用户名: 密码: 验证码:
再生纤维素微球的制备、结构和功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高聚物吸附和分离树脂已广泛用于水处理、化工、生物医药、食品和环保等领域。不同大小和形貌的微球可用作微存储器、微反应器、微分离器和微结构单元。尤其,天然高分子微球由于可生物降解和生物相容,已广泛应用于色谱、分离科学、可控制载体和贮藏体、生物医药支撑体、环境和催化剂基体、食品方面和医药工业等领域,其中各类纤维素微球的需求量最大。然而,采用传统纤维素溶剂制备微球常常造成很大的环境污染,而采用纤维素衍生物制备微球则难以避免带有残留基团而影响性能。本工作主要是利用NaOH/尿素水溶液体系低温下直接溶解纤维素制备纤维素微球,并进行功能化修饰得到一系列尺寸由微米到毫米级以及不同功能的微球。同时,采用红外光谱(IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)和凝胶渗透色谱-光散射联用(GPC-LS)等方法表征它们的结构和功能,并且评价它们在色谱、生物医用、水处理以及吸附和分离领域的应用。
     本工作主要创新点如下:(1)通过溶胶-凝胶转相法由纤维素溶液制备出粒径由微米到毫米级的再生纤维素微球;(2)利用纤维素微球的孔作为微反应器,通过原位法合成纳米的Fe304粒子,制备出新型磁性纤维素微球;(3)通过溶胶凝胶法创建生物催化剂载体微球,并有效固定化青霉素G酰化酶;(4)构建出包埋活性炭磁性纤维素珠粒吸附剂用于染料吸附;(5)构建出纤维素/甲壳素磁性复合微球吸附剂用于重金属离子吸附。
     本学位论文主要内容简述如下。纤维素溶解在预冷至-12℃的7wt%NaOH/12wt%尿素溶剂体系中,得到透明的纤维素溶液。通过溶胶-凝胶转相法由该纤维素溶液制备出再生纤维素微球(RCM)。这是一种利用可再生资源生产纤维素微球的绿色过程,而且使用后的纤维素微球可生物降解。通过改变制备工艺参数成功制备出粒径从5um到1mm的微球。随着分散剂的用量、油-水比和搅拌速度的增加,微球的尺寸迅速减小。RCM微球表现出较好的球形、纳米尺寸孔径,同时在它们水中具有良好的流动性能和染料吸附功能。装填此纤维素微球的制备型色谱柱具有很好的分级效率和较大的日分级产量。因此,RCM微球有望作为色谱填料材料,生物载体和生物吸附剂应用在实验室和工业上。
     利用湿态纤维素微球的孔作为微反应器,通过原位法合成了纳米级的Fe3O4粒子,制备出新型磁性纤维素微球。该方法简单、安全,而且制备的纤维素微球具有生物相容和生物降解性。结构分析表明Fe3O4纳米粒子均匀分布在纤维素基体中,这是由于纤维素与无机纳米粒子间具有强的相互作用。纤维素微球的孔作为微反应器能起到控制磁性粒子的生长及尺寸作用,这些磁性粒子对微球的磁诱导迁移和提高微球的靶向传递和释放均起重要作用。Fe3O4/纤维素复合微球表现出超顺磁性和灵敏的磁诱导迁移性。此外,该磁性微球具有对BSA优良的吸附性质,并符合Langmuir等温吸附模型。复合微球的pH敏感的BSA吸附和超顺磁性质在药物靶向传递和释放领域十分重要。
     通过溶胶-凝胶法成功制备了包埋Fe2O3纳米粒子的磁性纤维素复合微球,经过环氧氯丙烷修饰后用于配位固定化酶。青霉素G酰化酶(PGA)已成功地固定在这种多孔的磁性纤维素微球上。纤维素基体的微孔以及纤维素分子上-OH基的亲和力和磁性纳米粒子对酶的固定化起重要作用,它们协同作用保护了生物催化剂的结构和特性。固定化酶表现出较高的催化活性、热稳定性和pH值变化的容限,同时能重复利用。此外,固定化酶的磁性纤维素微球很容易通过磁场诱导作用从反应溶液中分离出来,便于重复使用。这种酶固定载体在生物催化剂领域具有应用前景。
     在浸没式撞击流反应装置中,通过共沉淀法成功合成了粒径为10nm的磁性γ-Fe203纳米粒子。同时,通过一种简单的滴落法包埋这种磁性纳米和活性炭粉末到纤维素基体中制备出吸附剂。利用二种含有不同电荷的染料(带正电荷的MB和带负电荷的MO)作为染料模型化合物评价此吸附剂的吸附效率。结果表明磁性纳米粒子和活性炭粉末有利于吸附剂球体的形成以及提高其吸附染料的能力。此纤维素复合吸附剂表现出对这两类染料有很高的吸附能力,且能更好地吸附MO。它们的吸附速率较快,在180min已完全达到吸附平衡,而且动态吸附数据可以通过伪二级动力学方程拟合。另外,此吸附剂能够再生和重复使用。它的磁学性质使它能够通过磁场诱导很容易从废液体系中移出。由此,这是一种可用于水处理的清洁和安全的“绿色”技术和方法。
     通过纤维素和甲壳素溶液在水体系共混制得甲壳素/纤维素混合溶液,然后加入磁性纳米粒子粉末(γ-Fe2O3),并且采用溶胶-凝胶转相法制备出磁性甲壳素/纤维素复合微球吸附剂。它们显示出磁诱导移动功能,而且该微球吸附剂具有多孔结构、较大的比表面积和对重金属离子的亲和力。它们对Pb2+、Cd2+和Cu2+有较高吸附率和回收率,它们吸附速度较快,在1-2h达到吸附平衡。温度对金属离子的吸附量影响不明显,而pH值对其影响较大。磁性甲壳素/纤维素复合微球用毕后可以通过磁场从反应溶液中分离出,重复使用。这种磁性复合微球吸附剂在工业水处理领域具有应用前景。
     总之,我们利用本实验室发明的新溶剂制备出纤维素溶液,然后用它构建不同粒径的纤维素微球。并且通过不同的方法,如原位生成无机纳米粒子、表面交联或活化、以及功能化创建功能化材料使它们适合应用于色谱填料、蛋白质的分离纯化、生物催化剂载体、染料吸附和重金属的吸附剂等领域。本论文为纤维素新型微球的制备及其结构和功能关系的建立提供了重要科学数据,因此不仅具有重要的学术价值和应用前景,而且符合国家可持续发展战略。
Science and technology of polymeric microspheres (particularly natural polymer microspheres) and their dispersions have been developed rapidly for last three decades and the progress seems to be accelerated because the era demands fine materials, mesoscopic science, nanotechnology, etc. An important category of materials among natural polymers is polysaccharides. Among them, cellulose microspheres are the most widely applied to the maximum extent. Cellulose is the most abundant organic compound found on earth. Also, it is a renewable and a major biomass source. But almost all of these products have been prepared from toxic organic solvent or cellulose derivatives, leading it difficult to wash and to eliminate the residual groups, and then limited its bioapplication.
     In our laboratory, an environmental friendly novel cellulose solvent, namely NaOH/urea aqueous solution has been used. Cellulose could be rapidly dissolved in this solvent at low temperature. The aim of the present work was to investigate the cellulose microspheres from the cellulose solution.
     The novel development of this work is as follow:1. Regenerated cellulose microspheres (RCM) with diameter ranging from micro to millimeter were prepared successfully by sol-gel transition from the cellulose dope dissolved in NaOH/urea aqueous system at low temperature.2. Novel magnetic cellulose microspheres were prepared successfully by in situ synthesis of Fe3O4 in the cellulose pores as reaction micro-chamber. The Fe3O4/cellulose microspheres were found to exhibite sensitive magnet-inducted delivery and superparamagnetic properties.3. Magnetic cellulose microspheres (MCM) containing y-Fe2O3 were functionalized successfully by using epoxy chloropropane to promote the covalent immobilization of Penicillin G acylase (PGA).4. The magnetic nanoparticles and activated carbon were embedded in cellulose matrix to fabricate a dye sorbent via simple and "green" process.5. An efficient biodegradable heavy metal adsorbent, magnetic cellulose/chitin microspheres consiting of magneticγ-Fe2O3 nanoparticles (MCCM), were succesfully prepared by using sol-gel transition (SGT) method from cellulose and chitin drops in NaOH/urea aqueous solution.
     Regenerated cellulose microspheres with diameters from micro to millimeter were prepared successfully by sol-gel transition from the cellulose dope dissolved in NaOH/urea aqueous system at low temperature. It was a "green" process for the production of the regenerated cellulose microspheres from renewable raw materials, and the used microspheres were safe and biodegradable. By changing the process parameters, the spherical regenerated cellulose microspheres and beads which possessed the celluloseⅡcrystal structure and with diameters range from 5 um to 1 mm, could be created, and can be used both at laboratory and industrial scale. With a decrease in the dispersant dosage, oil-water ratio and stirring speed, the size of the microspheres increased rapidly. Moreover, the nano-scale pore of the microspheres could be easily regulated by physical dehydration method. The RCM microspheres exhibited good spherical shape, nano-scale pore, as well as better flow properties and adsorption capacity for the dyes. The preparative chromatographic column packed with these cellulose microspheres exhibited good fractionation efficiency and large throughput. Therefore, the RCM microspheres have promising applications as chromatographic packing, biocarrier and biosorbent materials.
     Novel magnetic cellulose microspheres were prepared successfully by in situ synthesis of Fe3O4 in the cellulose pores as reaction micro-chamber. This was a new, simple, and safe method for the preparation of the magnetic cellulose microspheres having biocompatibility and biodegradability through a "green" pathway. The Fe3O4 nanoparticles were dispersed uniformly in the cellulose matrix, as a result of a strong interaction between Fe3O4 and the cellulose. The micro-chamber in the cellulose microspheres facilitated to retain the shape and size of the Fe3O4 nanoparticles, which play an important role in both the creation of the magnet-induced transference, and the improvement of the targeting delivery and release. The Fe3O4/cellulose microspheres exhibited sensitive magnet-inducted delivery and superparamagnetic properties. Moreover, the magnetic microspheres possessed excellent adsorpton capacity on BSA, and could be described well by the Langmuir isotherms. The pH sensitivity of the BSA adsorption loading and the superparamagnetic properties of the magnetic microspheres will be very important for the bioapplications in the drug targeting delivery and release areas.
     Magnetic cellulose microspheres were functionalized successfully by using epoxy chloropropane to promote the covalent immobilization of enzyme. Penicillin G acylase was immobilized successfully in the porous structure of the magnetic cellulose microspheres. The existence of the cavity in the cellulose matrix and affinity forces from-OH groups and the Fe2O3 nanoparticles played an important role in the improvement of the enzyme immobilization, leading to the preservation of the structure and nature of biocatalyst. The immobilized PGA exhibited highly effective activity, thermal stability and enhanced tolerance to pH variations, as well as good reusability. Moreover, the cellulose magnetic microspheres loaded with PGA could be conveniently and easily separated from reaction solution, leading to recovery of the catalysts. The new immobilization carriers prepared from safe, low cost and biocompatible cellulose will have wide applications in the development of biocatalysts.
     Magnemite (y-Fe2O3) nanoparticles of about 10 nm were prepared in a submerged circulation impinging stream reactor. The magnetic nanoparticles and activated carbon were embedded in cellulose matrix to fabricate a sorbent via simple and "green" process. Two dyes including positively charged methylene blue (MB) and negatively charged methyl orange (MO) as models of organic dyes were adsorbed effectively by the MCB-AC beads. The Fe2O3 nanoparticles and AC in the MCB-AC could play an important role in both the formation of spherical shape beads and the improvement of the adsorption capacity. The MCB-AC beads exhibited high adsorption capacity for the two dyes, and could more strongly adsorb MO. The adsorption kinetics was fast with 180 min to reach equilibrium time, and the kinetic data were well fitted by a pseudo-second-order model. Furthermore, the sorbent could be regenerated and used repeatedly. The magnetic properties of the beads allow their separation from the effluent by applying a magnetic field, leading to the development of a clean and safe process for water pollution remedy. This work provided a new pathway for the preparation of the MCB-AC beads including theγ-Fe2O3 nanoparticles and AC, and this process is promising on a large scale production.
     Magnetic chitin/cellulose microspheres were successfully prepared by coagulating a blend of cellulose, chitin andγ-Fe2O3 nanoparticles in 7wt% NaOH/12wt% urea aqueous solution by sol-gel transition. This adsorbent has a porous structure, larger surface area and the affinity for heavy metal ions. The magnetic microspheres possessed excellent adsorpton capacity on heavy metal ions (Pb2+、Cd2+ and Cu2+). The adsorption kinetics was fast with 3-5h to reach equilibrium, and the kinetic data were well fitted by a pseudo-second-order model. The magnetic properties of the beads allow their separation from the effluent by applying a magnetic field, leading to the development of a clean and safe process for water pollution remediation. Moreover, the microspheres could be regenerated by treating with 1 mol/L HC1 aqueous solution. Therefore, we developed new environment-friendly microspheres prepared by a simple process for removal and recovery of heavy metals.
     This thesis is comprised of studies on pure cellulose microspheres and functionalized microspheres with different particle size created from cellulose in NaOH/urea aqueous solution by different method, such as sol-gel transition, surface modification, and physical and chemical blending. A series of scientific and technological problems were resolved. Through these studies, we developed a low-cost, nontoxic and "green" process for fabrication of cellulose microspheres materials on a large scale production. Therefore, we anticipate were great scientific significance and prospects for application of these materials which are used for out country and play a major role for a sustainable development.
引文
[1]C. Cutter, Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods, Meat Science 2006, 74,131-142.
    [2]R. Kumar, D. Liu and L. Zhang, Advances in proteinous biomaterials, Journal of Biobased Materials and Bioenergy 2008,2,1-24.
    [3]S. Sun, Y. Song and Q. Zheng, Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten, Food Hydrocolloids 2007,21,1005-1013.
    [4]F. E. Brauns, The Chemistry of Lignin, Academic Press Inc, New York,1852.
    [5]R. Crawford, Lignin biodegradation and transformation, John Wiley and Sons,New York, NY,1981.
    [6]Y. Nishiyama, P. Langan and H. Chanzy, Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction, Journal of the American Chemical Society 2002,124, 9074-9082.
    [7]D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, Cellulose:Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition 2005,44,3358-3393.
    [8]J. L. Slavin, P. M. Brauer and J. A. Marlett, Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects, Journal of Nutrition 1981,111,287.
    [9]高洁,汤烈贵,纤维素科学,科学出版社,1996.
    [10]D. Klemm, D. Schumann, U. Udhardt and S. Marsch, Bacterial synthesized cellulose—artificial blood vessels for microsurgery, Progress in Polymer Science 2001,26,1561-1603.
    [11]D. Klemm, B. Philipp, T. Heinze, U. Heinze and W. Wagenknecht, Comprehensive Cellulose Chemistry, Vol,1, Wiley-VCH Verlag GmbH,1999.
    [12]余冰,周红丽,细菌纤维素的研究进展,生物技术通报2007,87-89.
    [13]张永凤,卢红梅,何绪晓,白爱琴,细菌纤维素及其应用,江西食品工业2007,1,29-31.
    [14]周毓,刘艳,细菌纤维素研究进展,广州化工2007,35,8-9.
    [15]A. K. Mohanty, M. Misra and L. T. Drzal, Sustainable Bio-Composites from Renewable Resources:Opportunities and Challenges in the Green Materials World, Journal of Polymers and the Environment 2002,10,19-26.
    [16]I. Nehls, W. Wagenknecht, B. Philipp and D. Stscherbina, Characterization of cellulose and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy, Progress in Polymer Science 1994,19,29-78.
    [17]张俐娜,薛奇,莫志深,高分子物理近代研究方法,武汉:武汉大学出版社,2003.
    [18]L. M. J. Kroon-Batenburg, J. Kroon and M. G. Northolt, Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers, Polymer Communications 1986,27,290-292.
    [19]in Cellulose,2010 http://en.wikipedia.org/wiki/Cellulose,2010.
    [20]T. Kondo, Hydrogen bonds in cellulose and cellulose derivatives.
    [21]M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy and J. Sugiyama, Improved Structural Data of Cellulose ⅢⅠ Prepared in Supercritical Ammonia, Macromolecules 2001,34,1237-1243.
    [22]J. Sugiyama, J. Persson and H. Chanzy, Combined infrared and electron diffraction study of the polymorphism of native celluloses, Macromolecules 1991, 24,2461-2466.
    [23]A. J. Michell, Second-derivative FTIR spectra of native celluloses from Valonia and tunicin, Carbohydrate research 1993,241,47-54.
    [24]A. J. Michell, Second-derivative FTIR spectra of native celluloses, Carbohydrate research 1990,197,53-60.
    [25]P. Langan, Y. Nishiyama and H. Chanzy, X-ray Structure of Mercerized Cellulose Ⅱ at 1 A Resolution, Biomacromolecules 2001,2,410-416.
    [26]K. H. Gardner and J. Blackwell, The hydrogen bonding in native cellulose, Biochimica et Biophysica Acta (BBA) 1974,343,232-237.
    [27]T. Kondo, E. Togawa and R. M. Brown, "Nematic Ordered Cellulose":A Concept of Glucan Chain Association, Biomacromolecules 2001,2,1324-1330.
    [28]Y. Sekiguchi, C. Sawatari and T. Kondo, A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses, Carbohydrate Polymers 2003,53,145-153.
    [29]H. Itagaki, M. Tokai and T. Kondo, Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups, Polymer 1997,38,4201-4205.
    [30]T. Kondo, Supermolecular architecture of wood cell wall cellulose: characterizaion using infrared microspectroscopy and liquid-mode atomic force microscopy, Advances in Lignocellulosics Characterization 1999,337-355.
    [31]H. Chanzy, B. Henrissat, M. Vincendon, S. F. Tanner and P. S. Belton, Solid-state 13C-N.M.R. and electron microscopy study on the reversible cellulose Ⅰ—>cellulose ⅢⅠ transformation in Valonia, Carbohydrate research 1987,160, 1-11.
    [32]F. Horii, A. Hirai and R. Kitamaru, CP/MAS 13C NMR spectra of the crystalline components of native celluloses, Macromolecules 1987,20,2117-2120.
    [33]H. Kono, Y. Numata, T. Erata and M. Takai,13C and 1H Resonance Assignment of Mercerized Cellulose II by Two-Dimensional MAS NMR Spectroscopies, Macromolecules 2004,37,5310-5316.
    [34]J. Hayashi, A. Sufoka, J. Ohkita and S. Watanabe, The confirmation of existences of cellulose ⅢⅠ, ⅢⅡ, ⅣⅠ, and ⅣⅡ by the X-ray method, Journal of Polymer Science:Polymer Letters Edition 2003,13,23-27.
    [35]F. G. Morin, B. D. Jordan and R. H. Marchessault, High-Energy Radiation-Induced Changes in the Crystal Morphology of Cellulose, Macromolecules 2004,37,2668-2670.
    [36]E. S. Gardiner and A. Sarko, Packing analysis of carbohydrates and polysaccharides.16. The crystal structures of celluloses IV I and IV II, Canadian Journal of Chemistry 1985,63,173-180.
    [37]王慧芳,纤维素及其衍生物液晶,中国塑料1999,13,20-24.
    [38]R. S. Werbowyj and D. G. Gray, Liquid Crystalline Structure In Aqueous Hydroxypropyl Cellulose Solutions, Molecular Crystals and Liquid Crystals 1976, 34,97-103.
    [39]T. Yamagishi, T. Fukuda, T. Miyamoto and J. Watanabe, Thermotropic Cellulose Derivatives with Flexible Substituents. I. Preparation of Tri-o-(β-methoxyethoxy)ethyl Cellulose and its Cholesteric Mesophase Properties, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 1989, 172,17-25.
    [40]T. Yamagishi, T. Fukuda, T. Miyamoto and J. Watanabe, Thermotropic cellulose derivatives with flexible substituents, Polymer Bulletin 1988,20,373-377.
    [41]T. Yamagishi, T. Fukuda, T. Miyamoto, Y. Takashina, Y. Yakoh and J. Watanabe, Thermotropic cellulose derivatives with flexible substituents IV. Columnar liquid crystals from ester-type derivatives of cellulose, Liquid Crystals 1991,10,467-473.
    [42]T. Itoh, A. Takada, T. Fukuda, T. Miyamoto, Y. Yakoh and J. Watanabe, Columnar liquid crystals in oligosaccharide derivatives. I. Discotic columnar liquid crystals in cellobiose octadecanoate and cellotriose hendecadecanoate, Liquid Crystals 1991,9,221-228.
    [43]H. Chanzy, A. Peguy, S. Chaunis and P. Monzie, Oriented cellulose films and fibers from a mesophase system, Journal of Polymer Science:Polymer Physics Edition 1980,18,1137-1144.
    [44]E. Bianchi, A. Ciferri, G. Conio and A. Tealdi, Fiber formation from liquid-crystalline precursors. II. Cellulose in N,N-dimethylacetamide-lithium chloride, Journal of Polymer Science Part B:Polymer Physics 1989,27, 1477-1484.
    [45]A. Grobe, Polymer Handbook, John Wiley & Sons, Inc., NY,1989.
    [46]刘新,李静,晏飞来,金春义,徐静静,木质纤维素预处理工艺的研究现状黑龙江农业科学2010,2,112-114.
    [47]邵自强,门爽,朱怡超,不同预处理条件下纤维素结构变化及其在DMAc/LiCl中的溶解,应用化工2006,35,586-590.
    [48]苏茂尧,由利丽,纤维素经液氨预处理对其结构和晶型的影响,纤维素科学与技术1997,5,7-12.
    [49]B. Focher, A. Marzetti, M. Cattaneo, P. L. Beltrame and P. Carniti, Effects of structural features of cotton cellulose on enzymatic hydrolysis, Journal of Applied Polymer Science 1981,26,1989-1999.
    [50]R. Evans, R. H. Wearne and A. F. A. Wallis, Effect of amines on the carbanilation of cellulose with phenylisocyanate, Journal of Applied Polymer Science 1991,42,813-820.
    [51]M. Xie and G. Zhao, Stress relaxation of chemically treated wood during processes of temperature elevation and decline, Forestry Studies in China 2005,7, 26-30.
    [52]A. Isogai, F. Onabe and M. Usuda, Swelling behaviour of cellulose by chemical and mechanical treatments, Sen'i Gakkaishi 1992,48,487-492.
    [53]B. Saha, Hemicellulose bioconversion, Journal of Industrial Microbiology and Biotechnology 2003,30,279-291.
    [54]T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide and T. Sawada, Characterization of cellulose treated by the steam explosion method. Part 3:Effect of crystal forms (cellulose Ⅰ, Ⅱ and Ⅲ) of original cellulose on changes in morphology, degree of polymerization, solubility and supermolecular structure by steam explosion, British Polymer Journal 1990,22,201-212.
    [55]T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide and T. Sawada, Characterization of cellulose treated by the steam explosion method. Part 1:Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid structure, British Polymer Journal 1990,22, 73-83.
    [56]T. Yamashiki, T. Matsui, M. Saitoh, Y. Matsuda, K. Okajima, K. Kamide and T. Sawada, Characterization of cellulose treated by the steam explosion method. Part 2:Effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion, British Polymer Journal 1990, 22,121-128.
    [57]邵自强,吕秉峰,软木纤维蒸汽闪爆改性及其形态结构表征,高分子材料科学与工程2002,18,120-122.
    [58]王飞俊,郝红英,邵自强,谭惠民,田文智,蔗渣闪爆处理及其黄原酸化物的制备和应用,纤维素科学与技术2003,11,29-34.
    [59]M. Imai, K. Ikari and I. Suzuki, High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment, Biochemical Engineering Journal 2004,17,79-83.
    [60]H. B. Klinke, L. Olsson, A. B. Thomsen and B. K. Ahring, Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae:Wet oxidation and fermentation by yeast, Biotechnology and Bioengineering 2003,81,738-747.
    [61]E. Varga, A. Schmidt, K. Reczey and A. Thomsen, Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility, Applied Biochemistry and Biotechnology 2003,104,37-50.
    [62]侯霖,薛冬桦,李涛,金花,玉米秸秆预处理及水解生成可发酵性糖,长春工业大学学报:自然科学版2007.28,26-28.
    [63]M. Sasaki, B. Kabyemela, R. Malaluan, S. Hirose, N. Takeda, T. Adschiri and K. Arai, Cellulose hydrolysis in subcritical and supercritical water, Journal of Supercritical Fluids 1998,13,261-268.
    [64]M. J. Drews, M. Barr and M. Williams, A Kinetic Study of the SCWO of a Sulfonated Lignin Waste Stream, Industrial & Engineering Chemistry Research 2000,39,4784-4793.
    [65]吕昂,张俐娜,纤维素溶剂研究进展,高分子学报2007,10,937-943.
    [66]S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding and G. Wu, Dissolution of cellulose with ionic liquids and its application:a mini-review, Green Chemistry 2006,8,325-327.
    [67]T. Heinze and A. Koschella, Solvents applied in the field of cellulose chemistry: a mini review, Polimeros 2005,15,84-90.
    [68]C. F. Cross, E. J. Bevan and C. Beadle in Plastic compound of cellulose, (Ed. G. Patents), U. S. A.,1894.
    [69]G. A. Kruder, Encyclopedia of polymer science and engineering, John Wiley & Sons, Inc. New York,1985.
    [70]杨之礼,王庆瑞,邬国铭,粘胶纤维工艺学(第二版),纺织工业出版社,北京,1989.
    [71]C. Woodings, Regenerated cellulose fibres, Woodhead Publishing,2001.
    [72]O. Turunen, T, J. Huttunen, J. Selin, F, J. Fors and V. Eklund in Cyclic process for producing an, alkali solution of cellulose carbamate and precipitating the carbamate, Google Patents, U. S. A,1987.
    [73]J. W. Hill and R. A. Jacobson in Method for manufacturing cellulose carbamate, (Ed. G. Patents), U. S. A.,1938.
    [74]C. Graenacher and R. Sallmann in Cellulose solutions and process of making same, (Ed. G. Patents), U. S. A.,1939.
    [75]T. Rosenau, A. Potthast, H. Sixta and P. Kosma, The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process), Progress in Polymer Science 2001,26,1763-1837.
    [76]E. Maia and S. Perez, Organic solvents for cellulose. IV. Modeling of the nteraction between N-methylmorpholine N-oxide (NMMO) molecules and a cellulose chain, Nouveau journal de chimie 1983,7,89-100.
    [77]T. A. Belousova, M. V. Shablygin, Y. Y. Belousov, L. K. Golova and S. P. Papkov, Spectral features of the N-methylmorpholine-N-oxide-water-cellulose system, Polymer Science U.S.S.R.1986,28,1115-1122.
    [78]H. Chanzy, M. Dube and R. H. Marchessault, Crystallization of cellulose with N-methylmorpholine N-oxide:A new method of texturing cellulose, Journal of Polymer Science:Polymer Letters Edition 2003,17,219-226.
    [79]D. Gagnaire, D. Mancier and M. Vincendon, Cellulose organic solutions:A nuclear magnetic resonance investigation, Journal of Polymer Science:Polymer Chemistry Edition 2003,18,13-25.
    [80]M. Terbojevich, A. Cosani, G. Conio, A. Ciferri and E. Bianchi, Mesophage formation and chain rigidity in cellulose and derivatives. Ⅲ:Aggregation of cellulose in N, N,-dimethylacetamide-lithium chloride, Macromolecules 1985,18, 640-646.
    [81]C.L. McCormick, P. A. Callais and B. H. Hutchinson Jr, Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide, Macromolecules 1985, 18,2394-2401.
    [82]D. Ishii, D. Tatsumi and T. Matsumoto, Effect of Solvent Exchange on the Solid Structure and Dissolution Behavior of Cellulose, Biomacromolecules 2003,4, 1238-1243.
    [83]C. Graenacher in Cellulose solution, Google Patents, U. S. A.,1934.
    [84]R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, Dissolution of cellose with ionic liquids, Journal of the American Chemical Society 2002,124, 4974-4975.
    [85]R. Swatloski, P.O. Patrick, R. Rogers and J. Holbrey in Dissolution et traitement de cellulose au moyen de liquides ioniques, WO Patent 3,029,329,2003.
    [86]K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey and R. D. Rogers, Controlling the Aqueous Miscibility of Ionic Liquids:Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations, Journal of the American Chemical Society 2003,125,6632-6633.
    [87]W. Zhang, L. Shi, Y. An, K. Wu, L. Gao, Z. Liu, R. Ma, Q. Meng, C. Zhao and B. He, Adsorption of Poly(4-vinyl pyridine) Unimers into Polystyrene-Block-Poly(acrylic acid) Micelles in Ethanol Due to Hydrogen Bonding, Macromolecules 2004,37,2924-2929.
    [88]H. Zhang, J. Wu, J. Zhang and J. He, 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose, Macromolecules 2005,38,8272-8277.
    [89]S. Barthel and T. Heinze, Acylation and carbanilation of cellulose in ionic liquids, Green Chemistry 2006,8,301-306.
    [90]A. P. Abbott, T. J. Bell, S. Handa and B. Stoddart, O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid, Green Chemistry 2005,7, 705-707.
    [91]H. Xie, S. Li and S. Zhang, Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers, Green Chemistry 2005,7,606-608.
    [92]M. B. Turner, S. K. Spear, J. D. Holbrey and R. D. Rogers, Production of bioactive cellulose films reconstituted from ionic liquids, Biomacromolecules 2004,5,1379-1384.
    [93]M. B. Turner, S. K. Spear, J. D. Holbrey, D. T. Daly and R. D. Rogers, Ionic Liquid-Reconstituted Cellulose Composites as Solid Support Matrices for Biocatalyst Immobilization, Biomacromolecules 2005,6,2497-2502.
    [94]J. Burger, G. Kettenbach and P. Klufers, Coordination equilibria in transition metal based cellulose solvents, Macromolecular Symposia 1995,99,113-126.
    [95]I. Nehls, W. Wagenknecht and B. Philipp,13C-NMR spectroscopic studies of cellulose in various solvent systems, Cellulose chemistry and technology 1995,29, 243-251.
    [96]K. Saalwachter and W. Burchard, Cellulose in New Metal-Complexing Solvents. 2. Semidilute Behavior in Cd-tren, Macromolecules 2001,34,5587-5598.
    [97]W. Brown and R. Wikstrom, A viscosity-molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation, European Polymer Journal 1965,1,1-10.
    [98]J. A. Cuculo, C. B. Smith, U. Sangwatanaroj, E. O. Stejskal and S. S. Sankar, A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. Ⅱ, Journal of Polymer Science Part A:Polymer Chemistry 1994,32,241-247.
    [99]J. A. Cuculo, C. B. Smith, U. Sangwatanaroj, E.O. Stejskal and S. S. Sankar, A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. I, Journal of Polymer Science Part A:Polymer Chemistry 1994,32,229-239.
    [100]M. Hattori, Y. Shimaya and M. Saito, Solubility and Dissolved Cellulose in Aqueous Calcium-and Sodium-Thiocyanate Solution, Polymer Journal 1998,30, 49-55.
    [101]Q. Xu and L. Chen, Ultraviolet spectra and structure of zinc-cellulose complexes in zinc chloride solution, Journal of Applied Polymer Science 1999,71, 1441-1446.
    [102]J. Mercer, British,1850.
    [103]H. Nishimura, T. Okano and A. Sarko, Mercerization of cellulose.5. Crystal and molecular structure of Na-cellulose Ⅰ, Macromolecules 1991,24,759-770.
    [104]H. Nishimura, T. Okano and A. Sarko, Mercerization of cellulose.6 Crystal and molecular structure Na-cellulose, Ⅳ, ibid 1991,771-778.
    [105]T. Okano and A. Sarko, Mercerization of cellulose. Ⅰ. X-ray diffraction evidence for intermediate structures Presented (in part) at the International Symposium on Wood and Pulping Chemistry, Stockholm, June 1981, Journal of Applied Polymer Science 1984,29.
    [106]T. Okano and A. Sarko, Mercerization of cellulose. Ⅱ. Alkali-cellulose intermediates and a possible mercerization mechanism Presented in part at the 1983 International Dissolving and Specialty Pulps Conference, Boston, MA, April 1983, Journal of Applied Polymer Science 1985,30.
    [107]H. Nishimura and A. Sarko, Mercerization of cellulose. Ⅲ. Changes in crystallite sizes, Journal of Applied Polymer Science 2003,33,855-866.
    [108]H. Nishimura and A. Sarko, Mercerization of cellulose. Ⅳ. Mechanism of mercerization and crystallite sizes, Journal of Applied Polymer Science 2003,33, 867-874.
    [109]H. Sobue, H. Kiessig and K. Hess, The cellulose-sodium hydroxide-water system as a function of the temperature, Zeitschrift fuer physikalische Chemie. Abteilung B 1939,43,309-328.
    [110]K. Kamide, K. Okajima, K. Kowsaka, T. Matsui, S. Nomura and K. Hikichi, Effect of the Distribution of Substitution of the Sodium Salt of Carboxymethylcellulose on Its Absorbency toward Aqueous Liquid, Polymer Journal 1985,17,909-918.
    [111]A. Isogai and R. H. Atalla, Dissolution of Cellulose in Aqueous NaOH Solutions, Cellulose 1998,5,309-319.
    [112]Y. N. Kuo and J. Hong, Investigation of solubility of microcrystalline cellulose in aqueous NaOH, Polymers for Advanced Technologies 2005,16,425-428.
    [113]J. Kunze and H.-P. Fink, Structural Changes and Activation of Cellulose by Caustic Soda Solution with Urea, Macromolecular Symposia 2005,223,175-188.
    [114]H.-P. Fink, P. Weigel, H. Purz and J. Ganster, Structure formation of regenerated cellulose materials from NMMO-solutions, Progress in Polymer Science 2001,26,1473-1524.
    [115]R. Swatloski, S. Spear, J. Holbrey and R. Rogers, Dissolution of Cellose with Ionic Liquids, Journal of the American Chemical Society 2002,124,4974-4975.
    [116]J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. Han and S. Kuga, Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures, Macromolecules 2008,41,9345-9351.
    [117]J. Cai and L. Zhang, Unique Gelation Behavior of Cellulose in NaOH/urea Aqueous Solution, Biomacromolecules 2005,7,183-189.
    [118]J. Cai and L. Zhang, Rapid Dissolution of Cellulose in LiOH/urea and NaOH/urea Aqueous Solutions, Macromolecular Bioscience 2005,5,539-548.
    [119]J. Cai, L. Zhang, C. Chang, G. Cheng, X. Chen and B. Chu, Hydrogen-Bond-Induced Inclusion Complex in Aqueous Cellulose/LiOH/urea Solution at Low Temperature, ChemPhysChem 2007,8,1572-1579.
    [120]A. Lue and L. Zhang, Investigation of the Scaling Law on Cellulose Solution Prepared at Low Temperature, The Journal of Physical Chemistry B 2008,112, 4488-4495.
    [121]A. Lue, L. Zhang and D. Ruan, Inclusion Complex Formation of Cellulose in NaOH-Thiourea Aqueous System at Low Temperature, Macromolecular Chemistry and Physics 2007,208,2359-2366.
    [122]M. Jones, P. Tewari, C. Blei, K. Hales, D. Pochan and J. Leroux, Self-assembled nanocages for hydrophilic guest molecules, J Am Chem Soc 2006, 128,14599-14605.
    [123]S. Li, P. He, J. Dong, Z. Guo and L. Dai, DNA-Directed Self-Assembling of Carbon Nanotubes, Journal of the American Chemical Society 2004,127,14-15.
    [124]D. Yan, Y. Zhou and J. Hou, Supramolecular self-assembly of macroscopic tubes, Science 2004,303,65-67.
    [125]X. Yan, C. Yu, X. Zhou, J. Tang and D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities, Angewandte Chemie(International ed. Print) 2004,43,5980-5984.
    [126]H. Qi, C. Chang and L. Zhang, Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process, Green Chemistry 2009,11,177-184.
    [127]X. Chen, C. Burger, F. Wan, J. Zhang, L. Rong, B. Hsiao, B. Chu, J. Cai and L. Zhang, Structure Study of Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/urea Aqueous Solutions, Biomacromolecules 2007,8,1918-1926.
    [128]D. Ruan, L. Ang and L. Zhang, Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature, polymer 2008,49, 1027-1036.
    [129]J. Cai, Y. Liu and L. Zhang, Dilute solution properties of cellulose in LiOH/urea aqueous system, Journal of Polymer Science Part B:Polymer Physics 2006,44,3093-3101.
    [130]Y. Lu, L. Weng and L. Zhang, Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers, Biomacromolecules 2004,5,1046-1051.
    [131]C. Weber, V. Haugaard, R. Festersen and G. Bertelsen, Production and applications of biobased packaging materials for the food industry, Food Additivs Contaminants 2002,19,172-177.
    [132]K. Marsh and B. Bugusu, Food packaging-roles, materials, and environmental issues, Journal of food science 2007,72,39.
    [133]J. Cai, L. Zhang, J. Zhou, H. Qi, H. Chen, T. Kondo, X. Chen and B. Chu, Multifilament Fibers Based on Dissolution of Cellulose in NaOH/urea Aqueous Solution:Structure and Properties, Advanced Materials 2007,19,821-825.
    [134]C. Chang, B. Duan, J. Cai and L. Zhang, Superabsorbent Hydrogels based on Cellulose for Smart Swelling and Controllable Delivery, European Polymer Journal 2009, In Press, Accepted Manuscript.
    [135]Y. Mao, J. Zhou, J. Cai and L. Zhang, Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution, Journal of Membrane Science 2006,279,246-255.
    [136]H. Qi, J. Cai, L. Zhang and S. Kuga, Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/urea Solution, Biomacromolecules 2009,10,1597-1602.
    [137]T. Young, L. Chen and L. Cheng, Membranes with a microparticulate morphology,polymer 1996,37,1305-1310.
    [138]J. Cai, L. Wang and L. Zhang, Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH-urea aqueous solution, Cellulose 2007,14,205-215.
    [139]S. Liang, L. Zhang and J. Xu, Morphology and permeability of cellulose/chitin blend membranes, Journal of Membrane Science 2007,287,19-28.
    [140]V. Rocher, J. Siaugue, V. Cabuil and A. Bee, Removal of organic dyes by magnetic alginate beads, Water Res 2008,42,1290-1298.
    [141]H. Kawaguchi, Functional polymer microspheres, Progress in polymer science 2000,25,1171-1210.
    [142]G. Crini, Non-conventional low-cost adsorbents for dye removal:A review, Bioresource Technology 2006,97,1061-1085.
    [143]G. Ronca, L. Palmieri, S. Maltinti, D. Tagliazucchi and A. Conte, Relationship between iron and protein content of dishes and polyphenol content in accompanying wines, Drugs Exp Clin Res 2003,29,271-286.
    [144]A. Bhatnagar and A. Minocha, Conventional and non-conventional adsorbents for removal of pollutants from water-:A review, Indian journal of chemical technology 2006,13,203-217.
    [145]P.-E. Gustavsson and P.-O. Larsson, Superporous agarose, a new material for chromatography, Journal of Chromatography A 1996,734,231-240.
    [146]R. Noel, W. O'Hare and G. Street, Thiophilic nature of divinylsulphone cross-linked agarose, Journal of Chromatography A 1996,734,241-246.
    [147]X. Xiong, L. Zhang and Y. Wang, Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane, Journal of Chromatography A 2005,1063,71-77.
    [148]D. Kratochvil and B. Volesky, Advances in the biosorption of heavy metals, Trends in Biotechnology 1998,16,291-300.
    [149]D. Zhou, L. Zhang and S. Guo, Mechanisms of lead biosorption on cellulose/chitin beads, Water Research 2005,39,3755-3762.
    [150]D. Zhou, L. Zhang, J. Zhou and S. Guo, Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Research 2004,38,2643-2650.
    [151]B. Bingol, C. Strandberg, A. Szabo and G. Wegner, Copolymers and hydrogels based on vinylphosphonic acid, Macromolecules 2008,41,2785-2790.
    [152]A. Pourjavadi, A. Harzandi and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal 2004,40,1363-1370.
    [153]A. Pourjavadi, M. Ayyari and M. S. Amini-Fazl, Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel, European Polymer Journal 2008,44,1209-1216.
    [154]C. Chang, B. Duan and L. Zhang, Fabrication and Characterization of Novel Macroporous Cellulose-Alginate Hydrogels, Polymer 2009,50,5467-5473.
    [155]P. Weiss,2008 Nobel Prize in Chemistry:Green Fluorescent Protein, Its Variants and Implications, ACS Nano 2008,2,1977-1977.
    [156]K. M. Gattas-Asfura, Y. Zheng, M. Micic, M. Snedaker, X. Ji, G. Sui, J. Orbulescu, F. M. Andreopoulos, S. M. Pham, C. Wang and R. M. Leblanc, Immobilization of Quantum Dots in the Photo-Cross-Linked Poly(ethylene glycol)-Based Hydrogel, The Journal of Physical Chemistry B 2003,107, 10464-10469.
    [157]C. Chang, J. Peng, L. Zhang and D. Pang, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, Journal of Materials Chemistry 2009,19,7771-7776.
    [158]M. Kirwan, Paper and paperboard packaging, Food packaging technology 2003, 241.
    [159]L. Zhang, J. Cai, J. Zhou, C. Li, H. Qi, Y. Mao and P. It in Method for preparing regenrated cellulose fibre by two-step coagulating bath process, U.S., 2006.
    [160]H. Qi, J. Cai, L. Zhang, Y. Nishiyama and A. Rattaz, Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution, Cellulose 2008,15,81-89.
    [161]S. Liu, L. Zhang, J. Zhou and R. Wu, Structure and Properties of Cellulose/Fe2O3 Nanocomposite Fibers Spun via an Effective Pathway, The Journal of Physical Chemistry C 2008,112,4538-4544.
    [162]S. Liu, L. Zhang, J. Zhou, J. Xiang, J. Sun and J. Guan, Fiberlike Fe2O3 Macroporous Nanomaterials Fabricated by Calcinating Regenerate Cellulose Composite Fibers, Chemistry of Materials 2008,20,3623-3628.
    [163]D. Robson and J. Lawther, in Towards a UK Strategy For Alternative Crops,, 1994.
    [164]R. Donges, Non-ionic cellulose ethers, British polymer journal 1990,23, 315-326.
    [165]C. Clasen and W. Kulicke, Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives, Progress in Polymer Science 2001,26,1839-1919.
    [166]T. Heinze and T. Liebert, Unconventional methods in cellulose functionalization, Progress in Polymer Science 2001,26,1689-1762.
    [167]J. Zhou, Y. Qin, S. Liu and L. Zhang, Homogenous Synthesis of Hydroxyethylcellulose in NaOH/Urea Aqueous Solution, Macromolecular Bioscience 2006,6,84-89.
    [168]J. Zhou, L. Zhang, Q. Deng and X. Wu, Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions, Journal of Polymer Science Part A:Polymer Chemistry 2004,42,5911-5920.
    [169]Y. Song, Y. Sun, X. Zhang, J. Zhou and L. Zhang, Homogeneous Quaternization of Cellulose in NaOH/urea Aqueous Solutions as Gene Carriers, Biomacromolecules 2008,9,2259-2264.
    [170]Y. Song, J. Zhou, Q. Li, Y. Guo and L. Zhang, Preparation and Characterization of Novel Quaternized Cellulose Nanoparticles as Protein Carriers, Macromolecular Bioscience 2009,9,857-863.
    [171]Y. Wang and Y. Deng, The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures, Biotechnology and Bioengineering 2009, 102,1398-1405.
    [172]H. Jin, C. Zha and L. Gu, Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution, Carbohydrate research 2007,342,851-858.
    [173]M. Egal, T. Budtova and P. Navard, The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions, Cellulose 2008,15, 361-370.
    [174]X. Chen, C. Burger, D. Fang, B. Hsiao, B. Chu, H. Qi and L. Zhang, Structure Development in Regenerated Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous Solutions Containing Cellulose I Crystals, Journal of Biobased Materials and Bioenergy 2007,1,266-273.
    [175]L. Yan, J. Chen and P. R. Bangal, Dissolving cellulose in a NaOH/thiourea aqueous solution:a topochemical investigation, Macromolecular Bioscience 2007, 7,1139-1148.
    [176]L. Yan, H. Tao and P. Bangal, Synthesis and Flocculation Behavior of Cationic Cellulose Prepared in a NaOH/Urea Aqueous Solution, Acta hydrochimica et hydrobiologica 2009,37,39-44.
    [177]J. Cai, S. Kimura, M. Wada, S. Kuga and L. Zhang, Cellulose Aerogels from Aqueous Alkali Hydroxide-Urea Solution, CHEMSUS CHEM 2008,1,149.
    [178]马光辉,苏志国,高分子微球材料,化学工业出版社,2005.
    [179]J. J. O'neill and E. P. Reichardt in Method of producing cellulose pellets, U. S. A.,1951.
    [180]W. Berger, H. Schuckri, B. Philipp, K. Wulf and J. Gensrich, Effect of surfactants on the behavior of the viscose in the spinning process, Fibre Chemistry 1980,11,183-188.
    [181]J. P. Patent 73,34,082,1971.
    [182]J. P. Patent 73,60,753,1971.
    [183]J. P. Patent 63,92,601,1971.
    [184]J. Peska, J. Stamberg and Z. Blace in Method for manufacturing of spherical cellulose particles, U. S. Patent 4,055,510,1977.
    [185]S. Kuga, New cellulose gel for chromatography, Journal of Chromatography A 1980,195,221-230.
    [186]S. Kuga, The porous structure of cellulose gel regenerated from calcium thiocyanate solution, Journal of Colloid and Interface Science 1980,77,413-417.
    [187]Mrs Istran Antal and G. Cserey, Hung Teljes 1980,18,203.
    [188]H. Determann, Gel chromatography:gel filtration, gel permeation, molecular sieves:a laboratory handbook, Springer-Verlag New York,1968.
    [189]H. Determann and I. Walter, Source of aromatic affinity to 'Sephadex' dextran gels,1968.
    [190]J. Stamberg, J. Peska, D. Paul and B. Philipp, Bead cellulose-a novel macroporous substrate for ion exchangers and similar systems, Acta Polymerica 1979,30,734.
    [191]S. Okuma, J. P. Patent 63,90,501 63,90,502 63,90,503 63,90,504 63,90,601, Japan,1988.
    [192]黄建辉,刘明华,林春香,詹怀宇,NMMO法球形纤维素珠体的制备及粒径分布的研究,纤维素科学与技术2006,14,13-18.
    [193]黄建辉,刘明华,林春香,詹怀宇,NMMO法制备的球形纤维素珠体的性能研究,纤维素科学与技术2006,14,16-21.
    [194]D. E. Patent 2,507,551,1975.
    [195]Li Funchen, Biotechnology and Bioengineering 1979,18,1507-1516.
    [196]E. P. O. Patent 316,270,1989.
    [197]D. D. Patent 275,696,1990.
    [198]J. P. Patent 03,111,426, Japan,1991.
    [199]W. Brown and K. Chitumbo, The selectivity of cellulose gels for simple salts, Journal of Chromatography A 1971,63,478-481.
    [200]W. Brown, Partitioning in gel chromatography, Chemica Scripta 1972,2, 25-29.
    [201]F. loth and C. Fanter in Bead-shaped cellulose products for separating and carrier materials and their manufacture, U. S. A. Patent 5,527,902,1996.
    [202]A. Maruska, J. Liesiene and A. Serys, Regulation of cellulose-based adsorbent granule morphology, Journal of Chromatography A 1996,746,147-160.
    [203]N. B. Afeyan, S. P. Fulton and F. E. Regnier, Perfusion chromatography packing materials for proteins and peptides, Journal of Chromatography A 1991, 544,267-279.
    [204]C. L. Hoffpauir and J. D. Guthrie, The use of aminized and phosphorylated cotton fabrics as ion exchange materials in the preparation of oil seed proteins, Journal of Biological Chemistry 1949,178,207.
    [205]B. G. Nagavi, B. M. Mithal and J. S. Chawla, Controlled gamma radiolysis of cellulose to produce microcrystalline cellulose, Cellulose chemistry and technology 1984,18,353-359.
    [206]A. A. Gorbunov, L. Y. Solovyova and V. A. Pasechnik, Fundamentals of the theory and practice of polymer gel-permeation chromatography as a method of chromatographic porosimetry, Journal of Chromatography A 1988,448,307-332.
    [207]J. H. Knox and H. P. Scott, Theoretical models for size-exclusion chromatography and calculation of pore size distribution from size-exclusion chromatography data, Journal of Chromatography A 1984,316,311-332.
    [208]A. Serys, J. Liesiene, J. Urbonaviciene, A. Maruska, K. Radzevicius, D. Valatkeviciute and V. Bumelis, Preparation and characterization of cellulose based adsorbents for large scale hydrophobic interaction chromatography, Journal of liquid chromatography 1994,17,749-760.
    [209]K. Chitumbo and W. Brown, Gel chromatography:The effect of temperature on partitioning, Journal of Chromatography A 1973,87,17-27.
    [210]P. Gemeiner and M. Pasteka, Direct spectrophotometric determination of proteins immobilized on bead cellulose and dissolved in cadoxene, Applied Biochemistry and Biotechnology 1983,8,381-393.
    [211]A. Ohnishi and T. Shibata, Undeveloped property of cellulose-chirality, Cellulose Commun 1997,4,2-6.
    [212]E. Francotte and R. M. Wolf, Benzoyl cellulose beads in the pure polymeric form as a new powerful sorbent for the chromatographic resolution of racemates, Chirality 1991,3,43-55.
    [213]A. Patti, S. Pedotti and C. Sanfilippo, Comparative HPLC enantioseparation of ferrocenylalcohols on two cellulose-based chiral stationary phases, Chirality 2007, 19,344-351.
    [214]K. S. Low, C. K. Lee and S. M. Mak, Sorption of copper and lead by citric acid modified wood, Wood Science and Technology 2004,38,629-640.
    [215]M. Martinez, N. Miralles, S. Hidalgo, N. Fiol, I. Villaescusa and J. Poch, Removal of lead(Ⅱ) and cadmium(Ⅱ) from aqueous solutions using grape stalk waste, Journal of Hazardous materials 2006,133,203-211.
    [216]E. Maekawa and T. Koshijima, Properties of 2,3-dicarboxy cellulose combined with various metallic ions, Journal of Applied Polymer Science 1984,29, 2289-2297.
    [217]R. Saliba, H. Gauthier and R. Gauthier, Adsorption of Heavy Metal Ions on Virgin and Chemically-modified Lignocellulosic Materials, Adsorption Science & Technology 2005,23,313-322.
    [218]A. Bhattacharya and B. N. Misra, Grafting:a versatile means to modify polymers:Techniques, factors and applications, Progress in Polymer Science 2004,29,767-814.
    [219]H. Kubota and S. Suzuki, Comparative examinations of reactivity of grafted celluloses prepared by u.v.-and ceric salt-initiated graftings, European Polymer Journal 1995,31,701-704.
    [220]H. Kubota and Y. Shigehisa, Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions, Journal of Applied Polymer Science 1995,56, 147-151.
    [221]M. M. Nasef and E. A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Progress in Polymer Science 2004,29,499-561.
    [222]B. Zhao, W. P, Z. T, C. C and S. J, Preparation and adsorption performance of a cellulosic-adsorbent resin for copper(Ⅱ), Journal of Applied Polymer Science 2006,99,2951-2956.
    [223]U. S. Orlando, A. U. Baes, W. Nishijima and M. Okada, Preparation of chelating agents from sugarcane bagasse by microwave radiation as an alternative ecologically benign procedure, Green Chemistry 2002,4,555-557.
    [224]S. E. Abdel-Aal, Y. H. Gad and A. M. Dessouki, The use of wood pulp and radiation-modified starch in wastewater treatment, Journal of Applied Polymer Science 2006,99,2460-2469.
    [225]S. R. Shukla and A. R. Athalye, Graft-copolymerization of glycidyl methacrylate onto cotton cellulose, Journal of Applied Polymer Science 1994,54, 279-288.
    [226]D. W. O'Connell, C. Birkinshaw and T. F. O'Dwyer, Heavy metal adsorbents prepared from the modification of cellulose:A review, Bioresource Technology 2008,99,6709-6724.
    [227]P. Chawakitchareon, L. Yavirach and B. Panyapinyopol,2001, p.175.
    [228]G. Simu, S. Funar-Timofei, S. Hora and L. Kurunczi, Experimental And Theoretical Study Of The Adsorption Of A Trisazo Direct Dye Derived From 4,4'-Diaminobenzanilide On A Cellulose Substrate, Molecular Crystals and Liquid Crystals 2004,416,97-104.
    [229]K. Xie, A. Hou and Y. Chen, The mathematical model of dye diffusion and adsorption on modified cellulose with triazine derivatives containing cationic and anionic groups, Journal of Physics:Conference Series 2008,96,012127.
    [230]P. Gemeiner, M. Polakovic, D. Mislovicova and V. Stefuca, Cellulose as a (bio)affinity carrier:properties, design and applications, Journal of Chromatography B:Biomedical Sciences and Applications 1998,715,245-271.
    [231]J. Baldrian, J. Peska, J. Stamberg, J. Ludwig and D. Paul, Cellulose packings in bead form-porous structure, Chromatography of Synthetic and Biological Polymers 1978,109.
    [232]V. Stefuca, P. Gemeiner and V. Bales, Study of porous cellulose beads as an enzyme carrier via simple mathematical models for the hydrolysis of saccharose using immobilized invertase reactors, Enzyme and Microbial Technology 1988,10, 306-311.
    [233]M. Marek, O. Valentova, K. Demnerova, J. Jizba, M. Blumauerova and J. Kas, Immobilized preparations for the biotransformation of daunomycinone, Biotechnology Letters 1981,3,327-330.
    [234]L. F. Chen and G. T. Tsao, Physical characteristics of porous cellulose beads as supporting material for immobilized enzymes, Biotechnology and Bioengineering 1976,18,1507-1516.
    [235]Z. Bilkova, M. Slovakova, A. Lycka, D. Horak, J. Lenfeld, J. Turkova and J. Churacek, Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres, Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences 2002,770,25-34.
    [236]D. Mislovicova, J. Masarova, A. Vikartovska, P. Gemeiner and E. Michalkova, Biospecific immobilization of mannan-penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose, Journal of Biotechnology 2004,110,11-19.
    [237]J. S. Kaerger, S. Edge and R. Price, Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose, European Journal of Pharmaceutical Sciences 2004, 22,173-179.
    [238]H. Baumann, M. Lin en and R. Keller, Konzepte zur Verbesserung der H mokompatibilit t von Cellulose, Das Papier 1989,43,674-681.
    [239]E. Tamiyuki, E. P. Patent 265,924,1989.
    [240]A. Makoto, J. P. Patent 90,75,340,1990.
    [241]张俐娜,天然高分子改性材料及应用,化学工业出版社,2006.
    [242]张俐娜,天然高分子科学与材料,科学出版社,2007.
    [1]H. Kawaguchi, Functional polymer microspheres, Progress in polymer science 2000,25,1171-1210.
    [2]N. I. Prokopov, I. A. Gritskova, V. R. Cherkasovand A. E. Chalykh, Synthesis of monodisperse functional polymeric microspheres for immunoassay, Russian Chemical Reviews 1996,65,167-180.
    [3]C. Tsioptsias, A. Stefopoulos, I. Kokkinomalis, L. Papadopoulou and C. Panayiotou, Development of micro-and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2, Green Chemistry 2008,10,965-971.
    [4]J. J. O'neill and E. P. Reichardt in Method of producing cellulose pellets, Vol. U.S.,1951.
    [5]R. Swatloski, S. Spear, J. Holbrey and R. Rogers, Dissolution of cellose with ionic liquids, J. Am. Chem. Soc 2002,124,4974-4975.
    [6]M. Liu, J. Huang and Y. Deng, Adsorption behaviors of 1-arginine from aqueous solutions on a spherical cellulose adsorbent containing the sulfonic group, Bioresource Technology 2007,98,1144-1148.
    [7]J. Kaster, W. de Oliveira, W. Glasser and W. Velander, Optimization of pressure-flow limits, strength, intraparticle transport and dynamic capacity by hydrogel solids content and bead size in cellulose immunosorbents, Journal of Chromatography 1993,648,79-90.
    [8]P. Gemeiner, M. Polakovi, D. Mislovicova and V. tefuca, Cellulose as a (bio) affinity carrier:properties, design and applications, Journal of Chromatography B: Biomedical Sciences and Applications 1998,715,245-271.
    [9]J. Lenfeld, Magnetic bead cellulose, Macromolecular Materials and Engineering 1993,212,147-155.
    [10]J. Lenfeld, J. Pescaronka, Sbreve and tamberg, Preparation of porous bead cellulose with technical grain size, Macromolecular Materials and Engineering 1992,197,201-206.
    [11]D. Misloviova, J. Masarova, A. Vikartovska, P. Gemeiner and E. Michalkova, Biospecific immobilization of mannan-penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose, Journal of biotechnology 2004,110,11-19.
    [12]M. Kminkova and J. Kucera, Purification and immobilization of soybean (Glycine max) urease, Czech Journal of Food Sciences-UZPI (Czech Republic) 1999,17,171-175.
    [13]L. De Luca, G. Giacomelli, A. Porcheddu, M. Salaris and M. Taddeis, Cellulose beads:a new versatile solid support for microwave-assisted synthesis. Preparation of pyrazole and isoxazole libraries, J. Comb. Chem 2003,5,465-471.
    [14]D. Wang, G. Hao, Q. Shi and Y. Sun, Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography, Journal of Chromatography A 2007,1146,32-40.
    [15]E. Mitova, H. Parschova and Z. Matejka, Selective sorption of metal oxoanions from dilute solution by bead cellulose sorbent, Separation Science and Technology 2007,42,1231-1243.
    [16]X. Guo and F. Chen, Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater, Environ. Sci. Technol 2005,39,6808-6818.
    [17]J. Bird, N. Brough, S. Dixon and S. Batchelor, Understanding Adsorption Phenomena:Investigation of the Dye Cellulose Interaction, J. Phys. Chem. B 2006, 110,19557-19561.
    [18]H. Goetz, M. Kuschel, T. Wulff, C. Sauber, C. Miller, S. Fisher and C. Woodward, Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination, Journal of Biochemical and Biophysical Methods 2004,60,281-293.
    [19]M. P. Tarazona and E. Saiz, Combination of SEC/MALS experimental procedures and theoretical analysis for studying the solution properties of macromolecules, Journal of Biochemical and Biophysical Methods 2003,56, 95-116.
    [20]T. Eremeeva, Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides:a review, Journal of Biochemical and Biophysical Methods 2003,56,253-264.
    [21]S. C. Churms, Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction, Journal of Chromatography A 1996,720,75-91.
    [22]P. Lundahl, C.-M. Zeng, C. Lagerquist Hagglund, I. Gottschalk and E. Greijer, Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles, Journal of Chromatography B:Biomedical Sciences and Applications 1999,722,103-120.
    [23]D. Berek, Coupled liquid chromatographic techniques for the separation of complex polymers, Progress in Polymer Science 2000,25,873-908.
    [24]H. Pasch, Adv. Polym. Sci 2002,150,1-66.
    [25]G. Meira, M. Netopilik, M. Potschka, I. Schnoll-Bitai and J. Vega, Band Broadening Function in Size Exclusion Chromatography of Polymers:Review of Some Recent Developments, Macromol. Symp.2007,258,186-197.
    [26]P.-E. Gustavsson and P.-O. Larsson, Superporous agarose, a new material for chromatography, Journal of Chromatography A 1996,734,231-240.
    [27]L. Zhang, J. Zhou, G. Yang and J. Chen, Preparative fractionation of polysaccharides by columns packed with regenerated cellulose gels, Journal of Chromatography A 1998,816,131-136.
    [28]L. Zhang, Q. Ding, D. Meng, L. Ren, G. Yang and Y. Liu, Investigation of molecular masses and aggregation of [beta]-glucan from Poria cocos sclerotium by size-exclusion chromatography, Journal of Chromatography A 1999,839, 49-55.
    [29]G. Yang, X. Xiong and L. Zhang, Separation of superoxide dismutase by size-exclusion chromatography column packed with regenerated cellulose gels, Journal of Applied Polymer Science 2003,89,763-768.
    [30]J. Cai and L. Zhang, Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules 2006,7,183-189.
    [31]D. Horak, M. Babic, H. Mackova and M. Benes, Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations, Journal of separation science 2007,30,1751-1772.
    [32]J. Cai and L. Zhang, Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions, Macromolecular Bioscience 2005,5,539-548.
    [33]M. Hirota, N. Tamura, T. Saito and A. Isogai, Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO2 system, Cellulose 2009,1-11.
    [34]J. Rabek, Experimental methods in polymer chemistry, Wiley New York,1980.
    [35]S. SIriIa and J. Hanna, Quantitative Organic Analysis via Functional Groups, John Wiley and Sons, Inc., New York,1963.
    [36]V. Sinha, M. Agrawal and R. Kumria, Influence of formulation and excipient variables on the pellet properties prepared by extrusion spheronization, Curr. Drug. Delivery 2005,2,1-8.
    [37]J. Lenfeld, J. Peska and J. Stamberg, Preparation of porous bead cellulose with technical grain size angew, Makromol Chem 1992,197,201-206.
    [38]Y. S. Tanwar, P. S. Naruka and G. R. Ojha, Development and evaluation of floating microspheres of verapamil hydrochloride, Revista Brasileira de Ciencias Farmaceuticas 2007,43,529-534.
    [39]M. Nelson and R. O'Connor, Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part Ⅰ. Spectra of lattice types Ⅰ, Ⅱ, Ⅲ and of amorphous cellulose, Journal of applied polymer science 1964,8,1311-1324.
    [40]P. Langan, Y. Nishiyama and H. Chanzys, A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis, J. Am. Chem. Soc 1999,121,9940-9946.
    [41]K. Kamide, K. Okajima and K. Kowsaka, Dissolution of natural cellulose into aqueous alkali solution:role of super-molecular structure of cellulose, Polymer journal 1992,24,71-86.
    [42]D. L. Kaplan, Biopolymers from renewable resources, Springer Verlag, Berlin Germany,1998.
    [43]H. Qi, C. Chang and L. Zhang, Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process, Green Chemistry 2009,11,177-184.
    [44]A. M. A. Nada and M. L. Hassan, Thermal behavior of cellulose and some cellulose derivatives, Polymer Degradation and Stability 2000,67,111-115.
    [45]S. Ouajai and R. A. Shanks, Composition, structure and thermal degradation of hemp cellulose after chemical treatments, Polymer Degradation and Stability 2005,89,327-335.
    [46]M. Li, S. Cheng and H. Yan, Preparation of crosslinked chitosan/poly (vinyl alcohol) blend beads with high mechanical strength, Green Chemistry 2007,9, 894-898.
    [47]P. J. Wood, Specificity in the interaction of direct dyes with polysaccharides, Carbohydr. Res 1980,85,50.
    [48]T. van de Ven, K. Saint-Cyr and M. Allix, Adsorption of toluidine blue on pulp fibers, Colloids and Surfaces A:Physicochemical and Engineering Aspects 2007, 294,1-7.
    [1]U. Hafeli, W. Schutt, J. Teller and M. Zborowski, Scientific and clinical applications of magnetic carriers, Plenum Press New York,1997.
    [2]P. R. Levison, S. E. Badger, J. Dennis, P. Hathi, M. J. Davies, I. J. Bruce and D. Schimkat, Recent developments of magnetic beads for use in nucleic acid purification, Journal of Chromatography A 1998,816,107-111.
    [3]M. A. Zalich, M. L. Vadala, J. S. Riffle, M. Saunders and T. G. St. Pierre, Structural and magnetic properties of cobalt nanoparticles encased in siliceous shells, Chemistry of Materials 2007,19,6597-6604.
    [4]Y. Zhu, W. Tong, C. Gao and H. M hwald, Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking, Journal of Materials Chemistry 2008,18,1153-1158.
    [5]A. S. Lubbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A.-J. Lemke, D. Ohlendorf, W. Huhnt and D. Huhn, Clinical Experiences with Magnetic Drug Targeting:A Phase Ⅰ Study with 4'-Epidoxorubicin in 14 Patients with Advanced Solid Tumors, Cancer Res 1996, 56,4686-4693.
    [6]B. Le Droumaguet, G. Mantovani, D. M. Haddleton and K. Velonia, Formation of giant amphiphiles by post-functionalization of hydrophilic protein-polymer conjugates, Journal of Materials Chemistry 2007,17,1916.
    [7]A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt and R. Felix, Differential Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro, Journal of Magnetism and Magnetic Materials 1999,194,185-196.
    [8]A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. Shafi, A. Ulman, M. Cowman and R. A. Gross, Activity of Candida rugosa Lipase Immobilized on gamma-Fe2O3 Magnetic Nanoparticles, Journal of the American Chemical Society 2003,125,1684-1685.
    [9]R. M. Cornell and U. Schwertmann, The iron oxides:Structure, properties, reactions, occurrences, and uses, Vch Verlagsgesellschaft Mbh,2003.
    [10]M. J. Cooney, C. Lau, M. Windmeisser, B. Y. Liaw, T. Klotzbach and S. D. Minteer, Design of chitosan gel pore structure:towards enzyme catalyzed flow-through electrodes, Journal of Materials Chemistry 2008,18,667-674.
    [11]X. Peng and L. Zhang, Surface Fabrication of Hollow Microspheres from N-Methylated Chitosan Cross-Linked with Gultaraldehyde, Langmuir 2004,21, 1091-1095.
    [12]P. Kaplan, Clinical Chemestry. Theory, analysis and correlation.2* edicidn, Mosby 1989,157.
    [13]J. C. Kang and S. L. Wei, Study of magnetic microspheres for purging cancer cells from bone marrow. Ⅱ. Preparation of polystyrene magnetic microspheres, Acta pharmaceutica Sinica 1997,32,536-541.
    [14]R. S. Molday, S. P. S. Yen and A. Rembaum, Application of magnetic microspheres in labelling and separation of cells, Nature 1977,268,437-438.
    [15]L. O. Kolarik, N. J. Anderson, B. A. Bolto, C. T. Chin and A. J. Priestley, Magnetic microparticles in water treatment, Water supply 1994,12,253.
    [16]S. Kobsa and W. M. Saltzman, Bioengineering Approaches to Controlled Protein Delivery, Pediatric Research 2008,63,513-519
    [17]A. C. Small and J. H. Johnston, Novel hybrid materials of magnetic nanoparticles and cellulose fibers, Journal of Colloid and Interface Science 2009,331,122-126.
    [18]D. Zhou, L. Zhang, J. Zhou and S. Guo, Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Research 2004,38,2643-2650.
    [19]J. Lenfeld, Magnetic bead cellulose, Angewandte Makromolekulare Chemie 1993, 212,147-155.
    [20]M. Liu, J. Huang and Y. Deng, Adsorption behaviors of 1-arginine from aqueous solutions on a spherical cellulose adsorbent containing the sulfonic group, Bioresource Technology 2007,98,1144-1148.
    [21]Y. Lei, D. Lin, S. Yao and Z. Zhu, Preparation of an anion exchanger based on TiO2-densified cellulose beads for expanded bed adsorption, Reactive and Functional Polymers 2005,62,169-177.
    [22]J. Cai and L. Zhang, Unique Gelation Behavior of Cellulose in NaOH/urea Aqueous Solution, Biomacromolecules 2005,7,183-189.
    [23]J. Cai, L. Zhang, J. Zhou, H. Qi, H. Chen, T. Kondo, X. Chen and B. Chu, Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties, Advanced Materials 2007,19,821-825.
    [24]S. Liu, L. Zhang, J. Zhou, J. Xiang, J. Sun and J. Guan, Fiberlike Fe2O3 Macroporous Nanomaterials Fabricated by Calcinating Regenerate Cellulose Composite Fibers, Chemistry of Materials 2008,20,3623-3628.
    [25]J. Cai, Y. Liu and L. Zhang, Dilute solution properties of cellulose in LiOH/urea aqueous system, Journal of Polymer Science Part B:Polymer Physics 2006,44, 3093-3101.
    [26]J. Rabek, Experimental methods in polymer chemistry, Wiley New York,1980.
    [27]Y. Lei, D. Lin, S. Yao and Z. Zhu, Preparation and characterization of titanium oxide-densified cellulose beads for expanded bed adsorption, Journal of Applied Polymer Science 2003,90,2848-2854.
    [28]J. Svoboda, The effect of magnetic field strenght on the efficiency of magnetic separation, Minerals Engineering 1994,7,747-757.
    [29]G. Bayramoglu, A. Denizli, S. Bektas and M. Yakup Arica, Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution:preparation and biosorption kinetics analysis, Microchemical Journal 2002,72,63-76.
    [30]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner and J. H. Wendorff, Nanostructured fibers via electrospinning, Advanced Materials 2001,13,70-72.
    [31]M. S. Lee, E. K. Yum, I. Y. C. Lee, J. H. Lee, H. W. Lee, C. S. Cho, D. T. Kim, H. J. Choi, T. J. Kim and S. C. Shim, Synthesis of Trisubstituted 6-Azaindoles via Palladium-catalyzed Heteroannulation, Bulletin of the Korean Chemical Society 2002,23,535-536.
    [32]E. Togawa and T. Kondo, Change of morphological properties in drawing water-swollen cellulose films prepared from organic solutions. a view of molecular orientation in the drawing process, Journal of Polymer Science Part B: Polymer Physics 1999,37,451-459.
    [33]T. Kondo, C. Sawatari, R. S. J. Manley and D. G. Gray, Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose, Macromolecules 1994,27,210-215.
    [34]A. Kongdee and T. Bechtold, In-fibre formation of Fe(OH)3-a new approach to pigment coloration of cellulose fibres, Dyes and Pigments 2004,60,137-142.
    [35]D. L. Leslie-Pelecky and R. D. Rieke, Magnetic Properties of Nanostructured Materials, Chemistry of Materials 1996,8,1770-1783.
    [36]B. H. Sohn and R. E. Cohen, Processible Optically Transparent Block Copolymer Films Containing Superparamagnetic Iron Oxide Nanoclusters, Chemistry of Materials 1997,9,264-269.
    [37]A. Mdarhri, C. Brosseau and F. Carmona, Microwave dielectric properties of carbon black filled polymers under uniaxial tension, Journal of Applied Physics 2007,101,084111-084112.
    [38]X. Tong and Y. Sun, Agar-Based Magnetic Affinity Support for Protein Adsorption, Biotechnology Progress 2001,17,738-743.
    [39]Y. Wang, X. Wang, G. Luo and Y. Dai, Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system, Bioresource Technology 2008,99,3881-3884.
    [40]D. Tanyolac, H. SonmezIsIk and A. R. Ozdural, A low cost porous polyvinylbutyral membrane for BSA adsorption, Biochemical Engineering Journal 2005,22,221-228.
    [41]K. Jiang, L. S. Schadler, R. W. Siegel, X. Zhang, H. Zhang and M. Terrones, Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, Journal of Materials Chemistry 2004,14,37-39.
    [42]M. Chiba, J. Hanes and R. Langer, Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres, Biomaterials 1997,18,893-901.
    [43]D. Wu, Y. Sun, X. Xu, S. Cheng, X. Zhang and R. Zhuo, Biodegradable and pH-Sensitive Hydrogels for Cell Encapsulation and Controlled Drug Release, Biomacromolecules 2008,9,1155-1162.
    [1]U. Bornscheuer, Immobilizing enzymes:how to create more suitable biocatalysts, Angewandte Chemie International Edition 2003,42,3336-3337.
    [2]A. Corma, V. Fornes, J. L. Jorda, F. Rey, R. Fernandez-Lafuente, J. M. Guisan and C. Mateo, Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials, Chemical Communications 2001,2001,419-420.
    [3]J. Tominaga, N. Kamiya, S. Doi, H. Ichinose, T. Maruyama and M. Goto, Design of a Specific Peptide Tag that Affords Covalent and Site-Specific Enzyme Immobilization Catalyzed by Microbial Transglutaminase, Biomacromolecules 2005,6,2299-2304.
    [4]C. C. Ribeiro, C. C. Barrias and M. A. Barbosa, Calcium phosphate-alginate microspheres as enzyme delivery matrices, Biomaterials 2004,25,4363-4373.
    [5]E. Taqieddin and M. Amiji, Enzyme immobilization in novel alginate-chitosan core-shell microcapsules, Biomaterials 2004,25,1937-1945.
    [6]M. Bagheri, H. Rodriguez, R. P. Swatloski, S. K. Spear, D. T. Daly and R. D. Rogers, Ionic Liquid-Based Preparation of Cellulose-Dendrimer Films as Solid Supports for Enzyme Immobilization, Biomacromolecules 2007,9,381-387.
    [7]A. I. Kallenberg, F. R. Rantwijk and R. A. Sheldon, Immobilization of penicillin G Acylase:The Key to Optimum Performance, Advanced Synthesis & Catalysis 2005,347,905-926.
    [8]L. Cao, Carrier-bound immobilized enzymes:principles, applications and design, Wiley-VCH,2005.
    [9]J. M. Guisan, Immobilization of enzymes and cells, Humana Pr Inc,2006.
    [10]R. Fernandez-Lafuente, C. Rosell, L. Caanan-Haden, L. Rodes and J. Guisan, Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives:dramatic stabilization of penicillin acylase versus organic solvents, Enzyme and Microbial Technology 1999,24,96-103.
    [11]D. Norouzian, S. Javadpour, N. Moazami and A. Akbarzadeh, Immobilization of whole cell penicillin G acylase in open pore gelatin matrix, Enzyme and Microbial Technology 2002,30,26-29.
    [12]J. Van Roon, E. Groenendijk, H. Kieft, C. Schroen, J. Tramper and H. Beeftink, Novel approach to quantify immobilized-enzyme distributions, Heterogeneity and scale in the rational design of an immobilized biocatalyst 89,59.
    [13]D. Mislovicova, J. Masarova, A. Vikartovska, P. Gemeiner and E. Michalkova, Biospecific immobilization of mannan-penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose, Journal of Biotechnology 2004,110,11-19.
    [14]D. Klemm, H.-P. Schmauder and T. Heinze, Biopolymers. Polysaccharides Ⅱ, Wiley-VCH Weinheim,2002.
    [15]D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, Cellulose:Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition 2005,44,3358-3393.
    [16]T. Heinze and T. Liebert, Unconventional methods in cellulose functionalization, Progress in Polymer Science 2001,26,1689-1762.
    [17]J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. Han and S. Kuga, Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures, Macromolecules 2008,41,9345-9351.
    [18]J. Cai, Y. Liu and L. Zhang, Dilute solution properties of cellulose in LiOH/urea aqueous system, Journal of Polymer Science Part B:Polymer Physics 2006,44, 3093-3101.
    [19]R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, Magnetics, IEEE Transactions on 1981,17,1247-1248.
    [20]P. Pernemalm, M. Carlsson and G. Lindgren in Separation material and its preparation, EP,1985.
    [21]L. Sundberg and J. Porath, Preparation of adsorbents for biospecific affinity chromatography. Attachment of group-containing ligands to insoluble polymers by means of bifuctional oxiranes, J Chromatogr 1974,90,87-98.
    [22]M. M. Dradford, A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilizing the principle ofprotein-dye binding, Anal. Biochem 1976,72,248-254.
    [23]J. G. Shewale, K. K. Kumar and G. R. Ambekar, Evaluation of determination of 6-aminopenicillanic acid by p-dimethyl aminobenzaldedyde, Biotechnology Techniques 1987,1,69-72.
    [24]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner and J. Wendorff, Nanostructured fibers via electrospinning, Advanced Materials 2001,13,70-72.
    [25]S. Cho, S. Lee, E. Lee, S. Jeun, Y. Kim, H. Kim, S. Ahn, S. Jung, S. Kwon and B. Kim, Ab Initio Study of Mutagen X:Importance of Ionization and Solvation, BULLETIN-KOREAN CHEMICAL SOCIETY 2002,23,929-930.
    [26]U. Schwertmann and R. Cornell, Iron oxides in the laboratory:preparation and characterization, Vch Verlagsgesellschaft Mbh,2000.
    [27]R. Swatloski, S. Spear, J. Holbrey and R. Rogers, Dissolution of cellose with ionic liquids, J. Am. Chem. Soc 2002,124,4974-4975.
    [28]M. Nelson and R. O'Connor, Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose, Journal of applied polymer science 1964,8,1311-1324.
    [29]L. Lei, Y. Bai, Y. Li, L. Yi, Y. Yang and C. Xia, Study on immobilization of lipase onto magnetic microspheres with epoxy groups, Journal of Magnetism and Magnetic Materials 2009,321,252-258.
    [30]D. L. Kaplan, Biopolymers from renewable resources, Springer Verlag, Berlin Germany,1998.
    [31]C. I. Chen, C. W. Chen, C. W. Huang and Y. C. Liu, Simultaneous purification and immobilization of penicillin G acylase using bifunctional membrane, Journal of Membrane Science 2007,298,24-29.
    [32]S. M. Read and D. H. Northcote, Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein, Analytical Biochemistry 1981,116,53-64.
    [33]W. Wang, L. Deng, Z. Peng and X. Xiao, Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase, Enzyme and microbial Technology 2007,40,255-261.
    [1]V. Rocher, J.-M. Siaugue, V. Cabuil and A. Bee, Removal of organic dyes by magnetic alginate beads, Water Research 2008,42,1290-1298.
    [2]Z. Zhang, S. Xia, X. Wang, A. Yang, B. Xu, L. Chen, Z. Zhu, J. Zhao, N. Jaffrezic-Renault and D. Leonard, A novel biosorbent for dye removal: Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1, Journal of Hazardous Materials 2009,163,279-284.
    [3]C. H. Niu, B. Volesky and D. Cleiman, Biosorption of arsenic (ⅤV) with acid-washed crab shells, Water Research 2007,41,2473-2478.
    [4]M. T. Uddin, M. A. Islam, S. Mahmud and M. Rukanuzzaman, Adsorptive removal of methylene blue by tea waste, Journal of Hazardous Materials 2009, 164,53-60.
    [5]P. Francesca, M. Sara and T. Luigi, New biosorbent materials for heavy metal removal:Product development guided by active site characterization, Water Research 2008,42,2953-2962.
    [6]N. Yee, L. G. Benning, V. R. Phoenix and F. G. Ferris, Characterization of metal-cyanobacteria sorption reactions:a combined macroscopic and infrared spectroscopic investigation, Environmental science & technology 2004,38, 775-782.
    [7]E. Guibal, M. Van Vooren, B. A. Dempsey and J. Roussy, A Review of the Use of Chitosan for the Removal of Particulate and Dissolved Contaminants, Separation Science and Technology 2006,41,2487-2514.
    [8]A.-F. Ngomsik, A. Bee, J.-M. Siaugue, V. Cabuil and G. Cote, Nickel adsorption by magnetic alginate microcapsules containing an extractant, Water Research 2006,40,1848-1856.
    [9]Y.-B. Lin, B. Fugetsu, N. Terui and S. Tanaka, Removal of organic compounds by alginate gel beads with entrapped activated carbon, Journal of Hazardous Materials 2005,120,237-241.
    [10]N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou and D. N. Bikiaris, Chitosan Derivatives as Biosorbents for Basic Dyes, Langmuir 2007,23,7634-7643.
    [11]H. Yi, L.-Q. Wu, W. E. Bentley, R. Ghodssi, G. W. Rubloff, J. N. Culver and G. F. Payne, Biofabrication with Chitosan, Biomacromolecules 2005,6,2881-2894.
    [12]G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Progress in Polymer Science 2005,30,38-70.
    [13]Y. Sag and Y. Aktay, Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin, Process Biochemistry 2000,36,157-173.
    [14]G. Crini, Non-conventional low-cost adsorbents for dye removal:A review, Bioresource Technology 2006,97,1061-1085.
    [15]A. A. Atia, A. M. Donia and W. A. Al-Amrani, Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups, Chemical Engineering Journal 2009,150,55-62.
    [16]G. Ronca, L. Palmieri, S. Maltinti, D. Tagliazucchi and A. Conte, Relationship between iron and protein content of dishes and polyphenol content in accompanying wines, Drugs under experimental and clinical research 2003,29, 271-286.
    [17]A. Minocha, Conventional and non-conventional adsorbents for removal of pollutants from water-A review, Indian Journal of Chemical Technology 2006, 13.
    [18]M. Sari, S. Akgol, M. Karatas and A. Denizli, Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads, Industrial and Engineering Chemistry Research 2006,45,3036-3043.
    [19]H. Chen, M. D. Kaminski, X. Liu, C. J. Mertz, Y. Xie, M. D. Torno and A. J. Rosengart, A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques, Medical Hypotheses 2007,68, 1071-1079.
    [20]J.-I. Akutsu, Y. Tojo, O. Segawa, K. Obata, M. Okochi, H. Tajima and M. Yohda, Development of an integrated automation system with a magnetic bead-mediated nucleic acid purification device for genetic analysis and gene manipulation, Biotechnology and Bioengineering 2004,86,667-671.
    [21]G. Morstyn and W. Sheridan, Cell therapy:stem cell transplantation, gene therapy, and cellular immunotherapy, Cambridge Univ Pr,1996.
    [22]N. Yang, S. Zhu, D. Zhang and S. Xu, Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal, Materials Letters 2008,62,645-647.
    [23]D. N. S. Hon, Cellulose:a random walk along its historical path, Cellulose 1994, 1,1-25.
    [24]H. Hashem and R. El-Shishtawy, Preparation and Characterization of Cationized Cellulose for the Removal of Anionic Dyes, Adsorption Science & Technology 2001,19,197-210.
    [25]M. C. Hwang and K. M. Chen, Removal of color from effluents using polyamide-epichlorohydrin-cellulose polymer. II. Use in acid dye removal, Journal of Applied Polymer Science 1993,49,975-989.
    [26]E. Mistova, H. Parschova and Z. Matejka, Selective Sorption of Metal Oxoanions from Dilute Solution by Bead Cellulose Sorbent, Separation Science and Technology 2007,42,1231-1243.
    [27]X. Guo, Y. Du, F. Chen, H.-S. Park and Y. Xie, Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide ([beta]-FeOOH):EXAFS study, Journal of Colloid and Interface Science 2007,314,427-433.
    [28]J. Cai and L. Zhang, Unique Gelation Behavior of Cellulose in NaOH/urea Aqueous Solution, Biomacromolecules 2005,7,183-189.
    [29]J. Cai, L. Zhang, J. Zhou, H. Qi, H. Chen, T. Kondo, X. Chen and B. Chu, Multifilament Fibers Based on Dissolution of Cellulose in NaOH/urea Aqueous Solution:Structure and Properties, Advanced Materials 2007,19,821-825.
    [30]S. Liu, L. Zhang, J. Zhou, J. Xiang, J. Sun and J. Guan, Fiberlike Fe2O3 Macroporous Nanomaterials Fabricated by Calcinating Regenerate Cellulose Composite Fibers, Chemistry of Materials 2008,20,3623-3628.
    [31]R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Transactions on Magnetics 1981,17,1247-1248.
    [32]Y. Wu, Y. Xiao and Y. Zhou, Micromixing in the submerged circulative impinging stream reactor, Chinese Journal of Chemical Engineering 2003,11, 420-425.
    [33]H. Brauer, Development and performance of stagnation jet mixer, Ger Chem Eng 1981,4,144-154.
    [34]R. Chi, Z. Xu, Y. Wu and C. Wang, Optimal Conditions for Preparing Ultra-Fine CeO2 Powders in A Submerged Circulative Impinging Stream Reactor, Journal of Rare Earths 2007,25,422-427.
    [35]Y. Wu, Impinging Streams:Fundamentals, Properties and Applications, Elsevier, Amsterdam,2007.
    [36]A. Blandino, M. Macias and D. Cantero, Formation of calcium alginate gel capsules:Influence of sodium alginate and CaCl2 concentration on gelation kinetics, Journal of Bioscience and Bioengineering 1999,88,686-689.
    [37]G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres and M. Rinaudo, Physico-chemical characterization of Ca-alginate microparticles produced with different methods, Biomaterials 1999,20,1427-1435.
    [38]H. Pilgrimm in Superparamagnetic particles, process for their manufacture and usage, Vol. Google Patents, U.S.A.,1999.
    [39]D. K. Rassis, I. S. Saguy and A. Nussinovitch, Collapse, shrinkage and structural changes in dried alginate gels containing fillers, Food Hydrocolloids 2002,16, 139-151.
    [40]J. Bird, N. Brough, S. Dixon and S. N. Batchelor, Understanding adsorption phenomena:investigation of the dye-cellulose interaction, J Phys Chem B 2006, 110,19557-19561.
    [41]J. H. P. Watson, B. A. Cressey, A. P. Roberts, D. C. Ellwood, J. M. Charnock and A. K. Soper, Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria, Journal of Magnetism and Magnetic Materials 2000,214,13-30.
    [42]Y. S. Ho and G. McKay, Sorption of dyes and copper ions onto biosorbents, Process Biochemistry 2003,38,1047-1061.
    [43]G. Bayramoglu, A. Denizli, S. Bektas and M. Yakup Arica, Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution:preparation and biosorption kinetics analysis, Microchemical Journal 2002,72,63-76.
    [44]R. E. Treybal, Mass Transfer Operations, McGraw-Hill:Singapore,1981.
    [1]R. Schwarzenbach, B. Escher, K. Fenner, T. Hofstetter, C. Johnson, U. Von Gunten and B. Wehrli, The challenge of micropollutants in aquatic systems, Science 2006,313,1072-1077.
    [2]H. K. An, B. Y. Park and D. S. Kim, Crab shell for the removal of heavy metals from aqueous solution, Water Research 2001,35,3551-3556.
    [3]P. Francesca, M. Sara and T. Luigi, New biosorbent materials for heavy metal removal:Product development guided by active site characterization, Water Research 2008,42,2953-2962.
    [4]J. Wang and C. Chen, Biosorbents for heavy metals removal and their future, Biotechnology Advances 2009,27,195-226.
    [5]K. Vijayaraghavan and Y.-S. Yun, Bacterial biosorbents and biosorption, Biotechnology Advances 26,266-291.
    [6]D. W. O'Connell, C. Birkinshaw and T. F. O'Dwyer, Heavy metal adsorbents prepared from the modification of cellulose:A review, Bioresource Technology 2008,99,6709-6724.
    [7]V. W. D. Chui, K. W. Mok, C. Y. Ng, B. P. Luong and K. K. Ma, Removal and recovery of copper(Ⅱ), chromium(Ⅲ), and nickel(Ⅱ) from solutions using crude shrimp chitin packed in small columns, Environment International 1996,22, 463-468.
    [8]Y. Sag and Y. Aktay, Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin, Process Biochemistry 2000,36,157-173.
    [9]G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Progress in Polymer Science 2005,30,38-70.
    [10]V. Rocher, J.-M. Siaugue, V. Cabuil and A. Bee, Removal of organic dyes by magnetic alginate beads, Water Research 2008,42,1290-1298.
    [11]J. Cai and L. Zhang, Unique Gelation Behavior of Cellulose in NaOH/urea Aqueous Solution, Biomacromolecules 2005,7,183-189.
    [12]D. Zhou, L. Zhang and S. Guo, Mechanisms of lead biosorption on cellulose/chitin beads, Water Research 2005,39,3755-3762.
    [13]D. Zhou, L. Zhang, J. Zhou and S. Guo, Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Research 2004,38,2643-2650.
    [14]J. Cai, Y. Liu and L. Zhang, Dilute solution properties of cellulose in LiOH/urea aqueous system, Journal of Polymer Science Part B:Polymer Physics 2006,44, 3093-3101.
    [15]Y. Wu, Y. Xiao and Y. Zhou, Micromixing in the submerged circulative impinging stream reactor, Chinese Journal of Chemical Engineering 2003,11, 420-425.
    [16]R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Transactions on Magnetics 1981,17,1247-1248.
    [17]Y. S. Ho and G. McKay, Sorption of dyes and copper ions onto biosorbents, Process Biochemistry 2003,38,1047-1061.
    [18]G. Bayramoglu, A. Denizli, S. Bektas and M. Yakup Arica, Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution:preparation and biosorption kinetics analysis, Microchemical Journal 2002,72,63-76.
    [19]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner and J. Wendorff, Nanostructured fibers via electrospinning, Advanced Materials 2001,13,70-72.
    [20]S. Cho, S. Lee, E. Lee, S. Jeun, Y. Kim, H. Kim, S. Ahn, S. Jung, S. Kwon and B. Kim, Ab Initio Study of Mutagen X:Importance of Ionization and Solvation, BULLETIN-KOREAN CHEMICAL SOCIETY 2002,23,929-930.
    [21]U. Schwertmann and R. Cornell, Iron oxides in the laboratory:preparation and characterization, Vch Verlagsgesellschaft Mbh,2000.
    [22]R. Swatloski, S. Spear, J. Holbrey and R. Rogers, Dissolution of cellose with ionic liquids, J. Am. Chem. Soc 2002,124,4974-4975.
    [23]M. Nelson and R. O'Connor, Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types Ⅰ, Ⅱ, Ⅲ and of amorphous cellulose, Journal of applied polymer science 1964,8,1311-1324.
    [24]N. A. R. Gow, G. W. Gooday, J. D. Russell and M. J. Wilson, Infrared and X-ray diffraction data on chitins of variable structure, Carbohydrate Research 1987,165, 105-110.
    [25]J. G. Domszy and G. Roberts, Evaluation of IRtechniquesfor analyzing chitosan, Makromol. Chem 1985,186,1671-1677.
    [26]A. Galat and J. Popowicz, Study of the Raman scattering spectra of chitins, Serie des Sciences Biologiques 1978,26,519-524.
    [27]D. L. Kaplan, Biopolymers from renewable resources, Springer Verlag, Berlin Germany,1998.
    [28]S.-F. Wang, L. Shen, W.-D. Zhang and Y.-J. Tong, Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites, Biomacromolecules 2005, 6,3067-3072.
    [29]X. Wang, C. Zhao, P. Zhao, P. Dou, Y. Ding and P. Xu, Gellan gel beads containing magnetic nanoparticles:An effective biosorbent for the removal of heavy metals from aqueous system, Bioresource Technology 2009,100, 2301-2304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700