用户名: 密码: 验证码:
异面腔四频差动激光陀螺的零偏特性与电子系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异面腔四频差动激光陀螺(FMDLG)具有比例因子精度高、不存在机械噪声、信号延迟小等优点,在工业和国防领域具有重要的应用。为了提高异面腔FMDLG的性能,对其零偏的物理机制和变化特性进行了理论和实验研究,并从电子系统设计的角度讨论了减小零漂的方法,主要内容如下:
     分析了环形激光中的非互易效应对异面腔FMDLG输出差频的影响,将总零偏分解为7项子零偏的贡献之和,分别称为主零偏、偏振差损零偏、方向差损零偏、磁圆二向色性差损零偏、散射零偏、色散零偏、朗缪尔流零偏,并讨论了各项子零偏的变化特性,为课题研究提供了理论依据。
     设计了一套灵活的实验系统,包括数字信号处理、模数转换、数模转换、温度测量、压电陶瓷驱动、光电转换和放大、磁场发生、高压稳流电源、射频放大和幅度检波等电路模块。在此基础上,实现了基于电子信号处理的读出系统,并采用了分辨率增强技术,使FMDLG的分辨率提高到0.001(″)以上。利用该系统,只需设置各电路模块的连线,然后编写相应的代码即可实现扫模、计数、程长控制等功能,为课题研究奠定了实验基础。
     结合理论分析,通过改变纵模阶数、失谐频率(工作点)、工作方式、磁场、放电电流和温度,对零偏的主要特性进行了实验研究。结果表明:由于不同阶纵模对应的光路稍有差别,导致零偏有0.01 Hz数量级的差异,因此应使FMDLG工作在同一阶纵模上;在增益介质上施加特定的纵向磁场,可使零偏对工作点变化的敏感性大大降低;通过使FMDLG工作在最佳工作点上可基本消除零偏对磁场的敏感性;磁圆二向色性差损零偏随温度变化较大,是实验用FMDLG温度灵敏度的主要来源。
     讨论了光强差稳频的缺点,通过调整左、右旋光强的比例系数改变工作点,证明工作点对零偏、开机漂移和温度灵敏度系数都有数量级的影响。由于光强差稳频使用的两路信号在光电转换和放大过程中很难做到完全一致,导致工作点与合光和稳频电路的参量有关。利用顺(逆)时针拍频幅度存在极值的原理设计了小抖动稳频系统,稳频精度为1.9×10~(-10),且电路增益和偏置的变化不会影响工作点,实现了抗干扰的稳频。在程长控制程序中增加了智能选模功能,使异面腔FMDLG在任何温度下启动都工作在确定的最优纵模上,不仅消除了开机时初始纵模选择随机性导致的零漂,还可避免大温度范围工作时出现跳模,
     理论分析了仅根据光强信号进行稳频的缺点,指出由于Ne双同位素合成增益曲线的不对称,即使光电转换过程完全理想,光强差稳频或小抖动稳频所确定的工作点与最佳工作点一致的可能性也极小,因此无法克服增益、腔损、磁场等参量变化导致的零漂。为了解决这个问题,设计了广义程长控制系统,使FMDLG工作在最佳工作点和色散平衡状态下。对比实验表明,将异面腔FMDLG控制在左、右旋光强相等的工作点时,磁灵敏度为62.63(°)/(h·mT),控制在最佳工作点时,磁灵敏度减小到0.88(°)/(h·mT),因此广义程长控制系统可有效降低磁灵敏度。
     通过温度循环实验,利用逐步回归法建立了温度补偿的数学模型,不仅可补偿外界温度变化导致的零漂,而且对开机过程中自发热导致的零漂也有良好的补偿效果。温度补偿后的结果为:在(-40~60)°C范围内,开机75 min的零偏稳定性为0.005(°)/h,2 h间隔的零偏重复性为0.005(°)/h,静态补偿零偏极差为0.03(°)/h,均方差为0.009(°)/h,温度变化率1°C/min时零偏极差为0.115(°)/h,均方差为0.015(°)/h,温度以(1~5)°C/min的变化率随机变化时零偏极差为0.153(°)/h,均方差为0.028(°)/h,随机游走为3.9×10~(-4)(°)/h~(1/2)。
     测试结果表明,在温度变化缓慢的实验室条件下异面腔FMDLG已基本达到了惯性级水平,但为了在剧烈变温、强磁场干扰、振动和冲击等恶劣条件下实现惯性级精度,还需要做很多工作。
The nonplanar four-mode differential laser gyro (FMDLG) has important potential applications in the field of industry and national defense due to its advantages such as excellent scale factor precision, absence of mechanical noise and small data delay. In order to improve the performance of nonplanar FMDLG, physical mechanisms and characterics of its bias are investigated both theorctially and experimentally. Moreover, the methods to reduce zero drift in aspect of electronic system design are discussed.
     The influence of nonreciprocal effects in ring lasers on the difference frequency of nonplanar FMDLG is analyzed. It is shown that the total bias can be resolved into seven sub-biases, which are called main bias, differential polarization loss bias, differential direction loss bias, magnetic circular dichroism loss bias, scattering bias, Verdet constant dispersion bias and Langmuir flow bias respectively. In addition, the characteristics of each sub-bias are discussed.
     A convient experimental system is designed, including electronic circuit modules such as digital signal processing, analog to digital converter, digital to analog converter, temperature mesasurement, piezoelectric transducer driver, magnetic field generator, current stabilized high voltage power supply, radio frequency amplifier and amplitude detector. With the experimental system, an readout system based on electronic signal processing is realized. Furthermore, the resolution is improved to better than 0.001(″) with resolution enhancement technique. Through configuring the circuit modules accompanied with corresponding codes, the experimental system can realize functions such as mode scanning, countering and path length control.
     Based on theoretical analysis, main characteristics of the bias are investigated through variation of longtitudal mode order, detuning frequency (operating point), operating style, magnetic field, discharge current and temperature. Minor difference of optical circuit among different orders of longitudal mode can lead to bias difference on the order of 0.01 Hz. Therefore, it is desirable that the FMDLG maintains the same longitudal mode throughout its mission. Bias sensitivity to operating point variation will be reduced greatly when a longitudinal magnetic field is applied to the gain media with specific amount. Bias sensitivity to magnetic field variation can be eliminated when the FMDLG is operated at the optimal operating point. Magnetic circular dichroism loss bias varies greatly with temperature, which is the major cuase of bias temperature sensitivity in the experimental FMDLG..
     Disadvantages of the path length control system using the difference between the left and right circularly polarized intensities are disscussed. Experimental results indicate that operating point affect bias, turn-on drift and temperature sensitivity greatly. When the difference between the left and right circularly polarized intensities is used to control path length, operating point will be related to parameters of beam combining and path length control circuit due to asymmetry in the process of opto-electronic convertion and amplification. A path length control system with maximizing clockwise (or anticlockwise) beat wave amplitude is designed, which obtains a frequency stability of 1.9×10-10. Moreover, it is immune to variations of gain and offset in the electronic circuit. In order to eliminate randomness in acquiring initial longitudinal mode at power up and mode jump at large range of operating temperature, smart modes acquisition program is added into the path length control system which makes the FMDLG maintain the same mode all the while.
     Shortcomings of path length control systems only using beam intensities are analyzed theoretically. Because of the asymmetry of gain curve composed of two isotropes, even with ideal opto-electronic conversion process, it is nearly impossible for the operating points determined by these path length control systems to be consistent with the optimal one. As a result, zero drift caused by variations of parameters such as gain curve, cavity loss and magnetic field can not be cancelled out. In order to solve this problem, a generalized path length control system is designed to make sure the FMDLG working with dispersion equalized and at the optimal operating point. Comparative exeripment showed that the magnetic sensitivity of one FMDLG is 62.63(°)/(h·mT) when controlled with equal intensity, while the magnetic sensitivity is only 0.88(°)/(h·mT) when controlled at the optimal operating point.
     With temperature cycling experiments, thermal compensation model is established by using stepwise regression method. Zero drift caused by both environmental temperature variation and self heating can be compenstated effectively. Test results of one experimental FMDLG give the following data: at (-40~60)°C, bias stability within 75 min after turn-on is 0.005(°)/h; bias repeatability is 0.005(°)/h with 2 hour off time; max bias error (MBE) and root mean square (RMS) are 0.03(°)/h and 0.009(°)/h respectively in static temperature compensation; MBE and RMS are 0.115(°)/h and 0.015(°)/h respectively with temperature varying at 1oC/min; MBE and RMS are 0.153(°)/h and 0.028(°)/h respectively with temperature varying randomly at (1~5)oC/min; random walk is 3.9×10~(-4)(°)/h~(-1/2).
     The nonplanar FMDLG has obtained inertial navigation capability in benign environment with slow temperature variation. However, more work should be done so as to realize inertial navigation capability in severe environment such as violent temperature variation, intense magnetic field disturbance, vibration and shock.
引文
[1] Volk C H, Gillespie S C, Mark J G et al. Multioscillator Ring Laser Gyroscopes and Their Applications[EB/OL]. http://www.es.northropgrumman.com/by_division/navigationsystems/whitepapers/assets/Multioscillator_Ring_Laser_Gyr.pdf.
    [2] Volk C H, Canfield J M, Gillespie St C. Zero-Lock Laser GyroTM[C]// AIAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE, 1991: 1~4.
    [3] Martin G J, Gillespie S C, Volk C H. Small ZLG? triax technology[C]//AIAA Guidance Navigation and Control Conference, San Diego, CA, 1996: 1~9.
    [4] Volk C, Gillespie S, Patel D. Application of the ZLG to strategic missions[C]// ION AM 93, 1993: 543~550.
    [5] Fernandez M, Ebner B, Dahlen N. Zero-Lock? Laser Gyro[C]// Proceedings of the Annual Rocky Mountain Guidance and Control Conference, 1989: 235~241.
    [6] Kondo N. Application of Zero-Lock Laser Gyro Technology to High Accuracy Stellar-Inertial Systems[C] // ION NTM 92,1992: 253~262.
    [7] Martin G J, Gillespie S C, Volk C H. The litton 11 cm triaxial zero-lock gyro[C]// IEEE PLANS, 1996: 49~55.
    [8] Inertial Sensor Assembly[EB/OL]. http://www.nsd.es.northropgrumman.com/Html/Inertial-Sensor/Characteristics.htm.
    [9] Longstaffe I. LN-100 lightweight next-generation INS[C]// AIAA Guidance, Navigation and Control Conference, 1992.
    [10]丁衡高.海陆空天显神威—惯性技术纵横谈[M].北京:清华大学出版社, 2000.
    [11]丁衡高.中文版序[A]. HervéC Lefèvre(著).张桂才,王巍(译).光纤陀螺仪[M].北京:国防工业出版社, 2002.
    [12]许国祯.惯性技术手册[M].北京:宇航出版社, 1995.
    [13]刘俊,石云波,李杰.微惯性技术[M].北京:电子工业出版社, 2005:1~28.
    [14] King A D. Inertial navigation-forty years of evolution[J]. GEC Review, 13(3), 1998: 140~149.
    [15] Sanders V E, Madan S, Chow W W et al. Properties of a Zeeman Multioscillator Ring Laser Gyro[C]// Proceeding of the IEEE National Aerospace and Electronics Conference, 1979, (1): 2~6
    [16] Azarova V, Golyaev Y, Dmitriev V et al.. Zeeman Laser Gyro Sensors[C]// ION AM, 1996: 697~703.
    [17] Morrison R F, Strang C B. A missile laser gyro rate sensor[C]// The American institute of aeronautics and astronautics guidance and control conference, SanDiego, CA, 1976: 1~5.
    [18] Macek W M. Ring laser magnetic bias mirror compensated for non-reciprocal loss[P]. US Patent: 3851973, 1974-12-03.
    [19] Mcclure R E. Ring laser frequency biasing mechanism[P]. US Patent: 3927946, 1975-12-23.
    [20] Andrews D A, King T A. Sources of error and noise in a magnetic mirror gyro [J]. IEEE Journal of quantum electronics, 1996, 32(3): 543~548.
    [21] Grant D C, Madan S, Sanders V E et al. Litton Ring Laser Gyro Update[C]// Proceedings of the IEEE National Aerospace and Electronics Conference, 1980: 73~79.
    [22] Chow W W, Hambenne J B, Hutchings T J et al. Multioscillator laser gyros[J]. IEEE Journal of Quantum Electronics, 1980, QE16(9): 918~936.
    [23] Dorschner T A, Smith I W. Clear-Path Four-Frequency Resonators for Ring Laser Gyros[J]. Journal of Optical Society of American, 1978, 68: 1381.
    [24] Knipe C, Andrews D A, King T A. Mode interactions in four-frequency degeneracy-lifted ring lasers[J]. Journal of Modern Optics, 1988, 35(3): 441~448.
    [25] Dickinson M R, King T A. Polarization frequency splitting in non-planar ring laser resonators[J]. Journal of Modern Optics, 1987, 34(8): 1045~1055.
    [26] Andrews D A, King T A. Investigation of magneto-optic mirrors for ring laser gyro applications[J]. Journal of Modern Optics, 1994, 41(10): 2007~2018.
    [27] Bresman J, Cook H and Lysobey D. Differential laser gyro development[J]. Journal of the Institute of Navigation, 1977, 24(2): 153~159.
    [28] LN-100G Inertial Navigation System with Embedded GPS[EB/OL]. http://www.es.northropgrumman.com/solutions/ln100g/index.html.
    [29] Nothrop Grumann inc. LN-100LG launch and reentry gps inertial navigation system[EB/OL]. http://www.es.northropgrumman.com/solutions/ln100lg/index.html.
    [30] Northrop Grumman Delivers Key Hardware to Lockheed Martin for New Missile-Warning Spacecraft[EB/OL]. http://www.irconnect.com/noc/pages/news_printer.html?d=88675&print=1.
    [31] Northrop Grumman Delivers First Production Stellar Navigation System to U.S. Air Force[EB/OL]. http://www.spacedaily.com/reports/Northrop_Grumman_Delivers_First_Production_Stellar_Navigation_System_To_US_Air_Force_999.html.
    [32]许国祯.列入美国军用关键技术清单中的惯性技术[J].导航与制导, 2004, 3(1): 74~79.
    [33]国防科技大学光电工程系. 110型四频差动激光陀螺技术及型号应用[R].内部报告, 2009.11.
    [34] Aronowitz F. Fundamentals of the ring laser gyro[C]//Loukianov D, Rodloff R, Sorg H et al. (eds.). Optical Gyros and Their Application. RTO AGARDograph 339, 1999: 3.1~3.44.
    [35]陈永冰,钟斌.惯性导航原理[M].北京:国防工业出版社, 2007: 9-12.
    [36] Titterton D H., Weston J L. Strapdown Inertial Navigation Technology(2nd Edition)[M]. Paul Zarchan, Progress in Astronautics and Aeronautics, 2004.
    [37] Heer C V. History of the laser gyro[C]// SPIE 487, 1984: 2~12.
    [38] Wilkinson J R. Ring lasers[J]. Prog. Quant. Electr. 1987, 11: 1~103.
    [39] Post E J. Sagnac effect[J]. Reviews of Modern Physics, 1967, 39(2): 475~493.
    [40] Stedman G E. Ring-laser tests of fundamental physics and geophysics[J]. Rep. Prog. Phys. 1997, 60: 615~688.
    [41] Aronowitz F. The laser gyro[C]// Ross M (eds.). Laser Applications. New York: Academic, 1971: 113 ~200.
    [42] Aronowitz F, Collins R J. Mode coupling due to backscattering in a He-Ne tranveling-wave ring laser[J]. Applied Physics Letters, 1966, 9(1): 55~58.
    [43] Aronowitz F. Loss lock-in in the ring laser[J]. Journal of Applied Physcis, 1970, 41(6): 2453~2456
    [44] Smith A D. Distortion-induced magnetic field bias in the square ring laser[C]// SPIE 412, 1983: 229~233.
    [45] Fidric B G. Ring laser gyro frame design resistant to thermal gradient effects[P]. US Patent: 4867567, 1989-09-19.
    [46]张鹏飞.二频机抖激光陀螺捷联惯导系统及其实时温度补偿方法的研究[D].长沙:国防科技大学, 2006.
    [47] Scully M O, Sanders V, Sargent M III. Novel multioscillator approach to the problem of locking in two-mode ring-laser gyros[J]. Optics Letters, 1978, 3(2): 43~45
    [48] Staats R C. Laser gyro dither circuit[P]. US Patent: 3612690, 1971-10-12.
    [49] Cocclli J D, Lawson J R. Gas ring laser using oscillating radiation scattering sources within the laser cavity[P]. US Patent 3533014, 1970.
    [50] Rowe C H, Schreiber U K, Cooper S J. Design and Operation of a Very Large Ring Laser Gyroscope[J]. Applied Optics, 1999, 38(12): 2516~2523.
    [51] Killpatrick J E. Laser angular rate sensor[P]. US Patent 3373650, 1968-3-19.
    [52] Killpatrick J E. Random bias for laser angular rate sensor[P]. US Patent 3467472, 1969-9-16.
    [53]汤建勋.机械抖动激光陀螺抖动偏频系统的研究与设计[D].长沙:国防科技大学, 2000.
    [54] Podgorski T J. Control apparatus[P]. US Patent: 4152071, 1979-05-01.
    [55] Killpatrick J E, Berndt D F. Ring laser gyro bias drift improvement method and apparatus[P]. US Patent: 5438410, 1995-08-01.
    [56] Hutchings T J, Babcock G D. Ring laser[P]. US Patent: 4422762, 1983-12-27.
    [57] Alexander Dovbeshko, Victor Kanchenko, Michail Pavlovski. Laser gyroscope with system of minimization and stabilization of the counter waves’connection[C]// SPIE 2729: 197~202.
    [58] Rüdiger Rodloff. A laser gyro with optimized resonator geometry[J]. IEEE Journal of quantum electronics, 1987, QE23(4): 438~445.
    [59] Upton R W, Jr., Miller W G. The next frontier for strapdown RLG inertial system:precision navigation[C]// IEEE PLANS, 1990: 537~542.
    [60] GG1342[EB/OL]. http://www.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/GG1342.pdf.
    [61] Bowen M F. Ultimate Ocean Depth Packaging for a Digital Ring Laser Gyroscope[R]. ADA354896.
    [62] GG1320AN Digital Laser Gyro[EB/OL]. http://www51.honeywell.com/aero/common/documents/myarospacecatalog-documents/Missiles-Munitions/GG1320AN_Digital_laser_Gyro.pdf.
    [63] Vanderwerf K, Wefald Knut. Fault tolerant inertial navigation system[C]// AIAA-1988-4024.
    [64] Killpatrick J E, Berndt D. Modular laser gyro[P]. US Patent 6208414B1, 2001-03-27.
    [65] Hadfield M, Hasselbring A. Update 90 - a progress report on evaluation and flight testing of the small common RLG INS[C]// AIAA Guidance, Navigation and Control Conference, 1990: 1~9.
    [66] Oelschlaeger J M, Thielman L O. GG1308 ring laser gyro inertial measurement systems - Honeywells low-cost solution for tactical applications[C]// IEEE PLANS, 1990: 528~536.
    [67] Dovbeshko A A, Kaminka I V. Self-adapting laser gyroscopes[C]// Symposium Gyro Technology, 2001: 7.0~7.11.
    [68] Majure R G. Demonstration of a ring laser gyro system for pointing and stabilization applications[C]// IEEE PLANS, 1990 : 219~225.
    [69]王宇.机抖激光陀螺捷联惯导系统的初步探索[D].长沙:国防科技大学, 2005.
    [70]晁志超.二频机械抖动激光陀螺信号处理算法的研究[D].长沙:国防科技大学, 2006.
    [71] Bakin Y V, Ziouzev G N, Lioudomirski M B. Laser gyros with total reflection prisms[C]// Loukianov D, Rodloff R, Sorg H et al. (eds.). Optical Gyros and Their Application. RTO AGARDograph 339, 1999: 6.1~6.29.
    [72]郭美凤.激光陀螺读出系统与误差校准技术实验研究[D].北京:清华大学, 1998.
    [73] Loukianov D P, Filatov Yu V, Kuryatov V N et al. The history of laser gyro development in the Former Sovied Union [C]// ION 57th AM, 2001: 225~237
    [74]战德军.速率偏频激光陀螺特性及相关技术研究[D].长沙:国防科技大学, 2009.
    [75]龙兴武.掺杂YIG单晶薄膜LPE生长及磁镜偏频激光陀螺[D].长沙:国防科技大学, 1993.
    [76] Abdale J, Benischek V, Macek W. History of ring laser gyro development at Lockheed Martin (formerly Sperry)[C]// ION AM, 2001: 176~187.
    [77] Richard Eichner, Robert Hansen, Richard Ouellette. A Ring Laser Gyro Inertial Measurement Unit Designed For System Integration Flexibility[C]// ION NTM 91, 1991.
    [78] Azarova V V, Golyaev Yu D, Dmitriev V G. Ring gas lasers with magneto-optical control for laser gyroscopy[J]. Quantum Electronics, 2000, 30(2): 96~104.
    [79] Azarova V V, Golyaev Yu D, Dmitriev V G et al. Zeeman laser gyroscopes[C]// Loukianov D, Rodloff R, Sorg H et al. (eds.). Optical Gyros and Their Application. RTO AGARDograph 339, 1999: 5.1~5.28
    [80] Loukianov D P. Laser and fiber-optic gyros: the status and tendencies of development[C]// RTO SCI International Conference on Integrated Navigation Systems, 1999: 1.1~1.18.
    [81] Macek W M. Compensated frequency biasing system for ring laser[P]. US Patent: 3649931, 1972-03-14.
    [82]龙兴武.激光陀螺[R].内部报告. 2006.
    [83]郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社, 1996.
    [84] Cox R, Wei S. Advances in the state of the art for AUV inertial sensors and navigation systems[C]// IEEE Proceedings of the 1994 Symposium on AUV, 1994: 360~369.
    [85] Northrop Grumman Electronic Systems—Sperry Marine. MK 39 MOD 3A Ring Laser Ship’s Inertial Navigation System[EB/OL]. http:// www.es.northropgrumman.com/solutions/mk39/assets/mk39.pdf
    [86] Hibbard R, Wylie B, Levison E. Speery Marine MK-49, the world’s best ring laser ship’s inertial navigation system[C]// JSDE Proceedings, Orlando, FL, 1996.
    [87] Levison E, Horst J, Willcocks M. The next generation marine inertial navigator is here now[C]// IEEE PLANS, 1994: 121~127.
    [88]龙兴武,汤建勋,王宇,等.船用激光陀螺惯导系统的研制[C]//中国惯性技术学会第六届学术年会论文集,中国,宁波, 2008: 15~23.
    [89] Schr?der W, Dahlmann H, Huber B et al.. Telescope pointing and tracking with optical gyros[C]// SPIE 1585, 1991: 98~114.
    [90]金洵.高精度激光陀螺测角仪测控系统的研制[D].长沙:国防科技大学, 2009.
    [91] Wong R V C, Schwartz K P. Development and field testing of a rlg strapdoown inertial survey system[C]// IEEE PLANS, 1988: 480~487.
    [92] De Lang H. Eigenstates of Polarization in Lasers[J]. Phillips Res. Repts, 1964, (19): 429~440.
    [93] Yntema G B, Grant D C, Warner R T. Differential laser gyro system[P]. US Patent: 3862803, 1975-01-28.
    [94] Andringa K. Laser gyroscope[P]. US Patent: 3741657, 1973-06-26.
    [95] Savage P G. Advances in strapdown sensors[R]. ADP003620, 1984: 2.14~2.14.
    [96] Statz H, Dorschner T A, Holtz M et al. The Multioscillator ring laser gyroscope[C]// M. L. Stitch, M. Bass (eds.). Laser handbook, (4). Amsterdam: North-Holland, 1985: 230~333.
    [97] Smith I, Dorschner T. Electromagnetic wave ring resonator[P]. US Patent: 4110045, 1978-08-29.
    [98] Dorschner T A. Nonplanar rings for laser gyroscopes[C]// SPIE 487:192~202.
    [99] Smith I R, Dorschner T A. Biassing the Raytheon four frequency ring laser gyroscope [C]// SPIE 157: 21~29.
    [100] Martin G J. Ring laser gyro principles and techniques[R]. N90-29532.
    [101] Murphy M, Armacost S, Barnes R et al.. Ballistic missile guidance system test in an aircraft pod[C]// AIAA 2000-4387.
    [102] Martin G J. Mulioscillator ring laser gyro using compensated optical wedge [P]. US Patent: 5907402, 1999-05-25.
    [103] Ferrar C M. Dispersion compensated laser gyro[P]. US Patent 3973851, 1976-08-10.
    [104] Hendow S T, Martin G J. Apparatus and method for detecting rotation rate and direction of rotation and providing cavity length control in multioscillator ring laser gyroscopes[P]. US Patent: 4836675, 1989-06-06.
    [105] Mitchell R A., Hall D B, Shafer K W. Ring laser gyroscope output optics detection system[P]. US Patent: 5116132, 1992-05-26.
    [106] Mark J G, Tazartes D A, Hahn T W. Multioscillator ring laser gyroscope local oscillator-based output optics detection system[P]. US Patent: 5189487, 1993-02-23.
    [107] Mark J G, Tazartes D A, Ebner R E et al. Ring laser gyroscope enhanced resolution system[P]. US Patent: 5485273, 1996-01-16.
    [108] Mark J G, Tazartes D A. A resolution enhancement technique for laser gyros[EB/OL]. http://www.es.northropgrumman.com/by_division/navigationsystems/whitepapers/assets/Resolution_Enhancement_Techniq.pdf.
    [109] Northrop Grumman Selected for U.S. Air Force CNS/ATM I Catalog[EB/OL]. http://www.irconnect.com/noc/press/pages/news_releases.html?d=95632.
    [110] Litton receives $22 million contract to develop and supply gyro reference assemblies for new U.S. Air Force missile warning satellites[EB/OL]. http://www.allbusiness.com/government/government-bodies-offices-government/6975110-1.html.
    [111] Lennon C, Richmond T. LN100S-common optical payload and bus gyro reference assembly[C]. Guidance and Control , 2001 (107): 425~440.
    [112]高伯龙.激光陀螺的现状与展望[J].国防科技大学学报, 1979(1):1~18.
    [113]姜亚南.环形激光陀螺[M].北京:清华大学出版社, 1985.
    [114] Smith I W, Dorschner T A. Biasing the raytheon four-freuqnency ring laser gyroscope[C]// SPIE 157, 1978: 21~29.
    [115] Andrews D A, King T A. A multi-oscillator ring laser with Zeeman bias[J]. Journal of Modern Optics, 1994, 41(10): 2019~2032.
    [116] Krebs J J, Maisch W G, Prinz G A et al. Application of magneto-optics in ring laser gyroscopes[J]. IEEE Transactions on magnetics, 1980, MAG16(5): 1179~1184.
    [117] Smith I W. Optical resonator axis stability and instability from first principles[C] // SPIE 487, 1984: 203~206.
    [118] Nilsson A C. Eigenpolarization theory and experimental linewidth study of monolithic nonplanar ring oscillators[D]. Standford University, 1989.
    [119] Chow W W, Banacloche J G, Pedrotti L M et al. The ring laser gyro[J]. Reviews of Modern Physics, 1985, 57(1): 61~104.
    [120]杨在富,袁晓东,张斌等.四频差动激光陀螺中差分损耗的探讨[J].中国激光, 1999, 26(1): 39~42.
    [121]孙刚.四频差动激光陀螺水晶片安装方式的优化设计[D].长沙:国防科技大学, 2005.
    [122]周炳琨,高以智,陈倜嵘,等.激光原理(第四版)[M].北京:国防工业出版社, 2000.
    [123] Sinclair D C, Bell W E. Gas Laser Technology[M].《气体激光翻译组》译,北京:国防工业出版社, 1975.
    [124]汪之国,王飞.用Matlab计算气体环形激光理论中的兰姆系数[J].光学与光电技术, 2007, 5(5S): 100~102.
    [125] Bilger H R, Zavodny A T. Fresnel drag in a ring laser: measurement of thedispersive term[J]. Physical Review A, 1972, 5(2): 591~599.
    [126] Fenster P, Kahn W K. An optical technique for measurement of gas flow profiles utilizing a ring laser[J]. Applied Optics, 1968, 7(12): 2383~2391.
    [127] Zhang Junjiang, Zhang Shulian. Measurement of magnetic field by a ring laser [J]. Applied Optics, 1992, 31(30): 6459~6462.
    [128] Kravtsov N V, Kravtsov N N. Nonreciprocal effects in ring lasers[J]. Quantum Electronics, 1999, 29(5): 378~399.
    [129]陈林峰,韩宗虎,陈勇,等.激光陀螺磁灵敏度特性研究[J].光子学报, 2006, 35(7): 974~976.
    [130]杨在富,袁晓东,张斌,等.异面腔激光陀螺中差分损耗的探讨[J].激光技术, 1999, 23(3): 138~141.
    [131] Zhavoronkova T V, Savel’ev I I, Khromykh A M. Theory of nonreciprocal effects in a ring laser subjected to a transverse magnetic field[J]. Soviet Journal of Quantum Electronics, 1983, 13(12): 1550~1555.
    [132] Chanin L M. Gaseous Electronics[M]. New York: Academic Press, 1978.
    [133]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社, 1996.
    [134]丘军林.气体电子学[M].武汉:华中理工大学出版社, 1999.
    [135]姜亚南.环激光中Langmiur流效应的理论分析[J].清华大学学报, 1980, 20(4): 1~13.
    [136]高伯龙,姜亚南.朗缪尔流动的零漂效应[J].国防科技大学学报, 1980, (3): 33~50.
    [137] Radina T V, Stankevich A F. Mechanism of the appearance of a diffractive nonreciprocity in a ring gas laser[J]. Quantum Electronics, 2000, 30(2): 128~134.
    [138] Pelyukhova E B, Fradkin E E. The mechanism of the diffractive nonreciprocity of cou nterpropagating waves in a ring gas laser[J]. Quantum Electronics, 2000, 30(2): 135~140.
    [139] Radina T V. Diffraction phenomena in ring gas lasers[J]. Quantum Electronics, 2007, 37(6): 503~521.
    [140] Aronowitz F.Theory and Operation of a Traveling-Wave Laser[D]. New York University, 1969.
    [141] Elson J M. Theory of light scattering from a rough surface with an inhomogeneous dielectric permittivity[J]. Phys. Rev. B, 1984, 30(1): 5460~5480.
    [142]袁杰,黄云,韩生节等.四频差动激光陀螺由于稳频精度局限等引入的零漂[J].激光杂志, 2002, 23(3): 22~24.
    [143]袁杰,黄云,蒋安国.四频差动激光陀螺的热效应浅述与温度分布的测试[J].激光杂志, 2000, 21(4): 46~48.
    [144] Bretenaker F, Floch A L. Specific lenslike effects and resonant diffrection lossesin two-isotope gas lasers[J]. Physical Review A, 1990, 42(9): 5561~5571.
    [145]金维睦. He-Ne激光管(6328?)正柱区电子温度的光谱诊断[J].仪表技术与传感器, 1982(3): 21~23.
    [146] Sargent M III, Scully M O, Lamb W E.激光物理学[M]. .杨顺华,彭放译.北京:科学出版社, 1982.
    [147] Aronowitz F. Theory of a traveling-wave optical maser[J]. Physical Review A, 1965, 139(3A): A635~A646.
    [148] Aronowitz F, Collins R J. Lock-in and intensity-phase interaction in the ring laser[J]. Journal of Applied Physics, 1970, 41(1): 130~141.
    [149] Aronowitz F, Lim W L. Positive scale factor correction in the laser gyro[J]. IEEE Journal of Quantum Electronics, 1977, QE13(5): 338~343.
    [150] Aronowitz F, Killpatrick J E, Callaghan S P. Power-dependent correction to the scale factor in the laser gyro[J]. IEEE Journal of Quantum Electronics, 1974, QE10(2): 201~208.
    [151] Hanson D R, Sargent M III. Theory of a Zeeman ring laser: General formalism[J]. Phys. Rev. A, 1974, 9(1): 466~480.
    [152] Chow W W, Hambenne J B, Hanson D R et al. Theory of a Zeeman ring laser-part II: special cases[J]. IEEE J. Quantum Electron., 1979, QE15(11): 1301~1309.
    [153] Sanders V E, Madan S, Chow W W et al. Beat-note sensitivity in a Zeeman laser gyro: theory and experiment[J]. Opt. Lett., 1980, 5(3), 99~101.
    [154]高伯龙.四频差动激光陀螺的第二类闭锁效应[J].国防科技大学学报, 1982, (1): 37~56.
    [155] Chow W W. Theory of multioscillator laser gyros[C]// SPIE 487, 1984: 30~32.
    [156]张书练,冯铁荪,姜亚南.用热膨胀法测量He-Ne增益管正柱区的气体温度,中国激光, 1982, 9(4): 247~249.
    [157]刘公强,乐志强,沈德芳.磁光学[M].上海:上海科学技术出版社, 2001.
    [158] Qiu Jianrong. The Faraday effect in diamagnetic glasses[J]. Journal of materials research, 1998, 13(5): 1358~1362.
    [159] Gan Fuxi. From Optical Glass to Photonic Glass[C]// Fuxi Gan, Lei Xu, Photonic Glasses. Singapore, World Scientific Publishing Company, 2006: 17.
    [160] Matthews J B. Laser gyro output optics structure[P]. US. Patent: 4449824, 1984-05-22.
    [161]松井邦彦.传感器实用电路设计与制作[M].梁瑞林(译).北京:科学出版社, 2005: 57~84.
    [162]卫永琴,高建峰.一种恒流源电路的巧妙设计[J].仪器仪表学报, 2006, 27(8): 1170~1172.
    [163] Analog Devices公司网站. [EB/OL]. http://www.analog.com.
    [164] Texas Instruments公司网站.[EB/OL]. http://www.ti.com.
    [165]赵凯华.电磁学[M].北京:北京大学出版社,1985.
    [166]王飞.高稳定度激光陀螺数字稳流电源[D].长沙:国防科学技术大学, 2002.
    [167]杨恒,李爱国,王辉,等. FPGA/CPLD最新实用技术指南[M].北京:清华大学出版社, 2005.
    [168]王诚,吴继华,范丽珍,等. Altera FPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社, 2005.
    [169]徐科军,张瀚,陈智渊. TMS320X281X DSP原理与应用[M].北京:北京航空航天大学出版社, 2006.
    [170]刘金琨.先进PID控制Matlab仿真(第二版)[M].北京:电子工业出版社, 2005: 10.
    [171]陈锡辉,张银鸿. Labview 8.20程序设计从入门到精通[M].北京:清华大学出版社, 2007.
    [172] PCI6221 datasheet [Z]. National Instruments inc., 2006.
    [173]刘政.四频差动激光陀螺电学解调电路的工程化研制[D].长沙:国防科技大学, 2008.
    [174]基里阿纳基N V,尤里斯S Y,西巴克N O,等.智能传感器数据采集与信号处理[M].高国富,罗均,谢少荣,等(译).北京:化学工业出版社, 2006: 58.
    [175]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社, 2003.
    [176]张守钧,庞彦斌.用过采样和求平均值技术提高模/数转换器的分辨率[J].计算机测量与控制, 2003, 11(6): 470~472.
    [177]郑君里,应启珩,杨为理.信号与系统[M].北京:高等教育出版社, 2000.
    [178] DS1081L datasheet [EB/OLZ]. http://www.maxim-ic.com.
    [179]黄宗升.旋转式激光陀螺寻北仪的研究[D].长沙:国防科技大学, 2007.
    [180]李廷志,罗兵,易康等.基于多周期测量的四频差动激光陀螺高精度信号解调[J].中国惯性技术学报, 2005, 13(4): 66~69.
    [181] Matthews J B, Deluzio R A. Phase-locked loop laser gyroscope system[P]. US Patent 4415266, 1983-11-15.
    [182] Roland E B.锁相环:设计、仿真与应用(第5版)[M].李永明,王海永,肖珺等(译).北京:清华大学出版社, 2007: 67~72.
    [183] Boutelle J, Kau S P, Marino C J Jr. ICBM reentry vehicle navigation system development at Honeywell[C]// IEEE PLANS, 1998: 294~302.
    [184]许光明.四频差动激光陀螺中的激光稳频[J].光电子激光, 2000, 11(1): 49~53.
    [185] Holz M. Ring laser gyro[P]. US Patent: 5347360, 1994-09-13.
    [186]郭少军.四频差动激光陀螺稳频精度测试系统的研制[D].长沙:国防科技大学, 2006.
    [187] Hahn T W. Cavity length control apparatus for a multi-oscillator[P]. US Patent: 4963026, 1990-10-16.
    [188]谢元平.机械抖动激光陀螺鉴相解调与稳频技术的研究[D].长沙:国防科技大学, 2000.
    [189] Hrovat A C. Laser gyro smart digital PLC acquisition control[P]. US Patent: 5309459, 1994-05-03.
    [190] Killpatrick J E, Fritze K R, Berndt D F. Laser gyro microprocessor start up control method and apparatus[P]. US Patent: 5363194, 1994-11-08
    [191] Curby R D, Oaks T, Benoist R W et al.. Path length control method for ring laser gyroscope[P]. US Patent: 4755057, 1988-07-05.
    [192]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究[J].光学精密工程, 1998, 6(5): 26~32.
    [193] Mark J G, Tazartes D A, Hahn T W. Multioscillator ring laser gyroscope adaptive digitally controlled cavity length control system[P]. US Patent: 5208653, 1993-04-04.
    [194] Bennett W R Jr. The physics of gas lasers[M]. Gordon and Breach Science Publishers Ltd, 1977: 104.
    [195] Hahn T W, Tazartes D A, Mark J G. Active magnetic field tuning for dispersion equalization of a multi-oscillator[P]. US Patent: 5374990, 1994-12-20.
    [196] Mitchell R A, Hahn T W. Means and method for active dispersion equalization of a multioscillator ring laser gyroscope[P]. US Patent: 5786895, 1998-07-28.
    [197]何晓群.实用回归分析[M].北京:高等教育出版社, 2008: 65~94.
    [198]国防科学技术工业委员会. GJB2427-95激光陀螺仪测试方法[S]. 1995.
    [199] Dorschner T A, Haus H A, Holz M, et al. Laser gyro at quantum limit[J]. IEEE J. Quantum Electron., 1980, QE16(12): 1376~1379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700