用户名: 密码: 验证码:
新型核壳介孔复合材料的合成与生物应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕介观限制空间与客体分子空间结构的相互匹配性展开,合成出了一系列具有不同介观结构、形貌以及各种功能化基团的多孔材料和核壳材料。新材料的合成,除了研究其内在的反应机制外,更为重要的是开发其全新的功能,结构与功能的结合永远是科学家们关注的重点。在论文中,我们设计合成了具有不同介观限制空间的材料,并将纳米复合阵列的空间结构与客体分子三维空间结构的相互匹配性关联,结合具有不同空间结构的纳米材料特点,将其应用于选择性生物磁分离、可控药物靶向传输以及生物传感器等领域。
     第2章中,以无毒、廉价的硬脂酸铁为有机铁源,在高压反应釜中低温(250℃)制备出了超顺磁单分散纳米磁性晶体。然后,我们将所制备的超顺磁单分散纳米磁性晶体成功地包埋进入介孔氧化硅微球中。所制备超顺磁磁性微球的三维空间结构可调变,高比表面,孔径极为均一、可调,维度有序、具有强超顺磁性。更重要的是,我们以具有不同三维空间尺寸和分子量的细胞色素(Cyt c)和牛血清蛋白(BSA)为模型生物蛋白分子,将制备的磁性介孔氧化硅微球应用于基于生物分子空间结构的磁性分离。结果表明,依据生物分子空间结构的匹配性能,所制备的超顺磁磁性微球能够将不同尺寸生物蛋白有效的进行分离。
     第3章中,以非手性的表面活性剂作为结构导向剂,通过含有疏水性有机功能基团的硅源与正硅酸乙酯进行共聚,一步合成了具有同时控制功能化以及手性孔道的MCM-41型螺旋介孔材料。通过仔细的表征,我们成功地合成出了一批具有不同尺寸和螺旋程度的螺旋介孔材料。更重要的是,我们通过实验结果提出了一种由短胶束向一束二维六方直胶束转变,以及一束二维六方直胶束向一束二维六方螺旋胶束的转变自发驱动螺旋产生的机理。此外,我们考察了手性螺旋功能化介孔材料作为药物传输载体对阿司匹林的药物传输能力。结果表明,在药物传输过程中,药物释放的速度可以通过手性螺旋功能化介孔材料的形貌以及螺旋结构进行控制。
     第4章中,通过非手性表面活性剂、磁性纳米晶和无机硅物种的自装制备出了以磁性纳米晶为核,以手性螺旋介孔材料为壳层的磁性核壳材料。此外,考察了手性螺旋磁性核壳材料作为药物传输载体对阿司匹林的药物传输能力。结果表明,在药物传输过程中,药物释放的速度可以通过手性螺旋磁性核壳材料的形貌以及螺旋结构进行控制,具有手性螺旋介孔结构的磁性核壳材料有望应用于磁靶向药物的可控传输。
     第5章中,构造了一种基于固定二甲基亚砜还原酶的碳纳米管生物传感器。将二甲基亚砜还原酶(DMSOR)固定于碳纳米管制成工作电极作为生物传感器。研究表明碳纳米管促进了酶与电极表面之间的电子转移。该电极有望在DMSO生物传感器方面得到应用。
     第6章中,以碳纳米管与水溶液界面的阳离子表面活性剂十八烷基三甲基溴化铵(ODTMA)超分子自组装结构为模板,在水溶液体系成功地合成了以碳纳米管为核,以高度有序介孔硅基材料为壳的碳纳米管/有序介孔氧化硅核壳纳米线。此外,将二甲基亚砜还原酶固定于核壳纳米线制成工作电极作为生物传感器。介孔硅较大的比表面积,从而可以提高其吸附酶的能力,并且由于其具有亲水性而使其容易在水中分散。研究发现核壳纳米线结构对酶与电极表面的电子传输有促进作用。该电极有望在DMSO生物传感器方面得到应用。
This thesis is concerned with the fabrication of several mesoporous silica materials that are especially tailored to accommodate guest molecule encapsulation-transportation process. In this project I have studied the formation mechanism and surface modification on designing the mesoporous silica with different morphologies (e.g. spherical, helix), mesopore structures in order to meet the requirement as host material of several kind biomolecules/drug molecules. Furthermore, I have done the observation on this novel material for several potential applications like: size-selectivity bioseparation, targeted drug-delivery, and biosensor according to their different pore structure. More detailed work for each chapter in this thesis is discussed as follow:
     In chapter 2, we report a novel synthesis and selective bio-separation of the composite of Fe3O4 magnetic nanocrystals and highly ordered MCM-41 type periodic mesoporous silica nanospheres. Monodisperse superparamagnetic Fe3O4 nanocrystals were synthesized by thermal decomposition of iron stearate in diol in autoclave at low temperature. The synthesized nanocrystals were encapsulated in mesoporous silica nanospheres through the packing and self-assembly of composite nanocrystal-surfactant micelles and surfactant-silica complex. Different from previous studies, the produced magnetic silica nanospheres (MSNs) possess not only uniform nanosize (90~140 nm) but also a highly ordered mesostructure. Binary adsorption and desorption of proteins cytochrome c (cyt c) and bovine serum albumin (BSA) demonstrate that MSNs are an effective and highly selective adsorbent for proteins with different molecular sizes.
     In chapter 3, we report a novel one-step synthetic pathway that controls both functionalities and morphology of functionalized periodic helical mesostructured silicas by the co-condensation of tetraethoxysilane (TEOS) and hydrophobic organoalkoxysilane using achiral surfactants as templates. Different from previous methods, the hydrophobic interaction between hydrophobic functional groups and the surfactant as well as the intercalation of hydrophobic groups into the micelles are proposed to lead to the formation of helical mesostructures. Our study demonstrates that these hydrophobic interaction and intercalation can promote the production of long cylindrical micelles, and that the formation of helical rod-like morphology is attributed to the spiral transformation from bundles of hexagonally-arrayed and straight rod-like composite micelles due to the reduction in surface free energy. Furthermore, the helical mesostructured silicas were employed as drug carriers for the release study of model drug, aspirin, and our results show that the drug release rate can be controlled by the morphology and helicity of the materials.
     In chapter 4, we report a one step synthesis of magnetic helical mesostructured silica (MHMS) rod by self-assembly of an achiral surfactant, magnetic nanocrystals with stearic acid ligands and silicate. This core-shell structured material consists of a Fe3O4 superparamagnetic nanocrystal core and a highly ordered periodic helical mesoporous silica shell. Furthermore, the drug release process is demonstrated using aspirin as a drug model and MHMS as a drug carrier in a sodium phosphate buffer solution.
     In chapter 5, Dimethyl sulfoxide reductase (DMSOR) was immobilized into carbon nanotubes, which was cast onto the surface of GC electrode, and used as the working electrode (DMSOR-CNT/GC electrode). The results indicated that the electron transfer between DMSOR and GC electrode promoted by carbon nanotubes can be easily performed through their surface-controlled process; they have potential application as DMSO biosensor.
     In chapter 6, we reported a synthesis of carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell via the interfacial surfactant template. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET surface area and narrow pore size distribution. The core-shell nanowires have promising applications in biosensors, nanoprobes, and energy storage due to their high surface area, high loading amount of enzyme and good disperse ability in polar solvents. When the core-shell nanowires immobilized with DMSOR was cast onto the surface of electrode, this can be functioned as the working electrode. The results indicated that the electron transfer between DMSOR and GC electrode promoted by core-shell nanowires and the electrode have potential application as DMSO biosensor.
引文
[1] Davis, M.E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417(6891): 813-821.
    [2] IUPAC Manual of Symbols and Terminology. Pure Appl. Chem. [J].1972, 31:578.
    [3] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism [J]. Nature, 1992, 359 (6397): 710-712.
    [4] Vartuli J. C., Schmitt K. D., Kresge C. T., et al. Effect of Surfactant Silica Molar Ratios on the Formation of Mesoporous Molecular-Sieves-Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications[J]. Chemistry of Materials, 1994, 6(12):2317-2326.
    [5] Vartuli J. C., Kresge C. T., Leonowicz M. E., et al. Synthesis of Mesoporous Materials - Liquid-Crystal Templating Versus Intercalation of Layered Silicates [J]. Chemistry of Materials, 1994, 6(11):2070-2077.
    [6] Beck J. S., Vartuli J. C., Roth W. J., et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J]. Journal of the American Chemical Society, 1992, 114(27):10834-10843.
    [7] Ryoo R., Joo S. H., Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B, 1999, 103(37): 7743-7746.
    [8] Kang M., Yi S. H., Lee H. I., et al. Reversible replication between ordered mesoporous silica and mesoporous carbon [J]. Chemical Communications, 2002, 17:1944-1945.
    [9] Taguchi A., Smatt J. H., Linden M. Carbon monoliths possessing a hierarchical, fully interconnected porosity[J]. Advanced Materials, 2003, 15(14):1209.
    [10] Vartuli J. C., Schmitt K. D., Kresge C. T., et al. Effect of Surfactant Silica Molar Ratios on the Formation of Mesoporous Molecular-Sieves - Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications [J]. Chemistry of Materials, 1994, 6 (12): 2317-2326.
    [11] Vartuli J. C., Kresge C. T., Leonowicz M. E., et al. Synthesis of Mesoporous Materials - Liquid-Crystal Templating Versus Intercalation of Layered Silicates [J]. Chemistry of Materials, 1994, 6 (11): 2070-2077.
    [12] Beck J. S., Vartuli J. C., Roth W. J., et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J]. Journal of the American Chemical Society, 1992, 114 (27): 10834-10843.
    [13] Chen C. Y., Burkett S. L., Li H. X., et al. Studies on mesoporous materials II. Synthesis mechanism of MCM-41[J]. Microporous Mater. 1993, 2(1):27-34.
    [14] Chen C. Y., Xiao S. Q., Davis M. E. Studies on Ordered Mesoporous Materials.3. Comparison of Mcm-41 to Mesoporous Materials Derived from Kanemite [J]. Microporous Materials, 1995, 4(1):1-20.
    [15] Steel A., Carr S. W., Anderson M. W. N-14 Nmr-Study of Surfactant Mesophases in the Synthesis of Mesoporous Silicates [J]. Journal of the Chemical Society-Chemical Communications, 1994, 13:1571-1572.
    [16] Marlow F., Zhao D. Y., Stucky G. D. Doped mesoporous silica fibers: the internal structure [J]. Microporous and Mesoporous Materials, 2000, 39(1-2): 37-42.
    [17] Sun T., Ying J. Y. Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism[J]. Nature, 1997, 389(6652): 704-706.
    [18] Attard G. S., Bartlett P. N., Coleman N. R. B.,et al. Mesoporous platinum films from lyotropic liquid crystalline phases[J]. Science, 1997, 278 (5339): 838-840.
    [19] Firouzi A., Kumar D., Bull L. M.,et al. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies[J]. Science, 1995, 267 (5201): 1138-1143.
    [20] Huo Q.S., Margolese D. I., Ciesla U., et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem Mater, 1994, 6: 1176-1191.
    [21] Lukens W. W., Schmidt-Winkel P., Zhao D. Y., et al. Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified Broekhoff-de Boer method [J]. Langmuir, 1999, 15(16):5403-5409.
    [22] Ryoo R., Ko C. H., Kruk M., et al. Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network [J]. Journal of Physical Chemistry B , 2000, 104 (48):11465-11471.
    [23] Liu Z., Sakamoto Y., Ohsuna T., et al. TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41[J]. Angewandte Chemie-International Edition 2000, 39 (17): 3107-3110.
    [24] Kruk M., Jaroniec M., Ko C. H., et al. Characterization of the porous structure of SBA-15[J]. Chemistry of Materials, 2000, 12 (7):1961-1968.
    [25] Miyazawa K., Inagaki S. Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15[J]. Chemical Communications, 2000, 21:2121-2122.
    [26] Zhao D. Y., Feng J. L., Huo, Q. S., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279 (5350):548-552.
    [27] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature, 1992, 359 (6397):710-712.
    [28] Liu X. Y., Tian B. Z., Yu C. Z., et al. Room-temperature synthesis in acidic media of large-pore three- dimensional bicontinuous mesoporous silica with Ia3d symmetry[J]. Angewandte Chemie-International Edition, 2002, 41(20): 3876-3878.
    [29] Huo Q. S., Margolese D. I., Stucky G. D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials [J]. Chemistry of Materials, 1996, 8(5): 1147-1160.
    [30] Zhao D. Y., Huo Q. S., Feng J. L., et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120 (24): 6024-6036.
    [31] Yu C. Z., Yu Y. H., Zhao D. Y. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer [J]. Chemical Communications, 2000, 7: 575-576.
    [32] Fan J., Yu C. Z., Gao T., et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties[J]. Angewandte Chemie-International Edition, 2003, 42(27): 3146-3150.
    [33] Zhao D. Y., Feng J. L., Huo Q. S., et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.
    [34] Kim S. S., Karkamkar A., Pinnavaia T. J., et al. Synthesis and characterization of ordered, very large pore MSU-H silicas assembled from water-soluble silicates [J]. Journal of Physical Chemistry B, 2001, 105(32):7663-7670.
    [35] Yu C. Z., Fan J., Tian B. Z., et al. Synthesis of mesoporous silica from commercial poly(ethylene oxide)/poly(butylene oxide) copolymers: Toward the rational design of ordered mesoporous materials[J]. Journal of Physical Chemistry B, 2003, 107(48): 13368-13375.
    [36] Lettow J. S., Han Y. J., Schmidt-Winkel P., et al. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas[J]. Langmuir, 2000, 16: 8291.
    [37] Schmidt-Winkel P., Lukens W. W., Zhao D. Y., et al. Mesocellular siliceous foams with uniformly sized cells and windows[J]. J. Am. Chem. Soc., 1999, 121:254.
    [38] Schmidt-Winkel P., Lukens W. W., Yang P. D., et al. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores[J]. Chem. Mater., 2000, 12: 686.
    [39] Kim T. W., Kleitz F., Paul B., et al. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system[J]. J. Am. Chem. Soc., 2005, 127:7601.
    [40] Lin H. P., Mou C. Y., Liu S. B., et al. Post-synthesis treatment of acid-made mesoporous silica materials by ammonia hydrothermal process [J]. Microporous and Mesoporous Materials, 2001, 44:129-137.
    [41] Yuan Z. Y., Zhou W. Z. A novel morphology of mesoporous molecular sieve MCM-41[J]. Chemical Physics Letters, 2001, 333: 427-431.
    [42] Zhao D. Y., Sun J. Y., Li Q. Z., et al. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chemistry of Materials, 2000, 12:275-279.
    [43] Jacobs H. O., Tao A. R., Schwartz A., et al. Fabrication of a cylindrical display by patterned assembly [J]. Science, 2002, 296: 323-325.
    [44] Kim W. J., Yang S. M. Preparation of mesoporous materials from the flow-induced microstructure in aqueous surfactant solutions [J]. Chemistry of Materials, 2000, 12: 3227-3235.
    [45] Yu C. Z., Fan J., Tian B. Z., et al. Morphology development of mesoporous materials: a colloidal phase separation mechanism [J]. Chemistry of Materials, 2004, 16: 889-898.
    [46] Schulz-Ekloff G., Rathousky J., Zukal A. Controlling of morphology and characterization of pore structure of ordered mesoporous silicas [J]. Microporous and Mesoporous Materials, 1999, 27:273-285.
    [47] Huo Q. S., Zhao D. Y., Feng J. L., et al. Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide [J]. Adv. Mater., 1997, 9:974.
    [48] Wang J. F., Zhang J. P., Asoo B. Y., et al. Structure-selective synthesis of mesostructured/mesoporous silica nanofibers [J]. J. Am. Chem. Soc., 2003, 125: 13966-13967.
    [49] Yang H., Kuperman A., Coombs N., et al. Synthesis of oriented films of mesoporous silica on mica[J]. Nature, 1996, 379 (6567): 703-705.
    [50] Yang H., Coombs N., Sokolov I., et al. Free-standing and oriented mesoporous silica films grown at the air-water interface [J]. Nature, 1996, 381(6583): 589-592.
    [51] Lu Y. F., Ganguli R., Drewien C. A., et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating [J]. Nature, 1997, 389(6649): 364-368.
    [52] Lu Y. F., Fan H. Y., Doke N., et al. Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality [J]. Journal of the American Chemical Society, 2000, 122 (22): 5258-5261.
    [53] Tolbert S. H., Schaffer T. E., Feng J. L., et al. A new phase of oriented mesoporous silicate thin films [J]. Chemistry of Materials, 1997, 9(9): 1962-1967.
    [54] Zhao D. Y., Yang P. D., Margolese D. I., et al. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures [J]. Chemical Communications, 1998, 22: 2499-2500.
    [55] Tian B. Z., Liu X. Y., Tu B., et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nature Materials, 2003, 2 (3):159-163.
    [56] Yang P. D., Zhao D. Y., Margolese D. I., et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J].. Nature, 1998, 396 (6707): 152-155.
    [57] Huo Q. S., Feng J. L., Schuth F., et al. Preparation of hard mesoporous silica spheres [J]. Chem. Mater., 1997, 9:14.
    [58] Yu C. Z., Fan J., Zhao D. Y., Block copolymer synthesis of high-quality cubic, large pore mesoporous millimeter spheres in the presence of inorganic salts[J]. Acta Chim. Sin. 2002, 60: 1357-1360.
    [59] Cai Q., Luo Z. S., Pang W. Q., et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium [J]. Chem. Mater., 2001, 13:258-263.
    [60] Goltner C. G., Antonietti M. Mesoporous materials by templating of liquid crystalline phases [J]. Advanced Materials, 1997, 9 (5):431.
    [61] Melosh N. A., Lipic P., Bates F. S., et al. Molecular and mesoscopic structures of transparent block copolymer-silica monoliths [J]. Macromolecules, 1999, 32(13):4332-4342.
    [62] Feng P. Y., Bu X. H., Stucky G. D., et al. Monolithic mesoporous silica templated by microemulsion liquid crystals [J]. Journal of the American Chemical Society, 2000, 122 (5): 994-995.
    [63] Zhao D. Y., Yang P. D., Chmelka B. F., et al. Multiphase assembly of mesoporous-macroporous membranes [J]. Chemistry of Materials, 1999, 11 (5):1174.
    [64] Kim J. M., Kim S. K., Ryoo R. Synthesis of MCM-48 single crystals [J]. Chemical Communications, 1998, 2: 259-260.
    [65] Guan S., Inagaki S., Ohsuna T., et al. Cubic hybrid organic-inorganic mesoporous crystal with a decaoctahedral shape [J]. Journal of the American Chemical Society, 2000, 122 (23):5660-5661.
    [66] Yu C. Z., Tian B. Z., Fan J., et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts [J]. Journal of the American Chemical Society, 2002, 124 (17): 4556-4557.
    [67] Lin H. P., Mou C. Y.“Tubules-within-a-tubule”hierarchical order of mesoporous molecular sieves in MCM-41[J]. Science, 1996, 273 (5276): 765-768.
    [68] Kim S. S., Zhang W. Z., Pinnavaia T. J. Ultrastable mesostructured silica vesicles[J]. Science, 1998, 282 (5392): 1302-1305.
    [69] Yang S. M., Sokolov I., Coombs N., et al. Formation of Hollow Helicoids in Mesoporous Silica: Supramolecular Origami [J]. Advanced Materials, 1999, 11:1427-1431.
    [70] Wu Y. Y., Cheng G. S., Katsov K., et al. Composite mesostructures by nano-confinement [J]. Nature Materials, 2004, 3: 816-822.
    [71] Gier T. E., Bu X. H., Feng P. Y., et al. Synthesis and organization of zeolite-like materials with three-dimensional helical pores [J].Nature, 1998, 395:154-157.
    [72] Bradshaw D., Prior T. J., Cussen E. J., et al. Permanent microporosity and enantioselective sorption in a chiral open framework [J]. J. Am. Chem. Soc., 2004, 126: 6106-6114.
    [73] Rowan A. E., Nolte R. J. M. Helical molecular programming [J]. Angew. Chem.Int.Ed., 1998, 37: 63-68.
    [74] Che S., Liu Z., Ohsuna T., et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429:281-284.
    [75] Ohsuna T., Liu Z., Che S., et al. Characterization of chiral mesoporous materials by transmission electron microscopy [J]. Small, 2005, 1:233-237.
    [76] Jin H., Liu Z., Ohsuna T., et al. Control of morphology and helicity of chiral mesoporous silica [J]. Adv.Mater., 2006, 18:593-596.
    [77] Qiu H., Wang S., Zhang W., et al. Steric and temperature control of enantiopurity of chiral mesoporous silica [J]. J. Phys. Chem. C, 2008,112:1871-1877.
    [78] Wu X., Jin H., Liu Z., et al. Racemic helical mesoporous silica formation by achiral anionic surfactant [J]. Chem. Mater., 2006, 18:241-243.
    [79] Zhang Q., Lu F., Li C., et al. An efficient synthesis of helical mesoporous silica nanorods [J]. Chem. Lett., 2006, 35:190-191.
    [80] Wang B., Chi C., Shan W., et al. Chiral mesostructured silica nanofibers of MCM-41[J]. Angew. Chem. Int. Ed., 2006, 45:2088-2090.
    [81] Yang S., Zhao L. Z., Yu C. Z., et al. On the origin of helical mesostructures [J]. J.Am.Chem.Soc., 2006,128:10460-10466.
    [82] Meng X., Yokoi T., Lu D., et al. Synthesis and characterization of chiral periodic mesoporous organosilicas [J]. Angew.Chem.Int.Ed., 2007,46:7796-7798.
    [83] Han Y., Zhao L., Ying J.Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates [J]. Adv. Mater., 2007, 16 :2454-2459.
    [84] Snir Y., Kamien R. D. Entropically driven helix formation [J]. Science, 2005, 307:1067-1067.
    [85] Bornscheuer U. T. Immobilizing enzymes: How to create more suitable biocatalysts [J]. Angew. Chem., Int. Ed., 2003, 42:3336-3337.
    [86] Wang Y., Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation [J]. Chem. Mater., 2005, 17:953-961.
    [87] Schiel J. E., Mallik R., Soman S., et al. Applications of silica supports in affinity chromatography [J]. J. Sep. Sci., 2006, 29:719-737.
    [88] Lai C. Y., Trewyn B. G., Jeftinija D. M., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc., 2003, 125: 4451-4459.
    [89] Huh S., Wiench J.W., Yoo J.C., et al. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method [J]. Chem. Mater., 2003, 15: 4247-4256.
    [90] Slowing I. I., Vivero-Escoto J. L., Wu C. W., et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews, 2008, 60:1278-1288.
    [91] Hoffmann F., Cornelius M., Morell J., et al. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angew. Chem. Int. Ed., 2006, 45:3216- 3251.
    [92] Huh S., Wiench J. W., Trewyn B. G., et al. Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups [J]. Chem. Commun., 2003, 18: 2364-2365.
    [93] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous moleculare-sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359:710-712.
    [94] Zhao D., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279:548-552.
    [95] Ciesla U., Schüth F. Ordered mesoporous materials [J]. Micropor. Mesopor. Mater., 1999, 27:131-149.
    [96] Ying J. Y., Mehnert C. P., Wong M. S. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [97] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano Lett., 2004, 4: 2139-2143.
    [98] Suzuki K., Ikari K., Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system [J]. J. Am. Chem. Soc., 2004, 126: 462-463.
    [99] Han Y., Ying J. Y. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J]. Angew. Chem. Int. Ed., 2005, 44: 288-292.
    [100] Ying J. Y. Design and synthesis of nanostructured catalysts [J]. Chem. Eng. Sci., 2006, 61: 1540-1548.
    [101] Takahashi H., Li B., Sasaki T., et al. Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica [J]. Chem. Mater., 2000, 12:3301-3305.
    [102] Han Y. J., Stucky G. D., Butler A. Mesoporous silicate sequestration and release of proteins [J]. J. Am. Chem. Soc., 1999, 121: 9897-9898.
    [103] Lai C. Y., Trewyn B. G., Jeftinija D. M., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc., 2003, 125: 4451-4459.
    [104] Radu D. R., Lai C. Y., Jeftinija K., et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent [J]. J. Am. Chem. Soc., 2004, 126:13216-13217.
    [105] Slowing I., Trewyn B. G., Lin V. S. Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells [J]. J. Am. Chem. Soc., 2006, 128: 14792-14793.
    [106] Giri S., Trewyn B. G., Stellmaker M. P., et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angew. Chem. Int. Ed., 2005, 44:5038-5044.
    [107] Qiao S. Z., Djojoputro H., Hu Q. H., et al. Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica [J].Prog. Solid. State., Chem. 2006, 34:249-256.
    [108] Qiao S. Z., Yu C. Z., Xing W., et al. Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods[J]. Chem. Mater., 2005, 17:6172-6176.
    [109] Yiu H. H. P., Botting C. H., Botting N. P., et al. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys. Chem. Chem. Phys., 2001, 3: 2983-2985.
    [110] Davis M. E. Ordered porous materials for emerging applications [J].Nature, 2002, 417:813-821.
    [111] Hartmann M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J]. Chem. Mater., 2005, 17:4577-4593.
    [112] Katiyar A., Pinto N. G. Visualization of Size-Selective Protein Separations on Spherical Mesoporous Silicates [J]. Small, 2006, 5: 644-648.
    [113] Tian R.J., Zhang H., Ye M. L., et al. Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis [J]. Angew. Chem. Int. Ed., 2007, 46:962-965.
    [114] Ji L., Katiyar A., Pinto N. G., et al. Al-MCM-41 sorbents for bovine serum albumin: relation between Al content and performance [J]. Micropor. Mesopor. Mater., 2004, 75: 221-229.
    [115] Katiyar A., Ji L., Smirniotis P. G., et al. Adsorption of bovine serum albumin and lysozyme on siliceous MCM-41 [J]. Micropor. Mesopor. Mater., 2005, 80:311-320.
    [116] Bourlinos A. B., Simopoulos A., Boukos N., et al. Magnetic modification of the external surfaces in the MCM-41 porous silica: Synthesis, characterization, and functionalization [J]. J. Phys. Chem. B, 2001, 105: 7432-7437.
    [117] Gross A. F., Diehl M. R., Beverly K. C., et al. Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica [J]. J. Phys. Chem. B, 2003, 107:5475-5482.
    [118] Kim J., Lee J. E., Lee J., et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J]. Angew. Chem. Int. Ed., 2006, 45:4789-4793.
    [119] Wu P., Zhu J., Xu Z. Template-assisted synthesis of mesoporous magnetic nanocomposite particles [J]. Adv. Funct. Mater., 2004, 14:345-351.
    [120] Zhang L., Qiao S. Z., Jin Y. G., et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control [J]. Adv. Mater., 2008, 20: 805-809.
    [121] Sun Z. H., Wang L. F., Liu P. P., et al. Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles[J]. Adv. Mater., 2006, 18:1968-1971.
    [122] Bee A., Massart R., Neveu S. Synthesis of very fine maghemite particles [J]. J. Magn. Magn. Mater., 1995, 149: 6-9.
    [123] Willis A. L., Turro N. J., O’Brien S. Spectroscopic characterization of the surface of iron oxide nanocrystals [J]. Chem. Mater., 2005, 17:5970-5975.
    [124] Cushing B. L., Kolesnichenko V. L., O’Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev., 2004, 104:3893-3946.
    [125] Liu C., Zou B., Rondinone A. J., et al. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites [J]. J. Phys. Chem. B, 2000, 104:1141-1145.
    [126] Woo K., Lee H. J., Ahn J. P., et al. Sol-gel mediated synthesis of Fe2O3 nanorods [J]. Adv. Mater., 2003, 15:1761-1764.
    [127] Moumen N., Pileni M. P. Control of the size of cobalt ferrite magnetic fluid [J]. J. Phys. Chem., 1996, 100:1867-1873.
    [128] Wang X., Zhuang J., Peng Q., et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437:121-124.
    [129] Deng H., Li X., Peng Q., et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem., 2005, 117, 2841; Angew. Chem. Int. Ed., 2005, 44: 2782-2785.
    [130] Park J., An K., Hwang Y., et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nature Materials, 2004, 3: 891-895.
    [131] Sun S., Zeng H., Robinson D. B., et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc., 2004, 126:273-279.
    [132] Park J., Joo J., Kwon S. G., et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Ed., 2007, 46: 4630-4660.
    [133] J?sson BJ, Turkki T, Str?m V, EI-Shall MS, Rao KV. Oxidation of states and magnetism of Fe nanoparticles prepared by a laser evaporationtechnique[J]. J. Appl.Phys., 1996, 79:5063-5065.
    [134] Veintemillas-Verdaguer S, Morales MP, Serna CJ. Effect of the oxidation conditions on the maghemites produced by laser pyrolysis[J]. Appl. Organometal.Chem., 2001, 15: 365-372.
    [135] Veintemillas-Verdaguer S, Bomatí-Miguel O, Morales MP. Effect of the process conditions on the structural and magnetic properties ofγ-Fe2O3 nanoparticles produced by laser pyrolysis[J]. Scripta materialia, 2002, 47: 589-593.
    [136] Veintemillas-Verdaguer S, BomatíO, Morales MP, Nunzio PED, Martelli S. Iron ultrafine nanoparticles prepared by aerosol laser pyrolysis[J]. Mater. Lett., 2003, 57: 1184-1189.
    [137] Pascal C, Pascal JL, Favier F. Electrochemical Synthesis for the Control ofγ-Fe2O3 Nanoparticles Size, Morphology, Microstructure, and Magnetic Behavior[J]. Chem. Mater., 1999, 11:141-147.
    [138] Ni YH, Ge XW, Zhang ZC, Ye Qiang. Fabrication and Characterization of the Plate-Shapedγ-Fe2O3 Nanoparticles[J]. Chem. Mater., 2002, 14:1048-1052.
    [139] Arruebo M., Galán M., Navascués N., et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications [J]. Chem. Mater., 2006, 18: 1911-1919.
    [140] Lu A. H., Li W. C., Kiefer A., et al. Fabrication of magnetically separable mesostructured silica with an open pore system [J]. J. Am. Chem. Soc., 2004, 126:8616-8617.
    [141] Zhao W. R., Gu J. L., Zhang L. X., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. J. Am. Chem. Soc., 2005, 127: 8916-8917.
    [142] Lin Y. S., Wu S. H., Hung Y., et al. Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous [J]. Chem. Mater., 2006, 18: 5170-5172.
    [143] Kim J., Lee J. E., Lee J., et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals [J]. J. Am. Chem. Soc., 2006, 128: 688-689.
    [144] Corma A., Navarro M. T., Pariente J. P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons [J]. J. Chem. Soc.-Chem. Commun., 1994, 2: 147.
    [145] Hu X. C., Foo M. L., Chuah G. K., et al. Pore size engineering on MCM-41: Selectivity tuning of heterogenized AlCl3 for the synthesis of linear alkyl benzenes [J]. J. Catal., 2000, 195:412.
    [146] Reddy K. M., Wei B. L., Song C. S. Mesoporous molecular sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of petroleum resids [J]. Catal. Today, 1998, 43:261-272.
    [147] Song C. S., Reddy K. M. Mesoporous molecular sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels [J]. Appl. Catal. A-Gen., 1999, 176: 1-10.
    [148] Liu H. Y., Wang K. P., Teng H. S. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation [J]. Carbon, 2005, 43:559.
    [149] Zhou H. S., Zhu S. M., Hibino M., et al. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J. Power Sources, 2003, 122: 219-223.
    [150] Alvarez S., Blanco-Lopez M. C., Miranda-Ordieres A. J., et al. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique [J]. Carbon, 2005, 43: 866-870.
    [151] Vix-Guterl C., Frackowiak E., Jurewicz K., et al. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon, 2005, 43: 1293-1302.
    [152] Li H. Q., Luo J. Y., Zhou X. F., et al. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J]. J. Electrochem. Soc., 2007, 154: A731-A736.
    [153]范杰.介孔材料结构和孔道的模板合成及其在生物和电池中的应用[D].上海:复旦大学,2004.
    [154] Zhao J. W., Gao F., Fu Y. L., et al. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography[J]. Chemical Communications, 2002, 7: 752-753.
    [155] Slowing I. I., Trewyn B. G., Lin V. S. Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells [J]. J. Am. Chem. Soc., 2006, 128:14792-14793.
    [156] Song S.W., Hidajat K., Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions [J]. Langmuir, 2005, 21:9568-9575.
    [157] Slowing I. I., Trewyn B. G., Giri S., et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Adv. Funct. Mater., 2007, 17:1225-1236.
    [158] Vallet-Regi M., Balas F., Arcos D. Mesoporous materials for drug delivery [J]. Angew.Chem.Int.Ed., 2007, 46:7548-7458.
    [159] Qu F., Zhu G., Huang S., et al. Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica [J]. Micropor. Mesopor. Mat., 2006, 92:1-9.
    [160] Vallet-Regi M., Doadrio J. C., Doadrio A. L., et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin [J]. Solid State Ionics, 2004, 172:435-439.
    [161] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano. Lett., 2004, 4 : 2139.
    [162] Zhang L., Qiao S. Z., Jin Y.G. et al. Hydrophobic Functional Groups Initiated Helical Mesostructured Silica for Controlled Drug Release[J]. Advanced Functional Materials, DOI: 10.1002/adfm. 200800631.
    [163] Zhang L., Qiao S. Z., Cheng L., et al. Fabrication of magnetic helical mesostructured silica rod[J]. Nanotechnology, 2008, 19:435608.
    [164] He X., Trudeau M., Antonelli D. M. Electronic properties of novel mixed oxidation-state bis-arene chromium nanowires supported by a mesoporous niobium oxide host [J]. Adv. Mater., 2000, 12: 1036-1040.
    [165] Murray S., Trudeau M., Antonelli D. M. Synthesis and magnetic tuning in superparamagnetic cobaltocene-mesoporous niobium oxide composites [J]. Adv. Mater., 2000, 12: 1339-1342.
    [166] Ye B., Trudeau M., Antonelli D. M. Synthesis and electronic properties of potassium fulleride nanowires in a mesoporous niobium oxide host [J]. Adv. Mater., 2001, 13:29.
    [167] Vettraino M., Trudeau M. L., Antonelli D. M. Synthesis and electronic properties of reduced mesoporous sodium niobium oxides [J]. Adv. Mater., 2000, 12: 337.
    [168]田博之.新型介观结构材料的合成:从无定形到晶态[D].上海:复旦大学,2004.
    [169] Diaz J. F., Balkus K. J. Enzyme immobilization in MCM-41 molecular sieve[J]. Journal of Molecular Catalysis B-Enzymatic, 1996, 2: 115-126.
    [170] Williams D. H., Stephens E., Zhou M. How can enzymes be so efficient? [J]. Chemical Communications, 2003, 16: 1973-1976.
    [171] Bornscheuer U. T. immobilizing enzymes: how to create more suitable biocatalysts [J]. Angewandte Chemie-International Edition, 2003, 42:3336-3337.
    [172] Deere J., Magner E., Wall J. G., et al. Adsorption and activity of cytochrome c on mesoporous silicates [J]. Chemical Communications, 2001, 5: 465-466.
    [173] Deere J., Magner E., Wall J. G., et al. Mechanistic and structural features of protein adsorption onto mesoporous silicates [J]. Journal of Physical Chemistry B, 2002, 106 (29): 7340-7347.
    [174] Han Y. J., Stucky G. D., Butler A. Mesoporous silicate sequestration and release of proteins [J]. Journal of the American Chemical Society, 1999, 121 (42): 9897-9898.
    [175] Kim M. G., Lee S. B. Enhanced catalytic efficiency of enzymes in organic media with the addition of the solid support: Effect of silica gel on reaction rates and enzyme agglomeration [J]. Journal of Molecular Catalysis B-Enzymatic, 1996, 2 (2-3): 127-140.
    [176] Washmon-Kriel L., Jimenez V. L., Balkus K. J. Cytochrome c immobilization into mesoporous molecular sieves [J]. Journal of Molecular Catalysis B-Enzymatic, 2000, 10(5): 453-469.
    [177] Thomas J. M. Engineering uniform active sites in inorganic solid catalysts [J]. Journal of Molecular Catalysis a-Chemical, 1999, 146 (1-2): 77-85.
    [178] Lei C. H., Shin Y. S., Liu J., et al. Entrapping enzyme in a functionalized nanoporous support [J]. Journal of the American Chemical Society, 2002, 124(38): 11242-11243.
    [179] Han Y. J., Watson J. T., Stucky G. D., et al. Catalytic activity of mesoporous silicate-immobilized chloroperoxidase [J]. Journal of Molecular Catalysis B-Enzymatic, 2002, 17 (1): 1-8.
    [180] Yiu H. H. P., Wright P. A., Botting N. P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J]. Journal of Molecular Catalysis B-Enzymatic, 2001, 15 (1-3): 81-92.
    [181] Yiu H. H. P., Wright P. A., Botting N. P. Enzyme immobilisation using siliceous mesoporous molecular sieves [J]. Microporous and Mesoporous Materials, 2001, 44: 763-768.
    [182] Fan J., Yu C. Z., Gao T., et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew. Chem.-Int. Edit., 2003, 42: 3146-3150.
    [183] Fan J., Lei J., Wang L. M., et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies [J]. Chem. Commun., 2003, 17: 2140-2141.
    [184] Lei J., Fan J., Yu C. Z., et al. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace [J]. Microporous Mesoporous Mater., 2004, 73: 121-128.
    [1] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous moleculare-sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359:710-712.
    [2] Zhao D., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279:548-552.
    [3] Ciesla U., Schüth F. Ordered mesoporous materials [J]. Micropor. Mesopor. Mater., 1999, 27:131-149.
    [4] Ying J. Y., Mehnert C. P., Wong M. S. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [5] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano Lett., 2004, 4: 2139-2143.
    [6] Suzuki K., Ikari K., Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system [J]. J. Am. Chem. Soc., 2004, 126: 462-463.
    [7] Han Y., Ying J. Y. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J]. Angew. Chem. Int. Ed., 2005, 44: 288-292.
    [8] Ying J. Y. Design and synthesis of nanostructured catalysts [J]. Chem. Eng. Sci., 2006, 61: 1540-1548.
    [9] Takahashi H., Li B., Sasaki T., et al. Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica [J]. Chem. Mater., 2000, 12:3301-3305.
    [10] Han Y. J., Stucky G. D., Butler A. Mesoporous silicate sequestration and release of proteins [J]. J. Am. Chem. Soc., 1999, 121: 9897-9898.
    [11] Lai C. Y., Trewyn B. G., Jeftinija D. M., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc., 2003, 125: 4451-4459.
    [12] Radu D. R., Lai C. Y., Jeftinija K., et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent [J]. J. Am. Chem. Soc., 2004, 126:13216-13217.
    [13] Slowing I., Trewyn B. G., Lin V. S. Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells [J]. J. Am. Chem. Soc., 2006, 128: 14792-14793.
    [14] Giri S., Trewyn B. G., Stellmaker M. P., et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angew. Chem. Int. Ed., 2005, 44:5038-5044.
    [15] Qiao S. Z., Djojoputro H., Hu Q. H., et al. Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica [J].Prog. Solid. State., Chem. 2006, 34:249-256.
    [16] Qiao S. Z., Yu C. Z., Xing W., et al. Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods[J]. Chem. Mater., 2005, 17:6172-6176.
    [17] Yiu H. H. P., Botting C. H., Botting N. P., et al. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys. Chem. Chem. Phys., 2001, 3: 2983-2985.
    [18] Davis M. E. Ordered porous materials for emerging applications [J].Nature, 2002, 417:813-821.
    [19] Hartmann M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J]. Chem. Mater., 2005, 17:4577-4593.
    [20] Katiyar A., Pinto N. G. Visualization of Size-Selective Protein Separations on Spherical Mesoporous Silicates [J]. Small, 2006, 5: 644-648.
    [21] Tian R.J., Zhang H., Ye M. L., et al. Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis [J]. Angew. Chem. Int. Ed., 2007, 46:962-965.
    [22] Ji L., Katiyar A., Pinto N. G., et al. Al-MCM-41 sorbents for bovine serum albumin: relation between Al content and performance [J]. Micropor. Mesopor. Mater., 2004, 75, 221-229.
    [23] Katiyar A., Ji L., Smirniotis P. G., et al. Adsorption of bovine serum albumin and lysozyme on siliceous MCM-41 [J]. Micropor. Mesopor. Mater., 2005, 80:311-320.
    [24] Bourlinos A. B., Simopoulos A., Boukos N., et al. Magnetic modification of the external surfaces in the MCM-41 porous silica: Synthesis, characterization, and functionalization [J]. J. Phys. Chem. B, 2001, 105, 7432-7437.
    [25] Gross A. F., Diehl M. R., Beverly K. C., et al. Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica [J]. J. Phys. Chem. B, 2003, 107:5475-5482.
    [26] Kim J., Lee J. E., Lee J., et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J]. Angew. Chem. Int. Ed., 2006, 45:4789-4793.
    [27] Wu P., Zhu J., Xu Z. Template-assisted synthesis of mesoporous magnetic nanocomposite particles [J]. Adv. Funct. Mater., 2004, 14:345-351.
    [28] Zhang L., Qiao S. Z., Jin Y. G., et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control [J]. Adv. Mater., 2008, 20: 805-809.
    [29] Sun Z. H., Wang L. F., Liu P. P., et al. Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles[J]. Adv. Mater., 2006, 18:1968-1971.
    [30] Arruebo M., Galán M., Navascués N., et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications [J]. Chem. Mater., 2006, 18, 1911-1919.
    [31] Lu A. H., Li W. C., Kiefer A., et al. Fabrication of magnetically separable mesostructured silica with an open pore system [J]. J. Am. Chem. Soc., 2004, 126:8616-8617.
    [32] Zhao W. R., Gu J. L., Zhang L. X., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. J. Am. Chem. Soc., 2005, 127: 8916-8917.
    [33] Lin Y. S., Wu S. H., Hung Y., et al. Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous [J]. Chem. Mater., 2006, 18, 5170-5172.
    [34] Kim J., Lee J. E., Lee J., et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals [J]. J. Am. Chem. Soc., 2006, 128: 688-689.
    [35] Bee A., Massart R., Neveu S. Synthesis of very fine maghemite particles [J]. J. Magn. Magn. Mater., 1995, 149: 6-9.
    [36] Willis A. L., Turro N. J., O’Brien S. Spectroscopic characterization of the surface of iron oxide nanocrystals [J]. Chem. Mater., 2005, 17:5970-5975.
    [37] Cushing B. L., Kolesnichenko V. L., O’Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev., 2004, 104:3893-3946.
    [38] Liu C., Zou B., Rondinone A. J., et al. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites [J]. J. Phys. Chem. B, 2000, 104:1141-1145.
    [39] Woo K., Lee H. J., Ahn J. P., et al. Sol-gel mediated synthesis of Fe2O3 nanorods [J]. Adv. Mater., 2003, 15:1761-1764.
    [40] Moumen N., Pileni M. P. Control of the size of cobalt ferrite magnetic fluid [J]. J. Phys. Chem., 1996, 100:1867-1873.
    [41] Wang X., Zhuang J., Peng Q., et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437:121-124.
    [42] Deng H., Li X., Peng Q., et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem., 2005, 117, 2841; Angew. Chem. Int. Ed., 2005, 44, 2782-2785.
    [43] Park J., An K., Hwang Y., et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nature Materials, 2004, 3: 891-895.
    [44] Sun S., Zeng H., Robinson D. B., et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc., 2004, 126:273-279.
    [45] Park J., Joo J., Kwon S. G., et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Ed., 2007, 46, 4630-4660.
    [46] Fan H., Yang K., Boye D. M., et al. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays [J].Science, 2004, 304:567-571.
    [47] Fan H., Leve E. W., Scullin C., et al. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles [J]. Nano Lett., 2005, 5:645-648.
    [48] Fan H, Chen Z., Brinker C. J., et al. Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly [J]. J. Am. Chem. Soc., 2005, 127:13746-13747.
    [49] Büchel G., Unger K. K., Matsumoto A., et al. A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres [J]. Adv. Mater., 1998, 10:1036-1038.
    [50] Cheng Y. R., Lin H. P., Mou C.Y. Control of mesostructure and morphology of surfactant-templated silica in a mixed surfactant system [J]. Phys. Chem. Chem. Phys.,1999, 1, 5051-5058.
    [51] Szleifer I., Shaul A. B., Gelbart W. M. Chain statistics in micelles and bilayers-effects of surface roughness and internal energy [J]. J. Chem. Phys., 1986, 85:5345-5358.
    [52] Wan Y., Zhao D.Y. On the controllable soft-templating approach to mesoporous silicates [J]. Chem. Rev., 2007, 107:2821-2860.
    [53] Cai Q., Luo Z. S., Pang W. Q., et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium [J]. Chem. Mater., 2001, 13:258-263.
    [54] Vinu A., Murugesan V., Tangermann O., et al. Adsorption of cytochrome c on mesoporous molecular sieves: Influence of pH, pore diameter, and aluminum incorporation [J]. Chem. Mater., 2004, 16:3056-3065.
    [55] Vinu A., Streb C., Murugesan V., et al. Adsorption of cytochrome c on new mesoporous carbon molecular sieves [J]. J. Phys. Chem. B, 2003, 107:8297-8299.
    [56] Kriel L. W., Jimenez V. L., Balkus K. J. Cytochrome c immobilization into mesoporous molecular sieves[J]. J. Mol. Catal. B, 2000, 10:453-469.
    [57] Slowing I., Trewyn B. G., Lin V. S. Y. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins [J]. J. Am. Chem. Soc., 2007, 129:8845-8849.
    [1] Ickerson R. E., Drew H. R., Conner B. N., et al. The anatomy of A-DNA,B-DNA, and Z-DNA[J]. Science, 1982, 216:475-485.
    [2] Aggeli A., Bell M., Boden N., et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes [J]. Nature, 1997, 386: 259-262.
    [3] Okuyama K., Okuyama K., Arnott S., et al. Crystal and molecular-structure of a collagen-like polypeptide(pro-pro-gly)10 [J]. J. Mol. Biol., 1981,152:427-443.
    [4] Frankel D. A., O’Brien D. F. Supramolecular assemblies of diacetylenic aldonamides [J]. J. Am. Chem. Soc., 1994, 116:10057-10069.
    [5] Kunitake T. Synthetic bilayer-membranes-molecular design, self-organization, and application [J]. Angew. Chem. Int. Ed. Engl., 1992, 31, 709-726.
    [6] Fuhrhop J. H. Fluid and solid fibers made of lipid molecular bilayers [J]. Chem. Rev.,1993, 93:1565-1982.
    [7] Yager P., Schoen P. Formation of tubules by polymerizable surfactant [J]. Mol.Cryst.Lisq.Cryst., 1984, 106:371-381.
    [8] Oda R., Huc I., Schmutz M., et al. Tuning bilayer twist using chiral counterions [J]. Nature, 1999, 399:566-569.
    [9] Oda R., Huc I., Candau S. J. Gemini surfactants as new, low molecular weight gelators of organic solvents and water [J]. Angew. Chem.Int.Ed., 1998, 37:2689-2691.
    [10] Gier T. E., Bu X. H., Feng P. Y., et al. Synthesis and organization of zeolite-like materials with three-dimensional helical pores [J].Nature, 1998, 395:154-157.
    [11] Bradshaw D., Prior T. J., Cussen E. J., et al. Permanent microporosity and enantioselective sorption in a chiral open framework [J]. J. Am. Chem. Soc., 2004, 126: 6106-6114.
    [12] Rowan A. E., Nolte R. J. M. Helical molecular programming [J]. Angew. Chem.Int.Ed., 1998, 37: 63-68.
    [13] Che S., Liu Z., Ohsuna T., et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429:281-284.
    [14] Ohsuna T., Liu Z., Che S., et al. Characterization of chiral mesoporous materials by transmission electron microscopy [J]. Small, 2005, 1:233-237.
    [15] Jin H., Liu Z., Ohsuna T., et al. Control of morphology and helicity of chiral mesoporous silica [J]. Adv.Mater., 2006, 18:593-596.
    [16] Qiu H., Wang S., Zhang W., et al. Steric and temperature control of enantiopurity of chiral mesoporous silica [J]. J. Phys. Chem. C, 2008,112 :1871-1877.
    [17] Wu X., Jin H., Liu Z., et al. Racemic helical mesoporous silica formation by achiral anionic surfactant [J]. Chem. Mater., 2006, 18:241-243.
    [18] Zhang Q., Lu F., Li C., et al. An efficient synthesis of helical mesoporous silica nanorods [J]. Chem. Lett., 2006, 35:190-191.
    [19] Wang B., Chi C., Shan W., et al. Chiral mesostructured silica nanofibers of MCM-41[J]. Angew. Chem. Int. Ed., 2006, 45:2088-2090.
    [20] Yang S., Zhao L. Z., Yu C. Z., et al. On the origin of helical mesostructures [J]. J.Am.Chem.Soc., 2006,128:10460-10466.
    [21] Meng X., Yokoi T., Lu D., et al. Synthesis and characterization of chiral periodic mesoporous organosilicas [J]. Angew.Chem.Int.Ed., 2007,46:7796-7798.
    [22] Han Y., Zhao L., Ying J.Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates [J]. Adv. Mater., 2007, 16 :2454-2459.
    [23] Snir Y., Kamien R. D. Entropically driven helix formation [J]. Science, 2005, 307:1067-1067.
    [24] Bornscheuer U. T. Immobilizing enzymes: How to create more suitable biocatalysts [J]. Angew. Chem., Int. Ed., 2003, 42:3336-3337.
    [25] Wang Y., Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation [J]. Chem. Mater., 2005, 17:953-961.
    [26] Schiel J. E., Mallik R., Soman S., et al. Applications of silica supports in affinity chromatography [J]. J. Sep. Sci., 2006, 29:719-737.
    [27] Lai C. Y., Trewyn B. G., Jeftinija D. M., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsivecontrolled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc., 2003, 125: 4451-4459.
    [28] Huh S., Wiench J.W., Yoo J.C., et al. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method [J]. Chem. Mater., 2003, 15: 4247-4256.
    [29] Slowing I. I., Vivero-Escoto J. L., Wu C. W., et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews, 2008, 60:1278-1288.
    [30] Hoffmann F., Cornelius M., Morell J., et al. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angew. Chem. Int. Ed., 2006, 45:3216- 3251.
    [31] Huh S., Wiench J. W., Trewyn B. G., et al. Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups [J]. Chem. Commun., 2003, 18: 2364-2365.
    [32] Cai Q., Luo Z. S., Pang W. Q., et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium [J]. Chem. Mater., 2001, 13: 258-263.
    [33] Ohsuna T., Liu Z., Che S., et al. Characterization of chiral mesoporous materials by transmission electron microscopy [J]. Small, 2005, 1: 233-237.
    [34] Burleigh M. C., Markowitz M. A., Spector M. S., et al. Direct synthesis of periodic mesoporous organosilicas: Functional incorporation by co-condensation with organosilanes [J]. J. Phys. Chem. B, 2001, 105: 9935-9942.
    [35] Fowler C. E., Burkett S. L., Mann S. Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture [J]. Chem. Commun., 1997, 18 :1769-1770.
    [36] Ricca R. L. The energy-spectrum of a twisted flexible string under elastic relaxation [J]. J. Phys. A:Math.Gen., 1995, 28:2335-2352.
    [37] Kim Y. B., Kim Y. A., Yoon K.S. Preparation of functionalized polysilsesquioxane and polysilsesquioxane-metal nanoparticle composite spheres [J]. Macromol. Rapid Commun., 2006, 27: 1247-1253.
    [38] Arkhireeva A., Hay J. N. Synthesis of sub-200 nm silsesquioxane particles using a modified Stober sol-gel route [J]. J. Mater. Chem., 2003, 13:3122-3127.
    [39] Radu D. R., Lai C. Y., Huang J., et al. Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method [J]. Chem. Commun., 2005, 10:1264-1266.
    [40] Chong A.S. M., Zhao X. S., Kustedjo A. T., et al. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis [J]. Micropor. Mesopor. Mat., 2004, 72:33-42.
    [41] Slowing I. I., Trewyn B. G., Lin V. S. Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells [J]. J. Am. Chem. Soc., 2006, 128:14792-14793.
    [42] Song S.W., Hidajat K., Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions [J]. Langmuir, 2005, 21:9568-9575.
    [43] Slowing I. I., Trewyn B. G., Giri S., et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Adv. Funct. Mater., 2007, 17:1225-1236.
    [44] Vallet-Regi M., Balas F., Arcos D. Mesoporous materials for drug delivery [J]. Angew.Chem.Int.Ed., 2007, 46:7548-7458.
    [45] Qu F., Zhu G., Huang S., et al. Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica [J]. Micropor. Mesopor. Mat., 2006, 92:1-9.
    [46] Vallet-Regi M., Doadrio J. C., Doadrio A. L., et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin [J]. Solid State Ionics, 2004, 172:435-439.
    [47] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano. Lett., 2004, 4: 2139.
    [1] Giri S., Trewyn B. G., Stellmaker M. P., et al. Stimuli-responsive cotrolled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angew. Chem. Int. Ed., 2005,44:5038.
    [2] Kim J., Lee J. E., Lee J., et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J]. Angew. Chem. Int. Ed., 2006,45:4789.
    [3] Sen T., Sebastianelli A., Bruce I. J. Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations [J]. J. Am. Chem. Soc., 2006,128:7130.
    [4] Levy L., Sahoo Y., Kim K. S., et al. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications [J]. Chem. Mater., 2002,14: 3715.
    [5] Slowing I. I., Trewyn B. G., Giri S., et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Adv. Funct. Mater., 2007,17:1225.
    [6] Vallet-RegíM., Balas F.,Arcos D. Mesoporous materials for drug delivery [J]. Angew. Chem. Int. Ed. , 2007,46:7548.
    [7] Zhao W. R., Gu J. L., Zhang L. X., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. J. Am. Chem. Soc., 2005, 127: 8916.
    [8] Kim J., Lee J. E., Lee J., et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with mondisperse magnetic and semiconductor nanocrystals [J]. J. Am. Chem. Soc., 2006,128:688.
    [9] Lin Y. S., Wu S. H., Hung Y., et al. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous [J]. Chem. Mater., 2006,18: 5170.
    [10] Deng Y. H., Qi D. W., Deng C. H., et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendiculary aligned mesoporous SiO2 shell for removal of microcystins [J]. J. Am. Chem. Soc., 2008, 130: 28.
    [11] Zhang L., Qiao S. Z., Jin Y. G., et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control [J]. Adv. Mater., 2008, 20: 805.
    [12] Aggeli A., Bell M., Boden N., et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymericβ-sheet tapes [J]. Nature, 1997, 386: 259.
    [13] Oda R., Huc I., Schmutz M., et al. Tuning bilayer twist using chiral counterions [J]. Nature, 1999, 399: 566.
    [14] Gier T. E., Bu X. H., Feng P. Y., et al. Synthesis and organization of zeolite-like materials with three-dimensional helical pores [J]. Nature,1998, 395:154.
    [15] Che S. A., Liu Z., Ohsuna T., et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429: 281.
    [16] Ohsuna T., Liu Z., Che S., et al. Characterization of chiral mesoporous materials by transmission electron microscopy [J]. Small, 2005, 1: 233.
    [17] Han Y., Zhao L., Ying J.Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates [J]. Adv. Mater., 2007, 19: 2454.
    [18] Yang S., Zhao L., Yu C., et al. On the origin of helical mesostructures [J]. J. Am. Chem. Soc., 2006,128:10460.
    [19] Fan H., Yang K., Boye D. M., et al. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays [J]. Science, 2004, 304: 567.
    [20] Yang S., Zhou X., Yuan P., et al. Siliceous nanopods via a compromised dual templating approach [J]. Angew. Chem. Int. Ed., 2007, 46: 8579.
    [21] Trewyn B. G., Whitman C. M., Lin V. S. Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano. Lett., 2004, 4: 2139.
    [22] Qu F., Zhu G. S., Huang S., et al. Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica [J]. Microporous Mesoporous Mater., 2006, 92:1-9.
    [23] Vallet-RegíM., Doadrio J. C., Doadrio A. L., et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin [J]. Solid State Ionics, 2004,172: 435-439.
    [1] Allen P. M., Hill H. A. O., Walton N. J. Surface modifiers for the promotion of direct electrochemistry of cytochrome c [J]. J. Electroanal.Chem., 1984, 178:69-86.
    [2] Gleria k. D., H.A.O H., Lowe V. J., et al. Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodes[J]. J.Electroanal.Chem., 1986, 213: 333-338.
    [3] Moghaddam A. B., Ganjali M. R., Dinarvand R., et al. Fundamental studies of the cytochrome c immobilization by the potential cycling method on nanometer-scale nickel oxide surfaces[J]. Biophysical Chemistry, 2007, 129:259-268.
    [4] Lu X., Zoua G., Li J. Hemoglobin entrapped within a layered spongy Co3O4 based nanocomposite featuring direct electron transfer and peroxidase activity [J]. J. Mater. Chem, 2007, 17:1427-1432.
    [5] Bao S. J., Li C. M., Zang J. F., et al. New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications [J]. Adv. Funct. Mater., 2008, 18:591-599.
    [6] Topoglidis E., Palomares E., Astuti Y., et al. Immobilization and Electrochemistry of Negatively Charged Proteins on Modified Nanocrystalline Metal Oxide Electrodes[J]. Electroanalysis, 2005, 17:1035-1041.
    [7] Topoglidis E., Cass A. E. G., O’Regan B., et al. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films[J]. Journal of Electroanalytical Chemistry, 2001, 517:20-27.
    [8] Xu X., Tian B., Kong J., et al. Ordered Mesoporous Niobium Oxide Film: A Novel Matrix for Assembling Functional Proteins for Bioelectrochemical Applications[J]. Adv.Mater., 2003, 15(22): 1932-1936.
    [9] Dai Z., Liu S., Ju H., et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix[J]. Biosensors and Bioelectronics, 2004, 19:861-867.
    [10] Yu J., Ma J., Zhao F., et al. Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3[J]. Electrochimica Acta, 2007, 53:1995-2001.
    [11] Feng J. J., Xu J. J., Chen H. Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly[J]. Biosensors and Bioelectronics, 2007, 22:1618-1624.
    [12] Wang J., Li M., Shi Z., et al. Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes[J]. Anal. Chem., 2002, 74: 1993-1997.
    [13] Cai C., Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes[J]. Analytical Biochemistry, 2004, 332:75-83.
    [14] Zhao G. C., Yin Z. Z., Zhang L., et al. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2[J]. Electrochemistry Communications, 2005, 7:256-260.
    [15] Zhang R., Wang X., Shiu K. K. Accelerated direct electrochemistry of hemoglobin based on hemoglobin–carbon nanotube (Hb–CNT) assembly[J]. Journal of Colloid and Interface Science, 2007, 316:517-522.
    [16] LüY., Yin Y., Wu P., et al. Direct Electrochemistry and Bioelectrocatalysis of Myoglobin at a Carbon Nanotube-Modified Electrode [J]. Acta Phys.Chim. Sin., 2007, 23 (1): 5-11.
    [17] Salimi A., Noorbakhsh A., Ghadermaz M. Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modiWed glassy carbon electrode[J]. Analytical Biochemistry, 2005, 344:16-24.
    [18] Cai C., Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode[J]. Analytical Biochemistry, 2004, 325:285-292.
    [19] Jiang L., McNeil C. J., Cooper J. M. Direct electron transfer reactions of glucose oxidase immobilized at a self-assembled monolayer[J]. Chem.Commun., 1995,1: 1293-1295.
    [20] Pearson T. W., Dawson H. J., Lackey H. B. Natural occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages[J]. J. Agric. Food Chem., 1981, 29:1089-1091.
    [21] Niki T., Kunugi M., Kohata K., et al. Annual monitoring of DMS-producing bacteria in Tokyo bay, Japan, in relation to DMSP[J]. Mar. Ecol. Prog. Ser., 1997, 156:17-24.
    [22] Ye J., Baldwin R. P. Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue[J]. Anal. Chem., 1988, 60:2263–2268.
    [23] Cui X., Li C. M., Zang J., et al. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite[J]. Biosensors and Bioelectronics, 2007, 22:3288-3292.
    [24] Abo M., Ogasawara Y., Tanaka Y., et al. Amperometric dimethyl sulfoxide sensor using dimethyl sulfoxide reductase from Rhodobacter sphaeroides[J]. Biosensors and Bioelectronics, 2003, 18:735-739.
    [25] Bennett B., Benson N., McEwan A. G., et al. Multiple states of the molybdenum centre of dimethyl sulphoxide reductase from Rhodocacter capsulatus revealed by EPR spectroscopy[J]. Eur J Biochem, 1994, 225:321-331.
    [26] Bernhardt P. V., Lawrance G. A., Hambley T. W. 6,13-Diamino-6,13-Dimethyl-1,4,8,11-Tetra-azacyclotetradecane, L7, A new, potentially sexidentate polyamine ligand-variable coordination to cobalt (III) and crystal-structrure of the complex [CO(L7)]CL2[CLO4] [J]. J Chem Soc Dalton Trans, 1989, 6:1059-1065.
    [1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991, 354:56-58.
    [2] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993,363:603-605.
    [3] Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors[J]. Science, 2001, 294:1317-1320.
    [4] Postma H W C, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature[J]. Science, 2001, 293:76-79.
    [5] Mannik J, Heller I, Janssens A M, et al. Charge noise in liquid-gated single-wall carbon nanotube transistors[J]. Nano Lett., 2008,8: 685-688.
    [6] Wagner H D. Nanocomposites-paving the way to stronger materials[J]. Nat. Nanotechnology, 2007, 2: 742-744.
    [7] Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber[J]. Science,2007,318:1892-1895.
    [8] Minot ED, Janssens AM, Heller I, et al. Carbon nanotube biosensors: the critical role of the reference electrode[J]. Appl. Phys. Lett., 2007, 91:093507.
    [9] Liu C, Fan YY, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science,1999,286:1127-1129.
    [10] Wang S G, Li Y H, Gong X Y, et al. Surface characteristics of modified carbon nanotubes and its application in lead adsorption from aqueous solution[J]. Chinese Science bulletin, 2003, 48(5):441-443.
    [11] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes[J]. Science, 1998,282:95-98 .
    [12] Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors[J]. J. Am. Chem. Soc., 2003, 125(9): 2408-2409.
    [13] Dieckmann GR, Dalton AB, Johnson PA, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices[J]. J. Am. Chem. Soc., 2003, 125(7): 1770-1777.
    [14] Richard C, Balavoine Fabrice, Schultz Patrick, et al. Supramolecular self-assembly of lipid derivatives on carbon nanotubes[J]. Science, 2003,300:775-778.
    [15] Kilm T H, Doe C, Kline S R, et al. Organic solvent-redispersible isolated single wall carbon nanotubes coated by in-situ polymerized surfactant monolayer[J]. Macromolecules, 2008,41:3621-3266.
    [16] Yu H T, Zhao H M, Quan X, et al. Preparation and characterization of aligned carbon nanotubes coated with titania nanoparticles[J]. Chinese Science Bulletin, 2006, 51(18): 2294-2296.
    [17] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359:710.
    [18] Slowing I I, Trewyn B G, Giri S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications[J]. Adv. Funct. Mater., 2007,17:1225-1236.
    [19] Vallet-Regi M, Balas F, Arcos D, et al. Mesoporous materials for drug delivery[J]. Angew. Chem. Int. Edit., 2007,46:7548-7558.
    [20] Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesosilica shell structure[J]. J. Am. Chem.Soc., 2005,127:8916-8917.
    [21] Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with a Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem.Soc., 2008,130:28-29.
    [22] Zhang L, Qiao S Z, Jin Y G, et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control[J]. Adv. Mater., 2008,20:805-809.
    [23] Liu J, Rinzler A G, Dai H, et al. Fullerene Pipes[J]. Science, 1998,280:1253-1256
    [24] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies[J]. Science, 1995, 267: 1138-1143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700