用户名: 密码: 验证码:
六相输电线的故障分析与继电保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六相输电是多相输电的一种,在国外六相输电技术作为提高输电线路功率传输密度,节约线路走廊空间的重要手段得到了充分的重视,对六相输电技术的研究也取得了很大的进展。1992年,美国纽约电力和天然气公司(NYSEG)将Goudey到Oakdale之间的一条双回线路改造成了六相输电线,并且已经投入了商业运行,这标志着多相输电技术已经从理论研究向实际应用迈出了重要的一步。
     在我国由于耕地面积的减少和地理环境的制约,节约线路走廊占用空间,提高线路的功率传输密度已经成为电网建设需要考虑的一个重要因素,在这方面六相输电方式有着独特的优势。六相输电线路的故障分析是相当复杂的,同时国内、外对于六相输电线路继电保护的研究还是很少的,这也成为制约六相输电技术实用化的一个重要因素。本文对六相输电线路的功率传输特性和几种继电保护原理进行了深入的研究和分析,取得如下成果:
     (1)详细分析和研究了六相输电线路在超高压和特高压两个电压等级上的功率传输特性,研究结果表明,六相输电线路能够最大程度地利用线路的走廊空间,明显提高系统的功率传输密度,并且线路的表面电场强度,以及线路下方的工频电场和磁场强度完全可以控制在规定允许的范围内。
     (2)综合六相输电线路故障电流序分量的幅值和相位特征,提出了一种适用于六相输电线路的故障选相方案,该方案在各种故障情况下都能做到准确选出故障相,并且还有不受线路参数变化和接地电阻影响的优点。
     (3)提出了一种基于六相输电线路特有序分量,即半正序、半零序和半负序分量的纵联方向保护方案,该方案能够根据故障的特性自动选择方向判据,并且具有不受系统阻抗变化影响的优点,补充正序突变量方向判据,该方案能够判别六相输电线路上所有的故障。
     (4)提出了将六相输电线路特有故障电流序分量,即半正序、半零序和半负序电流分量进行线性组合,形成新的相差动保护的操作电流。基于本文所提出的操作电流的六相输电线路相差动保护具有不受线路两侧系统阻抗变化、负荷电流以及故障电阻影响等优点。
     (5)提出了一种适用于六相输电线路的距离保护方案,该保护由6个接地阻抗继电器和15个相间阻抗继电器组成。阻抗继电器采用四边形方向阻抗特性和R-L模型法进行故障相阻抗的测量,大量的仿真测试表明,该距离保护方案性能可靠,可以作为六相输电线路的后备保护。
     (6)提出了一种适用于六相输电线路的瞬时性故障判据,同时,本文还提出一种适用于六相输电线路的自适应分相重合闸方式来弥补该故障判据无法判断相间永久性故障和对称性故障的问题。本文所提出的自适应重合闸方案在最大程度上保证了线路不重合于永久性故障,并且增加了重合闸成功的概率。
Six-phase transmission belongs to multiphase transmission, and it can evidently improve power transmission density and utilize the right-of-way more efficiently. Many countries paid more attention to this technology, and made great progress in this area. In 1992, a three phase double circuit line between Goudey and Oakdale station was reconstructed to six-phase line and was operated commercially by New York state electric and gas (NYSEG). It is a milestone from theoretical research to practical application in the development of six-phase transmission.
     With the decrease of cultivated land and the environmental problem in china, it is an important factor to improve power transmission density in the construction of electric network, and the predominance of six-phase transmission is obvious in this aspect. The method of fault analysis for six-phase transmission is very complicated, and the research on the protective scheme for six-phase transmission lines is few at the present time, and it had badly confined the practical application of six-phase transmission. The paper expounds the power transmission characteristics and studies several relay protection scheme of six-phase transmission lines. The main contributions of the paper are as follows:
     (1) The paper expounds the characteristics of power transmission of EHV and UHV six-phase transmission lines. Researching results show that six-phase can utilize the overhead transmission right-of-way efficiently, and improve the density of power transmission. At the same time, the electric field on surface of conductor, the power frequency electric-magnetic field at ground level can be controlled within the range of permission for six-phase transmission lines.
     (2) According to the characteristics of fault current sequence component on six-phase transmission lines, the paper proposes a novel fault phase selection scheme. The scheme can accurately distinguish the faulted phases under various fault conditions, and can be free from the influences of the transition resistance and system parameters.
     (3) The paper proposes a new comprehensive scheme for directional comparison pilot protection based on half positive sequence, half zero sequence and half negative sequence fault component. The scheme can select proper criterion according to the property of faults and is unaffected by system impedance. By adding directional criterion based on positive sequence fault component, it can identify all faults on six-phase transmission line.
     (4) The paper proposes a new protective principle based on linear combination of half positive sequence, half zero sequence, and half negative sequence current component for phase differential protection on six-phase transmission line. The phase differential protection based on this principle can be free from the influence of system impedance, heavy load current and transition resistance.
     (5) The paper proposes a new distance protection scheme, and it consists of 6 ground impedance relay and 15 inter-phases impedance relay. The scheme use quadrilateral directional impedance characteristics and R-L algorithm to calculate the impedance of the faulted phase. The results of simulation show that the performance of distance protection proposed is reliable, and can be used as backup protection for six-phase transmission line.
     (6) The paper proposes a novel criterion to distinguish instantaneous faults from permanent faults, at the same time, an adaptive reclosing mode based on phase sequence is presented in order to judge the permanent inter-phase faults and symmetrical faults on the six-phase transmission line. The adaptive auto-reclosing scheme can avoid reclosing the fault lines to permanent fault nearby, and enhance the possibility of reclosing successful.
引文
[1] T. L. Landers, R. J. Richeda, E. Krizauskas et al. High Phase Order Economics: Constructing a New transmission Line. IEEE Transactions on Power Delivery, 1998, 13(4): 1521~1526.
    [2] A. P. Apostolov, R. G.Raffebsperger. Relay Protection Operation for Faults on NYSEG’s Six-Phase Transmission Line. IEEE Transactions on Power Delivery. 1996, 11(1): 191~196.
    [3] N. B. Bhatt, S. S. Venkata, W. C. Guyker et al. Six-Phase (Multi-Phase) Power Transmission Systems: Fault Analysis. IEEE Transactions on Power Apparatus and System 1977, 96(3): 758~767.
    [4] S. S. Venkata, W. C. Guyker, J. Kondragunta. 138-kV, Six-Phase Transmission System: Fault Analysis. IEEE Transactions on Power Apparatus and System, 1982, 101(3): 1203~1218.
    [5] C. M. Portela, M. C. Tavares. Six-Phase transmission Line - Propagation Characteristics And New Three-Phase Representation. IEEE Transactions on Power Delivery, 1993, 8(4): 1470~1483.
    [6] J.R.Stewart, L.J.Oppel, R.J.Richeda. Corona and Field Effects Experience on an Operating Utility Six-Phase Transmission. IEEE Transactions on Power Delivery, 1998, 13(4): 1363~1369.
    [7] J. R. Stewart, D. D. Wilson. High Phase Order Transmission-a Feasibility Analysis Part I-Steady State Consideration. IEEE Transactions on Power Apparatus and System 1978, 97(6): 2300~2307.
    [8] J. R. Stewart, D. D. Wilson. High Phase Order Transmission-a Feasibility Analysis Part II-Over-voltages and Insulation Requirements. IEEE Transactions on Power Apparatus and System. 1978, 97(6): 2308~2315.
    [9] M. T. Brown, R. V. Rebbapragada, T. F. Dorazio et al. Utility System Demonstration of Six Phase Power Transmission. Proceeding of the 1991 IEEE Transmission and Distribution Conference, IEEE Publication 91CH3070-0, pp983-990.
    [10] L. J. Oppel, E. Kvizauskas. Evaluation of the Performance of Line Protection Schemes on the NYSEG Six Phase Transmission System. IEEE Transactions on Power Delivery, 1999, 14(1): 110~115.
    [11] E. H. Badwy, M. K. EL-Sherbiny, A. A. Ibrahim. A Method of Analyzing Unsymmetrical Faults on Six-Phase Power Systems. IEEE Transactions on Power Delivery, 1991, 6(3): 1139~1145.
    [12] B. K. Bhatt, R. D. Sharma. Analysis of Simultaneous Ground and Phase Faults on a Six Phase Power System. IEEE Transactions on Power Delivery, 1989, 4(3): 1610~1616.
    [13] I. T. Fernando, P. G. Mclaren. Performance of a Digital Distance Relay on a Six-Phase Transmission Line. Proceedings of the 1997 Conference on Communicating, Power and Computing, Winnipeg, MB, May 1997, pp.185~190.
    [14] L. J. Oppel, E. Krizauskas, R.H.Austenfeld. Evaluation and Testing of a Single Terminal Step Distance Scheme for Use on a Six Phase Transmission System. IEEE Transactions on Power Delivery, 1998, 13(4): 1527~1529.
    [15] R. Billinton, S.O. Faried, M. F-Firuzabad. Compositing System Reliability Evaluation Incorporating a Six-Phase transmission Line. IEE Proc-Gener. Transm. Distrib, 2003, 150(4): 413~419.
    [16] J. R. Stewart, E. Kallaur, I. S. Grant. Economics of EHV High Phase Order Transmission. IEEE Transactions on Power Apparatus and System. 1983, 103(11): 3386~3392.
    [17] R. V. Rebbapragada, H. Panke, H. J. Pierce, Jr, et al. Selection and Application of Relay Protection for Six Phase Demonstration Project. IEEE Transactions on Power Delivery, 1992, 7(4): 1900~1911.
    [18] J. L. Willems. The Analysis of High-Phase-Order Power Transmission Systems. IEEE Transactions on Circuits and Systems, 1982, 29(11): 786~789.
    [19] A. A. Hajjar, M. M. Mansour, H. A. Talaat, et al. Distance Protection for Six-Phase Transmission Lines Based on Fault Induced High Frequency Transients and Wavelets. Proceedings of the 2002 IEEE Canadian Conference on Electrical and Computer Engineering, Canada, May, 2002, pp.7~11.
    [20] A. A. Hajjar, M. M. Mansour, H. A. Talaat, et al. Wavelets for Six-Phase Transmission Line Relaying: Fault Classification and Phase Selection. The 11th IEEE Melecon 2002 Conference, Cairo, Egypt, May, 2002, pp.235~239.
    [21] M. M. Mansour, H. E. Talaat, A. A. Hajjar. Ultra High Speed Relaying Approach for Six-Phase Transmission Lines. IEEE Power Engineering Review, September, 2002, pp.50~51.
    [22] J. R. Stewart, L. J. Oppel, G. C. Thomann et al. Transformer Winding Selection Associated with Reconfiguration of Existing Double Circuit Line to Six-Phase Operation. IEEE Transactions on Power Delivery, 1992, 7(2): 979~985.
    [23] S. O. Faried, S. Upadhyay, S. Al-Senaidi. Impact of Six Phase Transmission Line Faults on Turbine-Generator Shaft Torsional Torques. IEEE Transactions on Power Delivery, 2002, 17(2): 365~370.
    [24] A. K. Mishra, A.Chandrasekaran, S. S. Venkata. Estimation of Errors in the Fault Analysis of Six Phase Transmission Lines Using Transposed Models. IEEETransactions on Power Delivery, 1995, 10(3): 1401~1407.
    [25] I. A. Metwally. Electrostatic and Environmental Analyses of High Phase Order Transmission Lines. Electric Power System Research, 2002, 61(2): 149~159.
    [26] J. R. Stewart, S. J. Dale, K. W. Klein. Magnetic Field Reduction Using High Phase Order Lines. IEEE Transactions on Power Delivery, 1993, 8(2): 628~636.
    [27] J. R. Stewart, L. J. Oppel, G. C. Thomann et al. Insulation Coordination, Environmental and System Analysis of Existing Double Lines Reconfigured to Six-Phase Operation. IEEE Transactions on Power Delivery, 1992, 7(3): 1628~1633.
    [28]张永立.多相输电线路综论.电网技术, 1995, 19(6): 23~26.
    [29] Xusheng Chen. Three-Phase/Six-Phase Conversion Autotransformers. IEEE Transactions on Power Delivery, 2003, 18(4): 1554~1561.
    [30]朱鸣海.能源·全国联合电网·特高压输电.高电压技术, 2000, 26(2): 28~30.
    [31]朱鸣海.关于发展我国特高压输电的意见.电网技术, 1995, 19(3): 54~57.
    [32]万启发.浅谈我国特高压输电的前景.高电压技术, 1999, 25(2): 30~31, 34.
    [33]刘振亚.特高压电网.北京:中国经济出版社. 2005.
    [34]舒印彪. 1000kV交流特高压输电技术的研究与应用.电网技术, 2005, 29(19): T1~T6.
    [35]贺家李,李永丽,郭征,等.特高压输电线继电保护配置方案:(一)特高压输电线的结构与运行特点.电力系统自动化, 2002, 26(23): 1~6.
    [36]贺家李,李永丽,李斌,等.特高压输电线继电保护配置方案:(二)保护配置方案.电力系统自动化, 2002, 26(24): 1~6.
    [37]周浩,余宇红.我国发展特高压输电中的一些重要问题的讨论.电网技术, 2005, 29(12): 1~9.
    [38] P.M.安德逊.电力系统故障分析.王际强,胡冰清,任震等译.北京:电力工业出版社,1980.
    [39]王秀丽,宋永华,王海军.新型交流输电技术与展望.中国电力, 2003, 36(8): 40~46.
    [40]舒印彪,赵丞华.研究实施中的500kV同塔双回紧凑型输电线路.电网技术, 2002, 26(4): 49~51, 74.
    [41]潘靖,易辉,陈柏超.我国紧凑型与同塔双回输电现状与展望.高电压技术, 2005, 31(9): 25~27.
    [42]于幼文,金永纯.昌房500kV紧凑型输电线路中的关键技术.电网技术, 2003, 23(7): 75~77.
    [43]王绍德,李耀玲.昌房500kV紧凑型线路运行特性分析.电网技术, 2000, 24(2): 10~13.
    [44]陈勇,万启发,谷莉莉,等.关于我国特高压导线和杆塔结构的探讨.高电压技术, 2004, 30(6): 38~41.
    [45]陈勇,万启发,谷莉莉,等.特高压真型塔长波头操作冲击放电特性研究.高电压技术, 2003, 29(11): 21~22.
    [46]邵方殷.我国特高压输电线路的相导线布置和工频电磁场.电网技术, 2005, 29(8): 1~7.
    [47]陈国庆,张志劲,孙才新,等. 500kV同塔双回线导线排列方式对电气特性的影响.重庆大学学报, 2003, 26(6): 60~62.
    [48]韦钢,黄金生.同杆并架多回线序参数及不平衡计算.电网技术, 1998, 22(10): 8~11.
    [49]陈珩.电力系统稳态分析.北京:水利电力出版社, 1985.
    [50]金义雄,程浩忠.六相电力系统的故障分析.继电器, 2005, 33(1): 10~15.
    [51]徐振宇,杨奇逊,刘万顺,等.一种序分量高压线路保护选相元件.中国电机工程学报, 1997, 17(3): 214~216.
    [52]林湘宁,刘沛,杨春明,等.基于相关分析的故障序分量选相元件.中国电机工程学报, 2002, 22(5): 16~21.
    [53]杨世骅,何奔腾.一种基于电压序分量的高压线路保护选相元件.中国电力, 1999, 32(7): 25~28.
    [54]索南加乐,许庆强,宋国兵,等.弱电源侧稳态电压对称分量选相元件.西安交通大学学报, 2003, 37(8): 778~782.
    [55]葛耀中.新型继电保护与故障测距原理与技术.西安:西安交通大学出版社, 1996.
    [56]许正亚.输电线路新型距离保护.北京:中国水利电力出版社, 2002.
    [57]索南加乐,葛耀中,陶惠良.同杆双回线的六序选相原理.中国电机工程学报, 1991, 11(6): 1~9.
    [58]俞波,杨奇逊,李营,等.同杆并架双回线保护选相元件的研究.中国电机工程学报, 2003, 23(4): 38~42, 76.
    [59]常宝波,段玉倩,贺家李,等.一种用于零负序电流纵差保护的使用选相元件.电力系统自动化, 2005, 29(20): 76~80.
    [60] Lin Whei-min, Yang chin-der, Lin Tia-hong, et al. A Fault Classification Method by RBF Neural Network with OLS Learning Procedure. IEEE Transactions on Power Delivery, 2001, 16(4): 473~477.
    [61]段建东,张保会,周艺,等.基于暂态量的超高压输电线路故障选相.中国电机工程学报, 2006, 26(3): 1~6.
    [62]董新洲,贺家李,葛耀中,等.基于小波变换的行波故障选相研究第二部分仿真试验结果.电力系统自动化, 1998, 22(12): 23~26.
    [63] A. S. Omar. New Algorithm to Phase Selection Based on Wavelet Transform. IEEE Transactions on Power Delivery, 2002, 17(4): 908~914.
    [64] Bo Z Q, R. K. Aggarwal, A. T. Johns. A New Application to Phase Selection Using Fault Generated High Frequency Noise and Neural Networks. IEEETransactions on Power Delivery, 1997, 12(1): 106~114
    [65]张斌,何正友,钱清泉.基于小波能量熵和模糊逻辑的故障选相元件.电网技术, 2006, 30(15): 30~35.
    [66]危韧勇,刘春芳.基于小波理论的超高压线路故障定位与选相方法.中国电机工程学报, 2000, 20(5): 85~88.
    [67]李峰,焦彦军,马静.基于小波分析的弱电源侧暂态量选相方案.继电器, 2006, 34(1): 1~4, 14.
    [68]段建东,张保会,周艺,等.利用电流行波进行超高压输电线路故障类型识别的研究.中国电机工程学报, 2005, 25(7): 58~63.
    [69]杨明玉,王世旭,张举.基于数学形态学梯度的快速选相方案.电网技术, 2006, 30(7): 64~68.
    [70]王亚强,焦彦军,张延东.超高压输电线路故障选相现状及其发展.继电器, 2004, 32(24), 72~77, 85.
    [71]张艳霞,贺家李,王笑然,等.反应全相及非全相状态下各种故障的方向元件.中国电机工程学报, 1995, 15(6): 429~434.
    [72]陈卫,尹项根,陈德树,等.基于补偿电压突变量方向判别原理.电力系统自动化, 2002, 26(14)49~51, 66
    [73]陈卫,尹项根,陈德树,等.基于补偿电压故障分量德纵联方向保护原理与仿真研究.中国电机工程学报, 2005, 25(21): 92~97.
    [74]朱声石.高压电网继电保护原理与技术.北京:中国电力出版社, 2005.
    [75]索南加乐,许庆强,宋国兵,等.正序电压电流补偿的方向元件.电力系统自动化, 2004, 28(24): 51~55.
    [76]徐柯,苗世洪,刘沛.方向高频保护负序功率方向元件的非全相运行性能分析.电力系统自动化, 2003, 27(21): 45~48, 57.
    [77]郭润生,何彩红,致建杰.相邻线路零序互感对线路零序纵联方向保护的影响.继电器, 2004, 32(9): 71~73.
    [78]宋斌,陈玉兰,徐秋林,等.微机横联差动电流方向保护装置.电力系统自动化, 2003, 27(10): 85~88.
    [79]何奔腾,金华烽,李菊.能量方向保护原理和特性研究.中国电机工程学报, 1997, 17(3): 166~170.
    [80]何奔腾,金华烽,李菊.能量方向保护的实现与试验.中国电机工程学报, 1997, 17(3): 171~174, 216.
    [81]袁荣湘,陈德树,张哲.能量方向保护原理的分析.电力系统自动化, 1999, 23(14): 17~20, 28.
    [82] M. Sanaye-Pasand, O. P. Malik. High Speed Transmission Line Directional Protection Evaluation Using Field Data. IEEE Transactions on Power Delivery, 1999, 14(3): 851~856.
    [83] K. S. Prakash, O. P. Malik, G. S. Hope. Amplitude Comparator Based Algorithmfor directional Comparison Protection of Transmission. IEEE Transactions on Power Delivery, 1989, 4(4): 2032~2041.
    [84] M. Sanaye-Pasand, O. P. Malik. High Speed Transmission System Directional Protection Using An Elman Network. IEEE Transactions on Power Delivery, 1998, 13(4): 1040~1045.
    [85] Gabriel Benmouyal, Simon Chano. Characterization of Phase and Amplitude Comparators in UHS Directional Relays. IEEE Transactions on Power Delivery, 1997, 12(2): 646~653.
    [86]林湘宁,刘沛,刘世明,等.电力系统超高速保护的形态学-小波综合算法.中国电机工程学报, 2002, 224(9): 19-24.
    [87] M. Chamia, S. Liberman. Ultra High Speed Relay for EHV/UHV Transmission Lines-Development, Design and Application. IEEE Trans. on Power Apparatus and Systems, 1978, 97(6): 2104~2116.
    [88]段建东,张保会,周艺.超高速暂态方向继电器的研究.中国电机工程学报, 2005, 25(4): 7~12.
    [89] Q. H. Wu, J. F. Zhang, D. J. Zhang. Ultra-High-Speed Directional Protection of Transmission Lines Using Mathematical Morphological. IEEE Transactions on Power Delivery, 2003, 18(4):1127~1133.
    [90]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护.电力系统自动化, 2000, 24(17), 11~15, 64.
    [91]董杏丽,葛耀中,张言苍,等.基于小波变换的行波极性比较式方向保护原理研究.电力系统自动化, 2000, 24(14), 11~15, 29.
    [92]董新洲,葛耀中,贺家李,等.波阻抗方向继电器的基本原理.电力系统自动化, 2001, 25(9): 15~18, 22.
    [93]董新洲,郭效军,张言苍,等.波阻抗方向继电器的实现方案.电力系统自动化, 2001, 25(12): 20~23.
    [94] Wei Chen, O. P. Malik, Xianggen Yin, et al. Study of Wavelet-Based Ultra High Speed Directional Transmission Line Protection. IEEE Transactions on Power Delivery, 2003, 18(4):1134~1139.
    [95]白嘉,徐玉琴,田彬,等.基于形态综合算法的行波差动保护方案.电网技术, 2006, 30(9): 98~102.
    [96]贺家李,宋从矩,李永丽,等.电力系统继电保护原理(增订版).北京:中国电力出版设, 2005.
    [97]杨赢,邰能灵,郁惟慵.基于复小波的快速相差保护研究.中国电机工程学报, 2005, 25(11): 12~16.
    [98]计策,张艳霞,杨钢.相差高频保护中操作元件比相动作判据的研究.电网技术, 2006, 30(4): 55~59.
    [99]崔风亮.复合电流滤过器K值偏移对相差保护的影响.电力系统自动化,2001, 25(17): 43~44, 62.
    [100]丁蕾,房鑫炎.基于电容电流半补偿的高压电力电缆分相电流差动保护研究.电网技术, 2005, 29(4): 45~49.
    [101]胡希同,姜志海.对相差高频保护操作电流的分析.山东工程学院学报, 2001, 15(4): 60~63.
    [102]荣英义,高中德.一种新的相差高频保护的操作电流_正序电流突变量.继电器, 1990, 5(2):2~8.
    [103]周玉兰,王玉玲,赵曼勇. 2004年全国电网继电保护与安全自动装置运行情况.电网技术, 2005, 29(16): 42~48.
    [104]冯博文.双回线零序互感对接地距离继电器测量阻抗的影响.电力系统自动化, 1990, 14(5): 33~39.
    [105]索南加乐,许庆强,宋国兵,等.自适应接地距离继电器.电力系统自动化, 2005, 29(17), 54~58.
    [106]续建国.两种方向距离继电器的动作特性.电力系统自动化, 2002, 26(13): 63~65.
    [107]文明浩,陈德树,尹项根,等.平行双回线对接地距离保护运行特性的影响.继电器, 2000, 28(4): 53~57, 60.
    [108]李岩,詹奕,陈德树,等.单相补偿式接地距离继电器统一形式的研究.电力系统自动化, 2002, 26(10): 28~31.
    [109]朱晓彤,郑玉平,张俊洪,等.同杆并架双回线不接地故障的距离保护.电力系统自动化, 2003, 27(19): 61~64, 68.
    [110]索南加乐,谢静,刘东,等.克服距离保护暂态超越的新方法.电力系统自动化, 2006, 30(10):52~57.
    [111]张艳霞, K. K. Li.基于微分方程的自适应窗长距离保护算法研究.中国电机工程学报, 2000, 20(7): 24~27, 33.
    [112]张太升,罗承廉,杜凌,等.四边形特性距离保护躲负荷性能分析.继电器, 2004, 32(1): 28~31, 36.
    [113]张涛,刘彦梅,王锡田. WXB-11型微机保护允许最小负荷阻抗的探讨.电力学报, 1999, 14(2): 102~103, 106.
    [114]杨奇逊,黄少锋.微型机继电保护基础.北京:中国电力出版设, 2005.
    [115] Ge Yaozhong, Sui Fenghai, Xiao Yuan. Prediction Methods for Preventing Single-Phase Reclosing on Permanent Fault. IEEE Transactions on Power Delivery, 1989, 4(1):114~121.
    [116]宋国兵,索南加乐,孙丹丹.输电线路永久性故障判别方法综述.电网技术, 2006, 30(18): 75~80.
    [117]范越,施围.输电线路单相自动重合闸中电压判据的修正.电力系统自动化, 2000, 24(6): 44~47.
    [118]郑玉平,黄震,张哲.同杆并架双回线自适应重合闸的研究.电力系统自动化, 2004, 28(22): 58~62.
    [119]李斌,李永丽,黄强,等.单相自适应重合闸相位判据的研究.电力系统自动化, 2003, 27(22): 41~44.
    [120]葛耀中,索南加乐,孔繁鹏,等.微机式自适应单相重合闸的判据和算法.继电器, 1995, 23(2): 7~9, 32.
    [121]林湘宁,朱海昱,刘沛.基于模糊决策的自动重合闸优化判据的研究.电力系统自动化, 1997, 21(9): 31~34, 76.
    [122]成敬周,张举,焦彦军,等.基于测度分析及模糊集理论的单相自适应重合闸研究.电力自动化设备, 2005, 25(4): 23~27.
    [123]房鑫炎,郁惟镛,王曼.自适应重合闸中首合相判据的分析.电力自动化设备, 1997, 17(3): 21~23.
    [124]房鑫炎,郁惟镛,王志华.多层人工神经网络在自适应重合闸首合相及次合相判别中的应用.继电器, 1999, 27(2): 17~20, 23.
    [125]陈少华,徐子利,陈允平.基于小波神经网络的自适应单相重合闸.武汉大学学报(工学版), 2004, 37(1): 106~109.
    [126]聂宏展,董爽,李天云,等.基于模糊神经网络的单相自适应重合闸.电网技术, 2005, 29(10): 75~79.
    [127]索南加乐,刘辉,吴亚萍,等.基于故障测距的单相自动重合闸永久故障电压自适应补偿判据.中国电机工程学报, 2004, 24(4): 80-84.
    [128]李斌,李永丽,盛鵾,等.带并联电抗器的超高压输电线单相自适应重合闸的研究.中国电机工程学报,2004,24(5):52-56.
    [129]郁惟镛,胡炎,黄登峰.基于波形识别的永久性和瞬时性故障识别.继电器, 1999, 27(4): 10~13, 17.
    [130] R. K. Aggarwal, A. T. Johns, Y. H. Song, et al. Neural-Network Based Adaptive Single-Pole Autoreclosure Technique for EHV Transmission Systems. IEE Proc-Gener. Transm. Distrib, 1994, 141 (2): 155~160.
    [131] D. S. Fitton, R. W. Dunn, R. K. Aggarwal, et al. Design and Implementation of an Adaptive Single Pole Auto Re-closure Technique for Transmission Lines Using Artificial Neural Networks. IEEE Transactions on Power Delivery, 1996, 11(2): 748~756.
    [132]李斌,李永丽,曾治安,等.基于电压谐波信号分析的单相自适应重合闸.电网技术, 2002, 26(10), 53~57.
    [133]成敬周,张举.基于电弧复小波检测的单相自适应重合闸.继电器, 2005, 33(7): 21~25, 49.
    [134]蔡超豪.基于小波包变换的自适应重合闸.继电器, 1999, 27(2): 21~23.
    [135] Z. Q. Bo, R. K. Aggarwal, A. T. Johns, et al. New Concept in Transmission Line Reclosure Using High-Frequency Fault Transients.IEE Proc-Gener. Transm. Distrib, 1997, 144 (4): 351~356.
    [136]范越,施围.在单相自动重合闸中检测电弧故障的新方法.继电器, 1999, 27(6): 5~7.
    [137] M. B. Djuric, V. V. Terzija. A New Approach to the Arcing Faults Detection for Fast Auto Re-closure in Transmission Systems. IEEE Transactions on Power Delivery, 1995, 10(4): 1793~1798.
    [138] V. V. Terzija, Z. M. Radojevic. Numerical Algorithm for Adaptive Auto Re-closure and Protection of Medium-voltage Overhead Lines. IEEE Transactions on Power Delivery, 2004, 19(2): 554~559.
    [139]林湘宁,刘海峰,鲁文军,等.基于广义多分辨形态学梯度的自适应单相重合闸方案.中国电机工程学报, 2006, 26(7): 101~106.
    [140]刘海峰,林湘宁,刘沛,等.基于形态学闭开–开闭梯度变换的单相自适应重合闸方案.电力系统自动化, 2005, 29(21): 39~44.
    [141]索南加乐,孙丹丹,付伟,等.带并联电抗器输电线路单相自动重合闸永久故障的识别原理研究.中国电机工程学报, 2006, 26(11): 75~81.
    [142]贺家李,葛耀中.超高压输电线路故障分析与继电保护.北京:科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700