吻合。
     四、对磁流体磁分离过程中高梯度磁场对颗粒/微球体系尺寸分布的影响进行了理论模拟,构建了尺寸分布变化模型并进行了实验验证。模拟发现通过高梯度磁场分离处理后可显著提高体系的尺寸分散性,与实验结果比较吻合。对磁分级的应用与研究具有指导意义。
In recent years, nano-biotechnology as a cross-cutting technology covering biology, chemistry and physics with relating to bio-medicine and other fields have been attracted much attention and become one of the most eye-catching and viable field of nanotechnologies. The applications of magnetic hyperthermia used in early diagnosis and treatment of cancers which based on the magnetocaloric effect of magnetic nanoparticles have been widely researched, and some results have already been made. However, there are many disputes on the choosing of magnetic materials and there is also no convincing theoretical result. In this thesis, the main work is to prepare amino-modified Fe3O4 nanoparticles and microspheres with a wide range particle size and to make some investigation on the magnetism and magnetocaloric effect of materials. Some main contents and innovations in this paper are listed in the following:
     1. Monodisperse Fe3O4 particles with different diameter form 10 to 100 nm using a unitary method have been fabricated by adjustment and control of process parameters, and their characters and magnetocaloric effect under alternating magnetic field have been researched. Surface amino-modified makes magnetic particles a good hydrophilicity. And the magnetic properties of particle system such as coercive force and effective anisotropy are in line with the Random Anisotropy Model theory.
     2. Microspheres in different sizes and morphologies have been fabricated by hydrothermal/Solvothermal. The synthesis mechanism of the microspheres has been studied. The magnetic system and thermal performance between particles and the magnetic microspheres has been comparatively studied, too. It's found that the main magnetism lies on the sizes and morphologies of particles.
     3. The magnetocaloric property of the particles and the microspheres has been studied. It is found that there is no evident difference between the systems both in dispersive state and in hydrogel state, which obviates the effect of Brownian relaxation. It is also found that the magnetocaloric ability of the materials does not fully depend on their basic magnetic character by contrasting to the result of the hysteresis loss theory model. Magnetocaloric effect has an obvious dependence on the size of the particles. The magnetocaloric mechanism of the particles with size range in superparamagnetic to single domain transition length has been investigated by modifying the relaxation model with Random Anisotropy Model theory. The experiment results are in agreement with this model.
     4. The thesis contents some theoretical simulation about influence to particles and microspheres caused by high gradient magnetic fields, and also build a size-changing model with experimental verification. The simulation indicates that after high gradient magnetic separation the size dispersion significantly increases which agreements with experimental results. And this shows some guidance of the application and study of magnetic classification.
引文
[1]张志馄,崔作林.纳米材料与纳米技术.第四版.国防工业出版社,2001
    [2]张立德,牟季美.纳米材料与纳米结构.第二版.科学出版社,2001
    [3]徐辉碧.纳米医药.第一版.清华大学出版社,2004
    [4]Christof M. Niemeyer. Current Opinion in Chemical Biology,2000
    [5]Christof M. Niemeyer. Angew. Chem. Int. Ed.40 (2001) 4128
    [6]P. Ball, L. Garwin. Nature 355 (1992) 761
    [7]刘锦宏,兰州大学博士学位论文 2005
    [8]R. F. Ziolo, Science 257 (1992) 219
    [9]Y. W. Du, J. Appl. Phys.63 (1988) 4100
    [10]W. Gong, H. Li, Z. Zhao, et al. J. Appl. Phys.69 (1991) 5119
    [11]S. R. Shinde, S. D. Kulkami, A. G. Banpurkar, et al. J. Appl. Phys.88 (2000) 1566
    [12]N. S. Gajbhiye and A. Vijayalakshmi, Mater. Ttrans. JIM 40 (1999) 1084
    [13]W. O. Milligan and R. H. Morriss, J. Am, Chem. Soc.86 (1934) 3461
    [14]C. Kittel, Phys. Rev.70 (1946) 965
    [15]E. F. Kneller and F. E. Luborsky, J. Appl. Phys.34 (1963) 656
    [16]K. N. Trohidou, C. M. Soukoulis, A. Kostikas, et al. J. Magn. Magn. Mater.104-107 (1992) 1587
    [17]都有为,徐明祥,吴坚,物理学报,41(1)(1992)149
    [18]G. Apai, J. F. Hamilton, J. Stohr and A. Thompson, Phsy. Rev. Lett.43 (1979) 165
    [19]Z. X. Tang, C. M. Sorensen and K. J. Klabunde, Phsy. Rev. Lett.67 (1991) 3602
    [20]A. E. Berkowitz, J.A.Lahut,I.S.Jacobs, et al. Phys. Rev. Lett.34 (1975) 594
    [21]沈良,江国华.磁性纳米功能材料研究进展.杭州师范学院学报,18(2001)40
    [22]S. Grimm, M. Schultz, S. Barth, et al. J. Mater. Sci.32 (1997) 1083
    [23]李春忠,朱以华,车阿小等.华东理工大学学报,23(5)(1997)571
    [24]关有生,金鑫,朱簇音.应用科学学报,S(1)(1990)76
    [25]王世敏,许祖勋,傅晶.纳米材料制备技术.第一版.化学工业出版社,2002.
    [26]刘祖黎,杜玉卿,李震.功能材料,1(2005)3
    [27]Z. L. Liu, H. B. Wang, Q. H. Lu, et al. J. Magn. Magn. Mater.283 (2004) 258
    [28]Z. L. Liu, X. Wang, K. L. Yao, et al. Journal of Material Science,39 (2004) 2633
    [29]N. Feltin, M. P. Peleni. Langumuir.13 (15) (1997) 3927
    [30]J. B. Dai, J. Q. Wang, C. Sangregorio, et al. J. Appl. Phys.87 (10) (2000)7397
    [31]C. Pascal, J. L. Pascal, F. Favier, et al. Chem. Mater.11 (1999) 141
    [32]J. Rockenberger, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc.121 (1999) 11595
    [33]Y. Z. Wadghiri, Einar M. Sigurdsson, Marcin Sadowski, et al. Magnetic Resonance in Medicine.50 (2003) 293
    [34]H. Kiwada, J. Sato, S. Yamada, et al. Chem. Pharm. Bull. (Tokyo).34 (10) (1986) 4253
    [35]樊祥山,张东生,郑杰.国外医学肿瘤学分册 30(2)(2003)1479
    [36]A. A. Kuznetsov, V. I. Filippov, R. V. Alyautdin, et al. J. Magn. Magn. Mater.225 (12) (2001) 95
    [37]M. Shinkai, M. Yanase, M. Suzuki, et al. J. Magn. Magn. Mater.194 (13)(1999) 176
    [38]张旭良,张影.医疗设备信息,3(2002)1
    [39]詹仁雅,陶祥洛.中国神经精神疾病杂志,23(2)(1997)56
    [40]M. H. Falk, R. D. Issels, Int J Hyperthermia.17(1) (2001) 1
    [41]P. Moroz, S. K. Jones, B. N. Gray, Journal of Surgical Oncology 11 (2001) 259
    [42]贾秀鹏.国外医学肿瘤学分册,6(2002)187
    [43]P. Moroz, S. K. Jones, B. N. Gray, Journal of Hyperthermia 18(4) (2002) 267
    [44]R. K. Glichrist, R. Medal, W. D. Shorey, et al. Ann Surgy 146 (1957) 596
    [45]王煦漫 华东理工大学博士学位论文 2004
    [46]杨正强 复旦大学博士学位论文 2004
    [47]S. K. Jones, J. G. Winter, B. N. Gray. Int J Hyperthermia,18 (2002) 117
    [48]P. Moroz, S. K. Jones, J. G. Winter, et al. Journal of Surgical Oncology 78 (2001) 22
    [49]T. Minamimura, H. Sato, S. Kasaoka, et al. Internation J Oncol 16 (2000) 1153
    [50]H. Mitsumori, M. Hiraoka, T. Shibata, et al. Hepato-Gastroenterol 43 (1996) 1431
    [51]A. Jordan, R. Scholz, P. Wust, et al. J. Magn. Magn. Mater.201 (1999) 413
    [52]D. C. Chan, D. Kirpokin, P. A. Bunn, J. Magn. Magn. Mater.122 (1993) 374
    [53]N. A. Brusentsov, V. V. Gogosov, J. Magn. Magn. Mater.225 (2001) 113
    [54]R. Hergt, Hiergeist, R. I. Hilger, J. Magn. Magn. Mater.270 (2004) 345
    [55]R. E. Rosensweig, J. Magn. Magn. Mater.252 (2002) 370
    [56]R. Hregt, W. Andra, Transactions on Magnetic,34(5) (1998) 3745
    [57]M. Ma, Y. Wu, J. Zhou, J. Magn. Magn. Mater.268 (2004) 33
    [58]P. C. Fannin, Y. L. Raikher, A. T. Giannitsis, J. Magn. Magn. Mater.252 (2002) 114
    [59]P. C. Fannin, J. Magn. Magn. Mater.252 (2002) 59
    [1]都有为,铁氧体 江苏科学技术出版社
    [2]刘锦宏,兰州大学博士学位论之(2005)
    [3]张丽英 兰州大学博士学位论文(2005)
    [4]宛得福,马兴隆,磁性物理学,电子科技大学出版社,1994
    [5]李荫远,李国栋,铁氧体物理学,科学出版社,1978.
    [6]周志刚,铁氧体磁性材料,科学出版社,1981
    [7]戴道生,钱昆明,铁磁学(上册),科学出版社,1998
    [8]L. Neel, Ann. De Phys.5 (1936) 18; 5 (1936) 232
    [9]P. W. Anderson, Phys. Rev.79 (1950) 350; (1950) 705
    [10]R.C.奥汉德利,现代磁性材料原理和应用,化学工业出版社,2002
    [11]I. S. Jacobs and C. P. Bean, Magnetism, edited by G. T. Rado and H. Suhl, Academic, New York,1963
    [12]G. A. Candela and R. A. Haines, Appl. Phys. Lett.34 (1979) 868
    [13]X. G. Li, X. J. Fan, F. Ji, W. B. Wu, K. H. Wong, C. L. Choy and H. C. Ku, J. Appl. Phys.85 (1999) 1663
    [14]T. Song and R. M. Roshko, IEEE Trans. Magn.36 (2000) 223
    [15]W. Kundig, et al., Phys. Rev.142 (1966) 327
    [16]马如璋,徐英庭,穆斯堡尔谱学,科学出版社,1998
    [17]Sei J. Oh, D. C. Cook and H. E. Townsend, Hyperfine Interactions 112 (1998) 59
    [18]A. R. Von Hippel, Dielectrics and Waves,1954
    [19]J. Frenkel, The Kinetic Theory of Liquids. Dover Publications, New York,1955
    [20]W. F. Brown, Physics Review,130 (1963) 1677
    [21]R. E. Rosensweig, J. Magn. Magn. Mater.252 (2002) 370
    [22]L. D. Landau, E. M. Lifshitz, Electrodynamics of continuous media. Pergarnon Press, Oxford,1960
    [23]S. K. Jones, J. G. Winter, Physical Medicine Biology,37 (2001) 385
    [24]D. C. Chan, D. Kirpokin, P. A. Bunn, J. Magn. Magn. Mater.122 (1993) 374
    [1]仲维卓,华素坤,上海化工.23(11)(1998)25
    [2]吴键松,李海民,海潮盐与化工,33(4)(2003)22
    [3]K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology:A Technology for Crystal Growth and Materials Processing, William Andrew Publishing, LLC Norwich, New York,2001
    [4]徐如人,无机合成与制备化学,高等教育出版社,2001
    [5]M. Yoshimura, J. Mater. Res,13(5) (1998) 1091
    [6]王秀峰,王永兰,金志浩,稀有金属材料与工程,24(4)(1995)1.
    [7]李凤生,杨毅等著,纳米微米复合技术及应用,北京:国防工业出版社,2002
    [8]M. Yoshimura, MRS Bulletin,25(9) (2000) 12
    [9]M. Yoshimura, MRS Bulletin,25(9) (2000) 17
    [10]M. Yoshimura, Key Engineering Materials,1 (2001) 206
    [11]M. Yoshimura, Solid State Ion. Difus. React,98(3-4){1997} Ⅰ 79
    [12]施尔畏,夏长泰,王步国,无机材料学报,11(2)(1996)193
    [13]W. S. Sheldrick, M. Wachhold, Angew. Chem. Int. Ed Engl,36 (1997) 206
    [14]Y. T. Qian, Adv. Mater,11 (1999) 1101
    [15]Y. T. Qian, Handbook of Nanostructured Materials and Nanotechnology, Chap.9, edited by H. S. Nalwa, Academic Press, New York,2000
    [16]Y. Xie, Y. T. Qian, W. Z. Wang, et al, Science,272 (1996) 1926
    [17]Y. D. Li, Y. T. Qian, et al, J Am Chem Soc.119 (1997) 7869
    [18]Y. D. Li, Y. T. Qian, et al, Science,281 (1998) 246
    [19]J. Hu, Q. Lu, K. Tang, B. Deng, R. Jiang, Y. Qian, et al, J. Phys. Chem. B,104 (2000) 5251
    [20]H. Yamane, M. Shimada, S. J. Clarke, et al, Chem. Mater,9 (1997) 413
    [21]Y. Li, H. Liao, Y. Ding, et al, Chem. Mater,10 (1998) 2301
    [22]Y. Li, Y Ding, Y. Qian, et al, Inorg. Chem,37 (1998) 2844
    [23]S. Yu, Y. Wu, J. Yang, et al, Chem. Mater,10 (1998) 2309
    [24]张立德,牟季美,纳米材料于纳米结构,北京:科学出版社,2002
    [25]张清敏,徐濮,扫描电子显微镜和X射线微区分析,1988
    [26]黄兰友,刘绪平,电子显微镜与电子光学,1991
    [27]李树棠,晶体X射线衍射学基础,冶金工业出版社,1990
    [28]李培森,物性测量原理与测试分析方法,兰州大学出版社,1994.
    [29]S. Diego, Magnetic Property Measurement Systems:Systems and Options. CA:Quantum Design, 1999.
    [30]马如璋,徐英庭,穆斯堡尔谱学,科学出版社,1998
    [31]陈衡,红外物理学,国防工业出版社,1985
    [32]左榘,激光散射原理及在高分子科学中的应用,河南科学出版社,1994
    [33]王煦漫 华东理工大学博士学位论文 2004
    [1]P. Moroz, S. K. Jones and B. N. Gray, Int. J. Hyperthermia 18 (2002) 267
    [2]A. Jordan, P. Wust, R. Scholz, H. Faehling, J. Krause and R. Felix, in Scientific and Clinical Applications of Magnetic Carriers, edited by U. Hafeli, W. Schutt, J. Teller, and M. Zborowski, Plenum, New York,1997
    [3]K. Okawa, M. Sekine, M. Maeda, M. Tada, M. Abe N. Matsushita, K. Nishio and H. Handa, J. Appl. Phys.99(2006)08H102
    [4]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, J. Magn. Magn. Mater.268 (2004) 33
    [5]R. Hergt, W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richeter and H.-G. Schmidt, IEEE Trans. Magn.34 (1998) 3745
    [6]D. C. Chan, D. B. Kirpotin and P. A. Bunn, Scientific and Clinical Applications of Magnetic Carriers, Plenm Press, New York 1997
    [7]D. C. Chan, D. B. Kirpotin and P. A. Bunn, J. Magn. Magn. Mater.122 (1993) 374
    [8]R. Hergt, R. Hiergeist, I. Hilger, W.A. Kaiser, Y. Lapatnikov, S. Margel and U. Richter, J. Magn. Magn. Mater.270 (2004) 345
    [9]I. Baker, Q. Zeng, W. Li and C. R. Sullivan, J. Appl. Phys.99 (2006) 08H106
    [10]都有为,路怀先,顾新运,应用科学学报,3(3)(1985)276
    [11]王全胜,刘颖,王建华,北京理工大学学报,14(2)(1995)200
    [12]J. H. Lee, D. Y. Maeng, Y. S. Kin, et al, Journal of materials Science Letter,18 (1999) 1029
    [13]Y. Choi, H. Icho, J. mater. Sci. Letter,18 (1999) 655
    [14]郑兰香,彭国新,精细化工,12(6)(1995)11
    [15]成国祥,张仁柏,兵器材料科学工程,29(6)(1998)27
    [16]L. Wang, J. Bao, L. Wang, F. Zhang and Y. Li, Chem. Eur. J.12 (2006) 6341
    [17]侯万国,孙德军,张春光,应用胶体化学 北京.科学出版社,1998
    [18]G. Herzer, IEEE Trans. Magn.26 (1990) 1397
    [19]D. Xue, G. Chai, X. Li, X. Fan, J. Magn. Magn. Mater.320 (2008) 1541
    [20]高汝伟,韩广兵,孙艳,冯维存,韩百萍,刘敏,自然科学进展 16(8)(2006)921
    [21]冯维存,高汝伟,李卫,金属学报 41(4)(2005)347
    [22]Sei J. Oh, D. C. Cook, H. E. Townsend, Hyperfine Interactions 112 (1998) 59
    [23]A.D. Arelaro, E. Lima Jr, L.M. Rossi, P.K. Kiyohara, H.R. Rechenberg, J. Magn. Magn. Mater.320 (2008) e335
    [24]W. Salow, Phys. Rev. B 37 (1988) 676
    [1]徐智中 复旦大学博士学位论文 2005
    [2]L. Wang, J. Bao, L. Wang, F. Zhang and Y. Li, Chem. Eur. J.12 (2006) 6341
    [3]郑燕青,施尔畏,李汉军,王步国,胡行方,无机材料学报,14(3)(1999)321
    [4]侯万国,孙德军,张春光,应用胶体化学 北京.科学出版社,1998
    [5]W. Salow, Phys. Rev. B 37 (1988) 676
    [6]G. Herzer, IEEE Trans. Magn.26 (1990) 1397
    [7]D. Xue, G. Chai, X. Li, X. Fan, J. Magn. Magn. Mater.320 (2008) 1541
    [8]冯维存,高汝伟,李卫,金属学报 41(4)(2005)347
    [9]高汝伟,韩广兵,孙艳,冯维存,韩百萍,刘敏,自然科学进展 16(8)(2006)921
    [1]R. E. Rosensweig, J. Magn. Magn. Mater.252 (2002) 370
    [2]S. K. Jones, J. G. Winter, Physical Medicine Biology,37 (2001) 385
    [3]A. Jordan, R. Scholz, P. Wust, et al. J. Magn. Magn. Mater.201 (1999) 413
    [4]R. Hregt, W. Andra, Transactions on Magnetic,34(5) (1998) 3745
    [5]R. Hergt, Hiergeist, R. I. Hilger, J. Magn. Magn. Mater.270 (2004) 345
    [6]R. Hergt, R. Hiergeist, M. Zeisberger, D. Schuler, U. Heyen, I. Hilger and W. A. Kaiser, J. Magn. Magn. Mater.293 (2005) 80
    [7]倪刚.南京大学博士学位论文 2002
    [8]G. Herzer, IEEE Trans. Magn.26 (1990) 1397
    [1]H. Gu et al. J. Am. Chem. Soc.125 (2003) 15702
    [2]H. Yu, et al. Biosen. Bioelectron.14 (2000) 829
    [3]A. Senyei, K. Widder, C. Czerlinski, J. Appl. Phys.49 (1978) 3578
    [4]N. J. Met, et al. Science 301 (2003) 1884
    [5]Q. A. Pankhurst, et al. J. Phys. D:Appl. Phys.36 (2003) R167
    [6]L. R. Moore, et al. J. Biochem. Biophys. Methods.44 (2000) 115
    [7]J. Yang, et al. J. Magn. Magn. Mater.317 (2007) 34
    [8]E. P. Furlani, K. C. Ng, Phys. Rev. E 73 (2006) 061919
    [9]S, Miltenyi, et al. Cytometry 11 (1990) 231
    [10]Hatch G P, Stelter R E J. Magn. Magn. Mater.225 (2001) 262
    [11]H. Xu, L Cui, N. Tong, and H. Gu, J. Am. Chem. Soc.128 (2006) 15582
    [12]L. P. Ramirez, K. Landfester, Macromol. Chem. Phys.204 (2003) 22
    [13]Y. Mori, T. Takoura, H. Kawaguchi Polym. Prepr. Jpn.54 (2005) 3055
    [14]C. T. Yavuz., et al. Science 314 (2006) 964
    [15]R. Gerber, M. Takayasu, F. J. Friedlander IEEE Trans. Magn.19 (1983) 2115
    [16]J. Happel, H. Brenner Low Reynolds Number Hydrodynamics, The Netherlands:Martinus Nijhoff (1983reprint)
    [17]E. P. Furlani, Permanent Magnet and Electromechanical Devices:Materials, Analysis, and Applications, Academic Press (2001)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700