用户名: 密码: 验证码:
软磁材料巨磁阻抗效应及其在生物传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁传感器广泛应用于航空航天、自动化测量、磁性存储、生物医学等各行业中,扮演着重要角色。巨磁阻抗(Giant Magnetoimpedance, GMI)效应作为一种新型磁传感技术,它能够弥补巨磁阻(Giant Magnetoresistance, GMR)传感器的不足,实现在很宽温度范围下对微弱磁场的快速灵敏测试,同时它的制作成本较低,容易实现微型化和集成化,是一种能够同时满足灵敏度高、微型尺寸、响应速度快、功耗低和无磁滞等信息技术要求的传感器。相对于薄膜和薄带材料而言,非晶丝材比较容易制备,易于形成理想的磁各向异性,能够获得较为理想的敏感性和GMI性能,但是丝材存在着明显的缺点:大批量生产时难以保证样品性能的可重复性,与电路的焊接、安装比较困难等。而通过工艺手段的改进,薄膜和薄带材料目前在GMI性能和磁场敏感性方面已经达到甚至超过非晶丝材,同时二者的制作工艺能够与大规模集成电路
     (Integrated Circuit,IC)相兼容,批量生产时能够保证样品性能的可重复性,制作成本较低,与电路的焊接和安装比较方便。对单层和多层结构薄膜与薄带材料中的GMI效应,人们开展了相关的理论研究,但是理论研究的过程都进行了简化,没有考虑到材料中各向异性场、易轴取向和阻尼系数对GMI效应的影响,同时对于曲折状结构的薄膜与薄带材料,还没有相应的理论模型对其GMI效应进行描述。对于薄膜和薄带GMI传感器的制备,很多研究小组采用手工裁剪或金属掩膜图形化的方法进行制备,缺乏对MEMS制备工艺的系统研究,难以保证样品的性能稳定性和批量化生产。在生物检测方面,科学家已经开始了基于GMI传感技术的相关研究,但到目前为止,尚未见到针对某个具体病原体的、基于巨磁阻抗传感器的应用型检测体系。同时,目前基于GMI效应的生物检测尚处于起步阶段,涉及到为数不多的细胞实验都是利用细胞样品具有的吞噬作用与磁性粒子进行结合,未有对某一种细胞样品进行特异性检测。
     基于以上考虑,本文对基于软磁薄膜和薄带材料的微型GMI传感器开展理论、制备工艺和生物检测应用方面的研究,将基于MEMS工艺制备的高性能GMI传感器应用于生物检测领域,通过实验工作,为建立一套相对完善的、基于GMI效应的生物检测系统打下基础。本论文的主要研究工作如下:
     1.从麦克斯韦方程和磁化强度进动方程出发,根据电磁场在导体中的分布以及铁磁体中磁化强度在高频下的进动模式,建立了单层、曲折状和三层夹心结构铁磁材料阻抗计算的理论模型。在建立的模型中,考虑了包括各向异性场、阻尼系数和易轴取向等在内的诸多影响参数,根据材料和测试的实际情况设立了坐标系和边界条件,使理论模型得到符合实际情况的简化,同时保证计算得到的理论结果能很好地与实验数据进行对照;
     2.运用所建立的理论模型,对单层、曲折状和三层结构中的GMI效应进行了系统的模拟计算,采用MATLAB软件辅助进行符号与数值运算,解决了方程初始变量较多、方程不便求解的问题。通过理论计算研究了材料的结构、尺寸效应、电流频率、外加磁场、各向异性场、易轴取向以及阻尼系数等因素对GMI效应的影响。理论模拟计算表明,材料结构、电流频率、外加磁场、样品尺寸、各向异性场、易轴取向和阻尼系数均对GMI效应的幅值和磁场灵敏度有显著影响,而各向异性场和易轴取向还改变GMI曲线的变化规律,决定GMI正向峰值的大小和出现与否;
     3.采用制备的NiFe薄膜和商品化Co基非晶薄带作为GMI传感器材料研究对象。采用磁控溅射方法制备了NiFe薄膜,研究了溅射条件如Ar气流量、溅射功率、溅射气压等对材料磁性能的影响,获得了制备NiFe薄膜的最佳工艺条件。采用多种材料测试分析手段,如X-射线、扫描电子显微镜(SEM)测试了薄膜和薄带材料热处理前后的元素组份和微观结构,利用振动样品磁强计(VSM)对薄膜和薄带材料进行软磁性能分析。测试结果表明,NiFe薄膜和Co基薄带材料具有优异的软磁性能,为获得高性能的GMI传感器提供了保障;
     4.采用射频溅射、光刻、电镀、离子束刻蚀等与大规模集成电路相兼容的微细加工工艺制备了单层、三层、单条状和曲折状NiFe薄膜结构,并对其GMI效应进行系统研究。结果表明:气流量和溅射气压对薄膜GMI性能有重要影响,通过实验得到薄膜溅射的最优条件组合为:功率600W,Ar气流量14sccm,溅射气压5.4×10-3Torr;NiFe/Cu/NiFe曲折状三层结构中得到最大的GMI变化率为34%,磁场灵敏度为1.5%/Oe;
     5.采用键合、光刻、化学刻蚀和电镀等微细加工工艺制备了单条状和曲折状Co基非晶薄带结构,并对其GMI效应进行系统研究。结果表明:曲折状3匝结构的薄带材料中得到最大的GMI变化率为204%,磁场灵敏度为17.8%/Oe,3匝结构的线宽为800μm,线条间距为400μm,同时单条状和曲折状Co基非晶薄带材料中GMI效应的试验结果与理论结果有很好的符合;
     6.设计了一种基于纳米磁性微球标记物的微生物芯片系统,结合GMI检测技术用于HPV 16/18病毒的分型检测。利用纳米磁性微球良好的磁操控性,将HPV保守区双链扩增片段方便地分离成单链片段,同时将纳米磁性微球标记的单链扩增片段直接用于随后的GMI传感器分型检测,将以往的分离、检测标记步骤合二为一。通过生物芯片中HPV病毒检测区域与阴性检测区GMI检测信号的差异,成功实现对HPV病毒的分型检测。在对132份临床宫颈拭子样本的检测中,以DNA测序为金标准,灵敏度均达到95%以上,其中特异性均为100%;
     7.选用RGD环肽作为胃癌细胞中αvβ3整合素的靶向配体,经过表面修饰的Fe3O4纳米粒子作为磁性标记物,利用GMI检测技术和细胞靶向标定技术对不同胃癌细胞样本进行检测,结果表明:GMI传感器不但能够检测到胃癌细胞中是否吸收了磁性纳米粒子,而且可以检测出样本是否为靶向标定过的胃癌细胞,将靶向标定的胃癌细胞与健康细胞以及仅仅通过吞噬方式吸收磁性粒子的胃癌细胞区分开来,与之前基于GMI效应的生物检测相比,将GMI的检测从非特异性检测推进到了特异性检测。
Magnetic sensors are widely used in aerospace, automatic measurement, magneticstorage, biomedical etc and play an important role. As a new type of magnetic sensortechnology, giant magnetoimpedance (GMI) effect can make up for the insufficiency ofgiantmagnetoresistance (GMR) sensor to achieve a rapid and sensitive test with widetemperature range in weak magnetic field. While GMI effect is the only one able to meetinformation technology requirements of the sensor with high sensitivity, miniature size,fast response, low power consumption, no hysteresis, low production cost, easyminiaturization and integration. Compared to the film and ribbon material, the amorphouswire is easy to fabricate, easy to form an ideal magnetic anisotropy and easy to obtain anideal sensitivity and GMI performance, but wire material also has the obvious drawback:difficult to ensure repeatability of the sample performance in large quantities production,difficult for circuit welding and installation and uncompatible to large scale integratedcircuit (IC) technology. GMI performance and field sensitivity of film and ribbon materialhas been reached or even exceeded the amorphous wire through technical improvement,while the production process of them are compatible with IC, ensure the reproducibility ofthe sample performance in mass production, low production costs and the circuit weldingand installation are convenient. Some theoretic research works have been done toinvestigate the GMI effect in thin film and ribbon with single layered and multi-layeredstructure, but the theory model of GMI effect in meander structure is still lack. Inbiological detection, several investigations based on GMI sensing technology are carriedout, but so far, it has not seen one detection system based on giant magneto-impedanceeffect completely developed and clinical evaluation for specific pathogens. Meanwhile, thecurrent biological detection based on GMI effect still remain in the non-specific phase, only a small number of cells experiments have been done. The combination of cells andmagnetic particles in these experiments are phagocytosis and it can not be a specificdetection for a certain kind of cells.
     Based on the above considerations, systemically investigations for theory, fabricationand applications in biological detection of GMI micro sensors based on soft magnetic thinfilms and ribbon materials are carried out in this thesis. The GMI sensors with excellentperformance are picked out in order to establish a complete biological detection system forbiological testing and clinical application. The main research works of this thesis are asfollow:
     [1] From the Maxwell equations and the equation of magnetization motion, weestablish the theoritical model to calculate the impedance of ferromagnetic materials withsingle layered, meander and trilayered structure according to the distribution ofelectromagnetic field in ferromagnetic conductor and magnetization motion model at highfrequencies. In the model, many of parameters, such as the anisotropy field, the dampingcoefficient and the easy axis orientation etc, are considered. Coordinate system andboundary conditions are established according to the actual situation of the GMI sensor.The theoretical model is simplified consistent with the actual situation and ensuring thatthe theoretical results can be compared very well with the experimental data;
     [2] GMI effect in ferromagnetic materials with single layered, meander and trilayeredstructure are calculated using the established theoretical model. Symbolic and numericalcomputations are assisted by MATLAB software. Effects of the structure of the material,size effect, current frequency, magnetic field, anisotropy field, easy axis orientation and thedamping factor on the GMI effect are investigated by the theoretical calculation.Theoretical simulation results show that the sensor structure, current frequency, magnticfield, the sample size, the anisotropy field, easy axis orientation and the damping effecthave significant influences both on the magnitude and field sensitivity of the GMI effect.Also the GMI curves are changed by anisotropy field and easy axis orientation and todecide the size of the positive peak of GMI and the emergence or not;
     [3] Sputtered NiFe film and the commercialization Co-based amorphous ribbons were used for the GMI sensor materials. NiFe film was prepared by magnetron sputtering. Theinfluence of sputtering parameters, such as Ar gas flow rate, sputtering power andsputtering pressure, on magnetic properties of NiFe thin films are investigated and theoptimum sputtering conditions are obtained. Analysis method, such as X-rays, scanningelectron microscopy (SEM) and vibrating sample magnetometer (VSM), was adopted totest material component, surface microstructure and soft magnetic properties. The resultsshow that, NiFe and Co-based thin film materials exhabit excellent soft magneticproperties which guarantees to obtain high-performance of the GMI sensors;
     [4] NiFe film with different structure are fabricated by RF sputtering, lithography,electroplating and ion beam etching technology and the GMI effect of them are studied.The results show that: gas flow rate and sputtering pressure have a major impact on theGMI performance of thin film. The optimal parameter conditions are obtained through theexperiments: sputtering power 600W, Ar gas flow 14sccm, sputtering pressure5.4×10-3Torr; trilayered NiFe/Cu/NiFe with a three turns meander structure has GMI ratiois 34% and GMI field sensitivity was 1.5%/Oe;
     [5] Co-based amorphous ribbon with different structure are fabricated by bonding,lithography, chemical etching, and electroplating micro-fabrication process and the GMIeffect are studied. The results show that: the meander structure of ribbon with 3 turns hasmaximize GMI ratio of 204% with the magnetic field sensitivity of 17.8%/Oe, the linewidth of 3 turns structure is 800μm, the line spacing of 400μm. Meanwhile, experimentalGMI effects in Co-based amorphous ribbon are fit well with theoretical results;
     [6] Microbial typing system for HPV 16/18 virus is designed based on nano-magneticbeads marker. Conserved double-stranded amplified segment of HPV can be easilyseparated into single-stranded fragments by fully use of the good handling ofnano-magnetic magnetic microspheres. While the magnetic signal of the nano-magneticbeads labeled single-chain fragment was directly deteceed by GMI sensor and used forsubsequent genotyping. The separation and detection steps of previous typing method aremerged into one tag. DNA sequencing used as the gold standard in the clinical detection of132 cervical swab samples, the sensitivity of 95% and specificity of 100% of them;
     [7] RGD cyclic peptide used as the targeting ligands ofαvβ3 integrin in gastric cancercells, the surface modified Fe3O4 nanoparticles used as magnetic marker in detection.Targeted detection of different gastric cancer cells are carried out using GMI sensor, thetest results show that: GMI sensor can detect not only whether the cancer cells absorb themagnetic nanoparticles, but also can detect whether the target samples is gastric cancercells by targeting. Targeted gastric cancer cell, healthy cells and the gastric cancer cell toabsorb magnetic particles by phagocytosis can be recognized successfully. Compared withthe previous biological detection based on GMI effect, the GMI detection are improvedfrom the non-specific to the specific detection.
引文
[1] Lenz J E. A review of magnetic sensors. Proc IEEE 1990, 78:973–89.
    [2] Meydan T. Application of amorphous materials to sensors. J Magn Magn Mater 1995, 133:525–32.
    [3] Ripka P. Magnetic sensors and magnetometers. Artech House Publishers, 2001.
    [4] Mohri K, Kohsawa T, Kawashima K, Yoshida H, Panina LV. Magneto-inductive effect (MI effect)in amorphous wires. IEEE Trans Magn 1992, 28:3150–2.
    [5] Parkin S. S. P.,“Oscillations in giant magnetoresistance and antiferromagnetic couplingin[Ni81Fe19/Cu]N multilayers”, Appl. Phys. Lett., 1992, 60, pp.512-514
    [6] M. H. Phan, H. X. Peng,“Giant magnetoimpedance materials-Fundamentals and applications”,Prog. Mater. Sci. 2008, 53: 323-420
    [7] Mohri K, Uchiyama T, Panina PV. Recent advances of micro magnetic sensors and sensingapplication. Sens Acta A 1997, 59:1–8.
    [8] Atkinson D, Squire PT, Maylin MG, Gore J. An integrating magnetic sensor based on the giantmagnetoimpedance effect. Sens Acta A 2000, 81:82–5.
    [9] Nishibe Y, Ohta N. Thin film magnetic field sensor utilizing magnetoimpedance effect. R&D RevToyota CRDL 2000, 35:1–6.
    [10] Kurlyandskaya GV, Garcia-Arribas A, Barabdiaran JM, Kisker E. Giant magnetoimpedance stripand coil sensors. Sens Acta A 2001, 91:116–9.
    [11] Mohri K, Uchiyama T, Shen LP, Cai CM, Panina PV, Honkura Y, et al. Amorphous wire andCMOS IC based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) andstress-impedance (SI) effects. IEEE Trans Magn 2002, 38:3063–8.
    [12] Honkura Y. Development of amorphous wire type MI sensors for automobile use. J Magn MagnMater 2002, 249:375–7.
    [13] Yabukami S, Mawatari H, Horikoshi N, Murayama Y, Ozawa T, Ishiyama K, et al. A design ofhighly sensitive GMI sensor. J Magn Magn Mater 2005, 290–291:1318–21.
    [14] Nesteruk K, Kuzminski M, Lachowicz HK. Novel magnetic field meter based on giantmagnetoimpedance (GMI) effect. Sen Trans Mag 2006, 65:515–20.
    [15] Giouroudi I, Hauser H, Musiejovsky L, Steurer J. Giant magnetoimpedance sensor integrated in anoscillator system. J Appl Phys 2006, 99:08D906:1–6:3.
    [16] Alves F, Bensalah AD. New 1D-2D magnetic sensors for applied electromagnetic engineering. JMater Proc Tech 2007, 181:194–8.
    [17] Valensuela R, Freijo JJ, Salcedo A, Vazquez M, Hernando A. A miniature dc current sensor basedon magnetoimpedance. J Appl Phys 1997, 81:4301–3.
    [18] Rheem YW, Kim CG, Kim CO, Yoon SS. Current sensor application of asymmetric giantmagnetoimpedance in amorphous materials. Sens Acta A 2003, 106:19–21.
    [19] Mala′tek M, Ripka P, Kraus L. Double-core GMI current sensor. IEEE Trans Magn 2005,41:3703–5.
    [20] Phan MH, Peng HX, Dung NV, Nghi NH. A new class of GMI current sensor for ac and dcmeasurements [unpublished].
    [21] Cobeno AF, Zhukov A, Blanco JM, Larin V, Gonzalez J. Magnetoelastic sensor based on GMI ofamorphous microwire. Sens Acta A 2001, 91:95–8.
    [22] Tejedor M, Hernando B, Sanchez ML, Prida VM, Vazquez M. Magneto-impedance effect inamorphous ribbons for stress sensor application. Sens Acta A 2001, 81:98–101
    [23] Bowles A, Gore J, Tomka G. A new, low-cost, stress sensor for battery-free wireless sensorapplications. Proc SPIE Int Soc Opt Eng 2005, 5765:1104–11.
    [24] Blanco JM, Zhukov A, Gonzalez J. Asymmetric torsion stress giant magnetoimpedance in nearlyzero magnetostrictive amorphous wires. J Appl Phys 2000, 87:4813–5.
    [25] Gonzalez J, Chen AP, Blanco JM, Zhukov A. Effect of applied mechanical stressses on theimpedance response in amorphous microwires with vanishing magnetostriction. Phys Stat Sol A2002, 189:599–608.
    [26] Li DR, Lu ZC, Zhou SX. Magnetic anisotropy and stress-impedance effect in Joule heatedFe73.5Cu1Nb3Si13.5B9 ribbons. J Appl Phys 2004, 95:204–7
    [27] Kim DJ, Park DA, Hong JH. Nondestructive evaluation of reactor pressure vessel steels using thegiant magnetoimpedance sensor. J Appl Phys 2002, 91:7421–3.
    [28] http://www.aichi-mi.com/
    [29] Delooze P, Panina LV, Mapps DJ, Ueno K, Sano H. Effect of transverse magnetic field on thinfilm magnetoimpedance and application to magnetic recording. J Magn Magn Mater 2004,272–276:2266–8.
    [30] Uchiyawa T, Mohri K, Itho H, Nakashima K, Ohuchi J, Sudo Y. Car traffic monitoring systemusing MI sensor built-in disk set on the road. IEEE Trans Magn 2000, 36:3670–2.
    [31] Kurlyandskaya GV, Sanchez ML, Hernando B, Prida VM, Gorria P, Tejedor M.Giant-magnetoimpedance based sensitive element as a model for biosensors. Appl Phys Lett 2003,82:3053–5.
    [32] Totsu K, Haga Y, Esashi M. Three-axis magnetoimpedance effect sensor system for detectingposition and orientation of catheter tip. Sens Acta A 2004, 111:304–9.
    [33] Chiriac H, Tibu M, Moga AE, Herea DD. Magnetic GMI sensor for detection of biomolecules. JMagn Magn Mater 2005, 293:671–3.
    [34] Kurlyandskaya, G., Levit, V. Magnetic Dynabeads detection by sensitive element based on gmi.Biosen. Bioelectron. 2005, 20(8):1611-1616.
    [35] Kurlyandskaya GV, Miyar VF. Surface modified amorphous ribbon based magnetoimpedancebiosensor. Biosen Bioelectron 2007, 22:2341–5.
    [36] A. Kumar, S. Mohapatra, V. F. Miyar, A. Cerdeira, J. A. Garcia, H. Srikanth, J. Gass and G. V.Kurlyandskaya, Appl. Phys. Lett. 91, 143902(2007)
    [37] Horia Chiriac, Dumitru-Daniel Herea and Sorin Corodeanu, Journal of Magnetism and MagneticMaterials. 2007,311:425.
    [38] F. Blanc-Béguina, S. Nabilyb, J. Gieraltowskib, A. Turzoc, S. Querellouc and P.Y. Salaunc, Journalof Magnetism and Magnetic Materials. 312, 192(2009).
    [39] Yang, H., Chen, L., Lei, C., Zhang, J., Li, D., Zhou, Z., Bao, C., Hu, H., Chen, X., Cui, F., 2010.Appl Phys Lett 97, 043702
    [40] L. Chen, C-C Bao, H Yang, D Li, C Lei, T Wang, Y Zhou, 2011. Biosen. Bioelectron. Accepted
    [41] Panina LV, Mohri K. Magneto-impedance effect in amorphous wires. Appl Phys Lett 1994,65:1189–91.
    [42] Panina LV, Mohri K, Uchiyama T, Noda M. Giant magneto-impedance in Co-rich amorphouswires and films. IEEE Trans Magn 1995, 31:1249–60.
    [43] Landau LD, Lifshitz EM. Electrodynamics of continuous media. Oxford: Pergamon Press, 1975.
    [44] Menard D, Britel M, Ciureanu P, Yelon A. Giant magnetoimpedance in a cylindrical magneticconductor. J Appl Phys 1998, 84:2805–14.
    [45] D P Makhnovskiy, L V Panina, Size effect on magneto-impedance in layered films. Sensors andActuators. 2000, 81:91-94
    [46] Landau L.D., Lifshitz E. M., Electrodynamics of Continuous Media, 2nd edition, Oxford,Pergamon Press, 1984, pp.195-212
    [47] Kraus L. Theory of giant magneto-impedance in the planar conductor with uniaxial magneticanisotropy. J Magn Magn Mater 1999, 195:764–78.
    [48] Tannous C, Gieraltowski J. Giant magneto-impedance and its applications. J Mater Sci: MaterElectro 2004, 15:125–33.
    [49] Machado FLA, Rezende SM. A theoretical model for the giant magnetoimpedance in ribbons ofamorphous soft-ferromagnetic alloys. J Appl Phys 1996, 79:6558–6560.
    [50] Atkinson D, Squire PT. Phenonemological model for magnetoimpedance in soft ferromagnet. JAppl Phys 1998, 83:6569–71.
    [51] Rao K.V., Humphrey F.B., Crosta-Kramer J.L.,“Very large magneto-impedance in amorphous softferromagnetic wires”, Journal of Applied Physics, 1994, 76, pp.6204-6208
    [52] Beach R.S., Berkowitz A.E., Sensitive field- and frequency-dependent impedance spectra ofamorphous FeSiB wire and ribbon, Journal of Applied Physics, 1994, 76:6209-6213
    [53] Chen DX, Munoz JL. Theoretical eddy-current permeability spectra of slabs with bar domains.IEEE Trans Magn 1997, 33:2229–44
    [54] Chen DX, Munoz JL, Hernando A, Vazquez M. Magnetoimpedance of metallic ferromagneticwires. Phys Rev B 1998, 57:10699–704.
    [55] Chen DX, Munoz JL. AC impedance and circular permeability of slab and cylinder. IEEE TransMagn 1999, 35:1906–23
    [56] Betancourt I, Valenzuela R, Vazquez M. Domain model for the magnetoimpedance of metallicferromagnetic wires. J Appl Phys 2003, 93:8110–2.
    [57] Yoon SS, Kim CG, Kim HC. The mechanism of magnetic relaxation in Co-based amorphousribbon determined by permeability spectroscopy. J Magn Magn Mater 1999, 203:235–7
    [58] Carara M, Baibich MN, Sommer RL. Magnetization dynamics as derived from magnetoimpedance measurements. J Appl Phys 2000, 88:331–5.
    [59] Buttino G, Cecchetti A, Poppi M. Domain wall relaxation frequency and magnetocrystallineanisotropy in Co- and Fe-based nanostructured alloys. J Magn Magn Mater 2004, 269:70–7.
    [60] Kim CG, Yoon SS, Yu SC. Decomposition of susceptibility spectra in a torsion-stressed Fe-basedamorphous wire. Appl Phys Lett 2000, 76:3463–5.
    [61] Yoon SS, Kim CG. Separation of reversible domain wall motion and magnetization rotationcomponents in susceptibility spectra of amorphous magnetic materials. Appl Phys Lett 2001,78:3280–2.
    [62] N A Buznikov, C G Kim, C O Kim, S S Yoon. A model for asymmetric giant megnetoimpedancein field-annealed amorphous ribbons. Appl Phys Lett. 2004, 85(16):3507-3509
    [63] Machado F.L.A., Martins C.S., Rezende S. M., Giant magnetoimpedance in the ferromagneticalloy CoFeSiB, Phys. Rev. B, 1995, 51, pp.3926-3929
    [64] Knobel M, Vazquez M, Kraus L. Giant magnetoimpedance. In: Buschow KH, editor. Handbook ofmagnetic materials, vol. 15. Amsterdam: Elsevier Science B.V., 2003. p. 1–69 [Chapter 5]
    [65] Yelon A, Menard D, Brittel M, Ciureanu P. Calculations of giant magnetoimpedance and offerromagnetic resonance response are rigorously equivalent. Appl Phys Lett 1996, 69:3084–5.
    [66] Brittel MR, Menard D, Melo LGC, Ciureanu P, Yelon A, Cochrane CW, et al. Magnetoimpedancemeasurements of ferromagnetic resonance and antiresonance. Appl Phys Lett 2000, 77:2737–9.
    [67] Vazquez M, Hernando A. A soft magnetic wire for sensor applications. J Phys D: Appl Phys 1996,29:939–49
    [68] Chiriac H, Ovari TA. Amorphous glass-covered magnetic wires: preparation, properties,applications. Prog Mater Sci 1996, 40:333–407
    [69] Vazquez M. Giant magnetoimpedance in soft magnetic‘‘wires’’. J Magn Magn Mater 2001,226–230:693–9
    [70] Knobel M, Pirota KR. Giant magnetoimpedance: concepts and recent progress. J Magn MagnMater 2002, 242-245:33–40
    [71] Vazquez M, Zhukov A, Aragoneses P, Aras J, Garcia JM, Marin P, et al. Magneto-impedance inglass coated CoMnSiB amorphous microwires. IEEE Trans Magn 1998, 34:724–8
    [72] Valenzuela R, Knobel M, Vazquez M, Hernando A. An alternative approach to giantmagnetoimpedance phenomena in amorphous ferromagnetic wires. J Appl Phys 1995, 78:5189–91
    [73] Freijo JJ, Hernando A, Vazquez M, Mendez A, Ramanan VR. Exchange biasing in ferromagneticamorphous wires: A controllable micromagnetic configuration. Appl Phys Lett 1999, 74:1305–7.
    [74] Aragoneses P, Zhukov A, Gonzalez J, Blanco JM, Dominguez L. Effect of AC driving current onmagnetoimpedance effect. Sens Acta A 2000, 81:86–90.
    [75] Chen AP, Britel MR, Zhukova V, Zhukov A, Dominguez L, Chizhik AB, et al. Influence of ACmagnetic field amplitude on the surface magnetoimpedance tensor in amorphous wire with helicalmagnetic anisotropy. IEEE Trans Magn 2004, 40:3368–77.
    [76] Qin W, Xu F, Peng K, Gao W, Du Y. Effect of the slight surface oxidation of ribbons on thedynamic magnetization of nanocrystalline soft magnetic ribbons. J Non-cryst Solid 2003,316:398–402.
    [77] Mandal K, Pan Mandal S, Vazquez M, Puerta S, Hernando A. Giant magnetoimpedance effect in apositive-magnetostrictive glass-coated amorphous microwire. Phys Rev B 2002, 65:064402:1–2:6.
    [78] Lachowicz HK, Garcia KL, Kuzminski M, Zhukov A, Vazquez M. Skin-effect and circumferentialpermeability in micro-wires utilized in GMI-sensors. Sens Acta A 2005, 119:384–9.
    [79] de Araujo AEP, Machado FLA, de Aguiar FM, Rezende SM. GMI measurements in ribbons ofCoFeSiB in a wide range of frequencies. J Magn Magn Mater 2001, 226–230:724–6
    [80] Zhukova V, Usov NA, Zhukov A, Gonzalez J. Length effect in a Co-rich amorphous ribbon. PhysRev B 2002, 65:134407:1–7:7
    [81] Vazquez V, Zhukov AP, Garcia KL, Pirota KR, Ruiz A, Martinez JL, et al. Temperaturedependence of magnetization reversal in magnetostrictive glass-coated amorphous microwires.Mater Sci Eng A 2004, 375–377:1145–8.
    [82] Vazquez V, Li YF, Chen DX. Influence of the sample length and profile of the magnetoimpedanceeffect in FeCrSiBCuNb ultrasoft magnetic film. J Appl Phys 2002, 91:6539–44
    [83] Ruiz J, Atienza JM, Elices M. Residual stresses in wires: influence of wire length. J Mater EngPerform 2003, 12:480–9.
    [84] Phan MH, Peng HX, Wisnom MR, Yu SC. Large enhancement of GMI effect in polymercomposites containing Co-based ferromagnetic microwires. J Magn Magn Mater 2007,316:e253–6.
    [85] Morikawa T, Nishibe Y, Yamadera H. Giant magnetoimpedance effect in layered thin films. IEEETrans Magn 1997, 33:4367–72
    [86] Morikawa T, Nishibe Y, Yamadera H, Nonomura Y, Takeuchi M, Sakata J, et al. Enhancement ofgiant magneto-impedance in layered film by insulator separation. IEEE Trans Magn 1996,32:4965–7.
    [87] P Allia, M Coisson, A Stantero, P Tiberto, F Vinai, G Ausanio and L Lanotte. Magneto-impedancemeasurements of amorphous FeCoNiZrCuNbB with improved magneto-elastic properties. Sensorsand Actuators A, 2001,91(1-2):199-202
    [88] Hernando, M. L. Sanchez, V. M. Prida, M. Tejedor, and M. Vazquez. Magnetoimpedance effect inamorphous and nanocrystalline ribbons. J. Appl. Phys, 2001, 90(9): 4783-4790.
    [89] K. Imamura, Kwang-Ho, K. Ishiyama, M. Inoue and K. I. Arai. Anisotropy control ofmagnetostrictive film patterns. IEEE Trans. Magn., 2001, 37(4):2025–2027
    [90] Rao KV, Humphrey FB, Costa-Kramer JL. Very large magneto-impedance in amorphous softferromagnetic wires. J Appl Phys 1994, 76:6204–8.
    [91] Sommer RL, Chien CL. Role of magnetic anisotropy in the magnetoimpedance effect inamorphous alloys. Appl Phys Lett 1995, 67:857–9.
    [92] Machado LA, da Silva BL, Rezende SM, Martins CS. Giant ac magnetoresistance in the softferromagnet Co70.4Fe4.6Si15B10. J Appl Phys 1994, 75:6563–5
    [93] Ku W, Ge F, Zhu J. Effect of magnetic field annealing on the giant magnetoimpedance inFeCuMoSiB ribbons. J Appl Phys 1997, 82:5050–3.
    [94] Favieres C., Sroca C., Sanchez M.C., etc.,“Giant magnetoimpedance in twisted amorphous CoPmultilayers electrodeposited onto Cu wires”, Journal of Magnetism and Magnetic Materials, 1999,196, pp.224-226
    [95] Garcia D., Kurlyandskaya G.V., Vazquez M.,“Influence of field annealing on the hystereticbehavior of the giant magneto-impedance effect of Cu wires covered with Ni 80 Fe 20 outershells”, Journal of Magnetism and Magnetic Materials, 1999, 203, pp.208-210
    [96] Komatsu K., Masuda S., Takemura Y., etc.,“A novel behavior of dynamic magnetization processin gold-plated CoFeSiB amorphous wires”, IEEE Transactions on Magnetics, 1997, 33,pp.3361-3363
    [97] Chiricac H., Ovari T.A., Kraus L.,“Creep-induced anisotropy in amorphous glass-covered wires”,Journal de Physique, 1998, 18, pp.195-198
    [98]胡季帆,周少雄,“玻璃包覆钴基非晶细丝的巨磁阻抗效应”,金属功能材料,1998, 6(1),pp.21-24
    [99] Pirota K.R., Kraus L., Chiriac H., Knobel M.,“Magnetic porperites and giant magnetoimpedancein a CoFeSiB glass-covered microwire”, Journal of Magnetism and Magnetic Materials, 2000, 221,pp. L243-L247
    [100] Senda M., Ishii O., Koshimoto Y., Thin-film magnetic sensor using high frequencymagneto-impedance (HFMI) effect, IEEE Transactions on Magnetics, 1994, 30, pp.4611-4613
    [101] Hika K., Panina L.V., Mohri K.,“Magneto-impedance in sandwich film for magnetic sensorheads”, IEEE Transactions on Magnetics, 1996, 32, pp.4594-4596
    [102] Antonov A., Gadetsky S.,“High-frequency giant magneto-impedance in multilayered magneticfilms”, Physica A, 1997, 241, pp.414-419
    [103] M. A. Rivero, M. Maicas, E. Lopez, C. Aroca, M. C. Sanchez and P. Sanchez, J. Magn. Magn.Mater., 2003,254:636-640
    [104] Y. Nishibe, H. Yamadera, N. Ohta, K. Tsukada and Y. Ohmura, IEEE Trans. Magn.,2003,39:571-574
    [105] Z. M. Zhou, Y. Zhou, Y. Cao. The investigation of giant magnetoimpedance effect in meanderNiFe/Cu/NiFe film. J. Magn. Magn. Mater. 2008,320(4):e967-e970
    [106] Valensuela R, Vazquez M, Hernando A. A position sensor based on magnetoimpedance. J ApplPhys 1996, 79:6549–91.
    [107] Hauser H, Steindl R, Hausleitner C, Pohl A, Nicolics J. Wirelessly interrogable magnetic fieldsensor utilizing giant magnetoimpedance effect and surface acoustic wave devices. IEEE InstrumMeas 2000, 49:648–52
    [108] I. Elshafiey, A. Mohra. GMR-and GMI-based systems for nondestructive evaluation of printedcircuit board. Journal of Circuits, Systems and Computers. 2007,16(6):847-857
    [109] Valensuela R, Vazquez M, Hernando A. A position sensor based on magnetoimpedance. J ApplPhys 1996, 79:6549–91
    [110] Uchiyawa T, Meydan T. GMI torque sensor module with FM transmitter. J Optoelectr Adv Mater2004, 6:689–94.
    [111] Shen LP, Mohri K, Uchiyawa T, Honkura Y. Sensitive acceleration sensor using amorphous wireSI element combined with CMOS IC multivibrator for environmental sensing. IEEE Trans Magn2000, 36:3667–9.
    [112] J. E. Zimmerman, Paul Thiene, and J. T. Harding. Design and Operation of Stable rf‐BiasedSuperconducting Point‐Contact Quantum Devices, and a Note on the Properties of PerfectlyClean Metal Contacts.J. Appl. Phys. 1970,41:1572-1580
    [113] J. E. Zimmerman. SQUID instruments and shielding for low-level magnetic measurements. JAppl Phys, 1977,48:702-710
    [114] Miller M,Prinz G,Cheng S,et al.Detection of a micron sized magnetic sphere using a ringshaped anisotropic magnetoresistance-based sensor.Appl Phys Lett. 2002,81:2211-2214
    [115] Edelstein R L,Tamanaha C R,Sheehan P E,et al.The BARC Biosensor Applied to the Detectionof Biological Warfare Agents.Biosensors & Bioelectronics, 2000,14:805-813
    [1] L. V. Panina and K. Mohri, High-frequency giant magneto-impedance in Co-rich amorphous wiresand films, J. Mag. Soc. Japan, 1995, 19: 265-268
    [2] L. V. Panina, K. Mohri, T. Uchiyama et al. Giant magneto-impedance in Co-rich amorphous wiresand films’, IEEE Trans. Magn. 1995, 31: 1249-1260
    [3] F. L. A. Machado, A. E. P. DE Araujo, A. A. Puca et al. Surface magnotoimpedance measurementsin soft-ferromagnetic materials’, Phys. Stat. Sol. 1999, a173: 135-144
    [4] T. Uchiyama, K. Mohri, M. Jimbo et al. Mageto-impedance effect of CoFeB amorpous sputteringfilms’, J. Magn. Soc. Jap. 1995, 19: 481-484
    [5] Jinqiang Yu, Yong Zhong, Bingchu Cai et al. Giant magneto-impedance effect in amorphousmagnetostrictive FeSiB thin films, J. Magn. Magn. Mater. 2000, 213: 32-36.
    [6] L. Kraus, Theory of giant magneto-impedance in the planar conductor with uniaxial magneticanisotropy, J. Magn. Magn. Mater. 1999, 195:764-778
    [7] L. Kraus, The theoretical limits of giant magneto-impedance, J. Magn. Magn. Mater. 1999,196-197: 354-356
    [8] Menard D., Britel M., Ciureanu P., Yelon A., Giant magnetoimpedance in a cylindrical magneticconductor, Journal of Applied Physics, 1998, 84(3):2805-2814
    [9] Lei Chen, Yong Zhou, Zhi-Min Zhou, Wen Ding. Effect of meander structure and line width onGMI effects in micro-patterned Co-based ribbons. Journal of Physics D: Applied Physics, 2009, 42:145005-145011
    [10] Lei Chen, Yong Zhou, Chong Lei, Zhi-Min Zhou, Wen Ding. Enhancement of magnetoimpedanceeffect in Co-based amorphous ribbon with a meander structure. Phys. Status Solidi A. 2010,207(2):448-451
    [11] Lei Chen, Yong Zhou, Chong Lei, Zhi-Min Zhou. GMI effect and voltage response in meandershape Co-based ribbon. Appl Phys A. 2010, 98:861-865
    [12] Lei Chen, Yong Zhou, Chong Lei, Zhi-Min Zhou. Giant magnetoimpedance effect in sputteredmonolayer NiFe film and meander NiFe Cu NiFe film. J. Magn. Magn. Mater. 2010, 322(19):2834-2839
    [13] Y. Zhou, J. Q. Yu, X. L. Zhao and B. C. Cai. Giant magnetoimpedance in layered FeSiB/Cu/FeSiBfilms. J. Appl. Phys. 2001,89(3):1816-1819
    [14] Gromov A, Korenivski V, Rao K V, van Dover R B, Mankiewich P M. A model for impedance ofplanar RF inductors based on magnetic films. IEEE Transactions on Magnetics.1998,34(4):1246-1248
    [15] Greenhouse H. M. Design of planar rectangular micro-electronic inductors. IEEE Transactions onParts, Hybrids and Packaging,1974,10(2):101-109
    [16] Snezana Jenei, Bart K.J. C. Nauwelaers,S. Decoutere. Physics-based closed-form Inductanceexpression for compact modeling of integrated spiral inductors. IEEE J. Solid-StateCircuits.2002,37(l):77-80
    [17] Zhaomin Zhu, Xiao Xia, Reinhard Streiter et al. Closed-form formula for frequency-dependent 3-Dinterconnect inductance. Microelectronic Engineering, 56, 2001:359-370
    [18] Goran Stojanovic, Ljiljana Zivanov and Mirjana Damnjanovic. Novel efficient methods forinductance calculation of meander inductor. International Journal for Computation andMathematics in Electrical and Electronic Engineering, 25(4), 2006: 916-928
    [19] Xiao SQ, Liu YH, Dai YY, Zhang L, Zhou SX, Liu GD. Giant magnetoimpedance effect insandwiched films. J Appl Phys 1999, 85:4127–4130
    [20] Panina LV, Mohri K. Magneto-impedance in multilayer films. Sens Acta A 2000, 81:71–77
    [21] Amalou F, Gijs MAM. Giant magnetoimpedance in trilayer structures of patterned magneticamorphous ribbons. Appl Phys Lett 2002, 81:1654–1656
    [22] Amalou F, Gijs MAM. Giant magnetoimpedance of amorphous ribbon/Cu/amorphous ribbontrilayer microstructures. J Appl Phys 2004, 95:1364–1371
    [23] Makhnovskiy DP, Fry N, Panina LV, Mapps J. Effect of induced anisotropy on magnetoimpedancecharacteristics in NiFe/Au/NiFe sandwich thin films. J Appl Phys 2004, 96:2150–2158
    [24] Mao XH, Zhou Y, Chen JA, Yu JQ, Cai BC. Giant magnetoimpedance and stress-impedance effectsin multilayered FeSiB/Cu/FeSiB films with a meander structure. J Mater Res 2003, 18:868–871
    [25] Li XD, Yuan WZ, Zhao ZJ, Ruan JZ, Yang XL. The GMI effect in nanocrystalline FeCuNbSibmultilayered films with a SiO2 outer layer. J Phys D: Appl Phys 2005, 38:1351–1354
    [26] M.Vazquez, Y E Li and D X Chen,“Influence of the sample length and profile of themagnetoimpedance effect in FeCrSiBCuNb ultrasoft magnetic wires”. J Appl Phys, 2002,91:6539-6542
    [1] Panina LV, Mohri K, Uchiyama T, Noda M. Giant magneto-impedance in Co-rich amorphous wiresand films. IEEE Trans Magn 1995, 31:1249-1260
    [2] M. Vazquez, Y.F. Li, D.X. Chen. Influence of the sample length and profile of themagnetoimpedanee effect in FeCrSiBCuNb ultra-soft magnetic wires. J Appl. Phys.2002,91:6539-6543
    [3] Makhnovskiy D P, Panina L V. Size effect on magneto-impedance in layered films. Sens Acta A2000,81:91-94
    [4] L.V. Panina, K. Mohri. Magneto-impedance in multilayer films. Sens. Actuators A. 2000, 81:71-74
    [5]钟志勇,张怀武,刘颖力,王豪才. Cu对NiFe/Cu/NiFe层状薄膜的巨磁阻抗效应影响的研究.真空科学与技术, 2000,5:200-205
    [6] Y. Zhou, J. Q. Yu, X. L. Zhao and B. C. Cai. Giant magnetoimpedance in layered FeSiB/Cu/FeSiBfilms. J. Appl. Phys. 2001,89(3):1816-1819
    [7] S. S. Yoon, S. C. Yu, G. H. Ryu and C. G. Kim. Effect of annealing on anisotropy field in FeZrBCuamorphous ribbons evaluated by giant magnetoimpedance. J. Appl. Phys. 1999, 85:5432-5435
    [8] Kittel C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles. Phys Rev.1946,70:965-971
    [9] Sommer RL, Chien CL. Role of magnetic anisotropy in the magnetoimpedance effect in amorphousalloys. Appl Phys Lett. 1995,67:857-859
    [1] M Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in application of magneticnanoparticles in biomedicine. J Phys D 42:224,001
    [2] Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T,Morales MP, Serna CJ (2009) Progress in the preparation of magneticnanoparticles for applications in biomedicine. J Phys D 42:224,002
    [3] Berry CC (2009) Progress in functionalization of magnetic nanoparticles forapplications in biomedicine. J Phys D 42: 224,003
    [4] Megens M, Prins M (2005) Magnetic biochips: a new option for sensitive diagnostics. J Magn MagnMater 293:702–708
    [5] Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms:requirements, characteristics and applications. Chem Soc Rev. 2010; 39(3): 1153-1182.
    [6] Oita I, Halewyck H, Thys B, Rombaut B, Vander Heyden Y, Mangelings D. Microfluidic inmacro-biomolecules analysis: macro inside in a nano world. Anal Bioanal Chem. 2010; 398(1):239-264.
    [7] Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer.IEEE Trans. Electron Devices. 1979; 26(12): 1880-1886.
    [8] A Manz, Y Miyahara, J Miura, Y Watanabe, H Miyagi, K Sato. Design of an open-tubular columnliquid chromatograph using silicon chip technology. Sensors and Actuators B: Chemical. 1990;1:249-255.
    [9] A Manza, N Grabera, H M Widmer. Miniaturized total chemical analysis systems: A novel concept forchemical sensing. Sensors and Actuators B: Chemical. 1990; 1: 244-248.
    [10] Ohno K, Tachikawa K, Manz A. Microfluidic: applications for analytical purposes in chemistry andbiochemistry. Electrophoresis. 2008; 29(22): 4443-4453.
    [11] Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digitalmicrofluidic LOC devices. Lab Chip. 2010; 10(4): 418-431.
    [12] Lesnikova I, Lidang M, Hamilton-Dutoit S, Koch J. Rapid, sensitive, type specific PCR detection ofthe E7 region of human papilloma virus type 16 and 18 from paraffin embedded sections of cervicalcarcinoma. Infect Agent Cancer. 2010; 5: 2.
    [13] Chen W, Zhang X, Molijn A, Jenkins D, Shi JF, Quint W, Schmidt JE, Wang P, Liu YL, Li LK, Shi H,Liu JH, Xie X, Niyazi M, Yang P, Wei LH, Li LY, Li J, Liu JF, Zhou Q, Hong Y, Li L, Li Q, Zhou HL,Bian ML, Chen J, Qiao YL, Smith JS. Human papilloma virus type-distribution in cervical cancer inChina: the importance of HPV 16 and 18. Cancer Causes Control. 2009; 20(9): 1705-1713.
    [14] Jacobs MV, de Roda Husman AM, van den Brule AJ, Snijders PJ, Meijer CJ, Walboomers JM.Group-specific differentiation between high- and low-risk human papilloma virus genotypes bygeneral primer-mediated PCR and two cocktails of oligonucleotide probes. J Clin Microbiol. 1995;33(4): 901-905.
    [15] Laib S, Krieg A, H?fliger P, Agorastos N. DNA-intercalation on pyrene modified surface coatings.Chem Commun (Camb). 2005; (44): 5566-5568.
    [16] van den Brule AJ, Pol R, Fransen-Daalmeijer N, Schouls LM, Meijer CJ, Snijders PJ. GP5+/6+ PCRfollowed by reverse line blot analysis enables rapid and high-throughput identification of humanpapilloma virus genotypes. J Clin Microbiol. 2002; 40(3): 779-787.
    [17] Ju Zhang, Yang Geng, Ding Li et al. Asymmetric GP5+/6+ PCR and hybridization with fluorescencepolarization assay of 15 human papilloma virus genotypes in clinical samples. J Clin Virol. 2009;44(2): 106-110.
    [18] Boyle, P., Levin, B., 2008. World cancer report 2008. IARC Press Lyon, France.
    [19] Hallissey, M., Allum, W., Jewkes, A., Ellis, D., Fielding, J., 1990. Brit Med J 301(6751), 513
    [20] Zhang, X., Guo, Q., Cui, D., 2009. Sensors 9(2), 1033–1053
    [21] Li, Z., Huang, P., He, R., Lin, J., Yang, S., Zhang, X., Ren, Q., Cui, D.,2010a. Mater Lett 64(3), 375-378.
    [22] Chouly, C., Pouliquen, D., Lucet, I., Jeune, J., Jallet, P., 1996. J Microencapsul 13(3), 245-255
    [23] Wilhelm, C., Billotey, C., Roger, J., Pons, J., Bacri, J., Gazeau, F., 2003.Biomaterials 24(6), 1001-1011.
    [24] Folkman J, 1995. Nat Med 1(1), 27-30
    [25] Carmeliet P, Jain R, 2000. Nature 407(6801), 249-257
    [26] Kawashima, A., Tsugawa, S., Boku, A., Kobayashi, M., Minamoto, T., Nakanishi, I., Oda, Y., 2003.Pathology-Research and Practice 199(2), 57-64.
    [27] Kai Temming, Raymond M. Schiffelers, Grietje Molema and Robbert J. Kok. RGD-based strategiesfor selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug ResistanceUpdates. 2005,8:381–402
    [28] Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecularconjugates for imaging and therapy of cancers. Anticancer Agents Med Chem, 2007,7(5):552-558
    [29] Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D. Mol Pharmaceut, 2009,7(1):94-104
    [30] Cao Q, Li Z-B, Chen K, Wu Z, He L, Neamati N, Chen X.. Evaluation of Biodistribution andAnti-tumor Effect of a Dimeric RGD Peptide-paclitaxel Conjugate in Mice with Breast Cancer. Eur JNucl Med Mol Imaging. 2008;35(8):1489-1498.
    [31] Chen K, Xie J, Chen X. RGD-Human Serum Albumin Conjugates as Efficient Targeting Probes forTumor Targeting. 2009. Mol Imaging . 2009;8(2):65-73.
    [32] Zhang, C., Jugold, M., Woenne, E., Lammers, T., Morgenstern, B., Mueller, M., Zentgraf, H., Bock,M., Eisenhut, M., Semmler, W., 2007. Cancer Res 67(4), 1555.
    [33] Li Z, Huang P., Lin J, He R, Liu B, Zhang X, Yang S, Xi P, Ren Q, 2010 J Nanosci Nanotechno 10(8),4859-4867.
    [34] Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ, 1998. Biosen. Bioelectron13:731–739
    [35] A. Kumar, S. Mohapatra, V. F. Miyar, A. Cerdeira, J. A. Garcia, H. Srikanth, J. Gass and G. V.Kurlyandskaya, Appl. Phys. Lett. 91, 143902(2007)
    [36] F. Blanc-Béguina, S. Nabilyb, J. Gieraltowskib, A. Turzoc, S. Querellouc and P.Y. Salaunc, Journal ofMagnetism and Magnetic Materials. 312, 192(2009)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700