用户名: 密码: 验证码:
主动磁悬浮转子刚度、阻尼分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮转子是一种新型、高科技前沿产品。它具有无摩擦、无磨损、无需润滑、无污染、能耗小以及使用寿命长等优点,适用于各种高速或超高速、真空等特殊环境场合。在军事、空间站、核工业、能源、化工、交通等领域具有广泛的应用前景和重要的科学意义。磁力轴承作为目前可应用于工程实际、且能够实施主动控制的支承部件之一,具有一般传统轴承和支承技术所无法比拟的优点,目前已在各个领域的高速旋转机械中开始应用。随着现代旋转机械转速的大幅度提高,支承对转子系统的稳定性、动态特性、旋转精度等影响越来越大,在许多场合几乎支配着整个系统的稳定性已经严重制约了该技术的推广应用。
     本文通过对磁力轴承系统的刚度和阻尼的分析,分析磁力轴承系统的刚度和阻尼与系统的结构参数关系,以及与系统控制器的传递函数的联系。对转子空间位移改变,而产生的刚度与阻尼的影响做出了分析。分析了PID控制参数对刚度与阻尼的影响。对于控制的磁力轴承系统,当电磁轴承系统的结构参数确定后,合理选择系统控制器的传递函数(频响特性),就能获得期望的系统刚度阻尼特性,使系统稳定运行。
     对磁悬浮转子的支承特性进行了深入的仿真与实验研究。通过采用MATLAB软件进行仿真PID的控制参数变化,分别分析K_p(比例系数常数)、T_i(积分时间常数)、T_d(微分时间常数)对刚度和阻尼的影响,从而为控制设计提供理论支持。
     最后通过加载试验,分析位移的变化,由此得出刚度的变化规律,进一步分析与验证磁悬浮转子的刚度的理论分析。研究磁悬浮转子的刚度的非线性特性。以及研究通过重复加载,来研究PID参数一定时,位移一定时,刚度的稳定性。
     通过以上研究,为磁悬浮转子技术设计向建模、优化、动态设计的发展,高速高精度磁悬浮转子系统的设计制造做出了有益的贡献,也为今后的深入做了一些探讨性工作。
The magnetic suspended rotor is a new, advance high technology product. Because of it has the advantages, such as frictionless, no wear, without lubricating, no pollution, low consuming and long life and so on, the magnetic suspended rotor is applied to such as high and super high speed, vacuum condition and some of the special condition and so on. Along with the modern revolving mechanical rotational speed large scale enhancement, the magnetic suspended rotor supporting characteristic has more and more influences on many fields, for example rotor system stability, dynamic characteristic, revolving precision, nearly control overall system stable. In many situations, the magnetic suspended rotor supporting characteristic has seriously restricted this technical promoted application.
     By the magnetic force bearing system rigidity and damping being analyzed, relations between magnetic force bearing system rigidity and damping and system design parameter were analyzed in this thesis. And relations with central controller transfer function relation were analyzed. The impact of the rigidity and damping was analyzed because of the rotor space displacement change. The impact of the rigidity and damping was analyzed from PID control parameters. When the active magnetic bearing system design parameters were determined, the expectation rigidity damping characteristic can be obtained and the system stable movement can be caused by the reasonable selective system controller transfer function (frequency loud characteristic).
     The magnetic suspension rotor supporting characteristic was researched by the simulations and the experiments in this thesis. PID controlled variable changes were simulated by the MATLAB software. The influence between K_p(the scale factor constant), T_i (the integration time constant), T_d (the differentiating time constant) and the rigidity and the damping was analyzed. Thus the thesis is helpful in the control design.
     Finally by the displacement change analysis of the loading test, the rigidity change rule was obtained. And further the rigidity theory of the magnetic suspended was analyzed and demonstrated. The rotor rigidity nonlinear characteristic was researched. When the PID parameters and displacement were invariable, the rigidity stability was researched by the repetition force .
     All the research is beneficial in the further research of magnetic suspension rotor technical design on the modeling, the optimization, the dynamic design. And this thesis is helpful in high speed and precision magnetic suspension rotor system design and manufacture.
引文
[1]胡业发,周祖德,江征风等.磁力轴承的基础理论与应用.机械工业出版社,2006年4月
    [2]R.ndlinger,Magnetic bearing momentum wheels with vernier gimballing capability for 3-axis active attitude control and energy storage.Ⅶ IFAC Symp.on Automatic control in space,Rottach-Egern,May,1976
    [3]J.A.,D.K.Anand,P.Dachen,Performance of a Magnetically Suspended Flywheel Energy Storage System,Proceedings of the Fourth International Symposium on Magnetic Bearings,ETH Zurich,Switzerland,August 23-26,1994
    [4]K.nami,T.Yamanaka,M.Tominaga,Vibration and control of a flexible rotor supported by magnetic bearings,JSME International Journal,Series Ⅲ,1990
    [5]H.skinen,Fuzzy logic in active magnetic bearing control,Proceedings of the Fourth International Symposium on Magnetic Bearings,ETH Zurich,Switzerland,August 23-26,1994
    [6]汪洪礼,张新生,刘勇等.磁浮轴承的控制和动态过程研究.机械工程学报,1994,30(6):41-46
    [7]汪希平,袁崇军,谢友柏.电磁轴承系统控制参数与稳定性的关系分析.机械工程学报,1996.32(3):65-69
    [8]赵雷,丛华,赵鸿宾.可控磁悬浮轴承刚度与阻尼特性研究.清华大学学报(自然科学报),1999,39(4):96-99
    [9]吴华春.磁力轴承支承的转子动态特性研究[博士学位论文].武汉理工大学,2005
    [10]谢振宇,徐龙祥,李迎等.磁悬浮轴承转子系统动态特性的实验研究.航空动力学报,2004,19(1):30-37
    [11]张钢,李松生,张建生.磁悬浮轴承-转子系统的机电耦合动力学模型.机械科学与技术,2003.22(增刊)
    [12]杨静,虞烈.电磁轴承过临界转速的非线性极点配置.轴承,2002,11:1-4
    [13]Hideo Shida,Mitsuhiro Ichihara,Kazuto Seto.Motion and Vibration Control of Flexible Rotor Using Magnetic Bearings[A].Proc.of the 8th Int.Symp.on Magnetic Bearings[C].Japan,2002.381-386
    [14]Hyeong-Joon Ahn,In-Hwang Park,Jong-Hyuk,etc.Design and Rotor Dynamic Modeling of High Speed Milling Spindle Supported with AMB.Proceedings of the 8~(th)International Symposium on Magnetic Bearings,Mito,Japan,2002.375-380
    [15]Hu Yefa,Wu Huachun,Wang Xiaoguang,etc.Inversion of Magnetic Bearing Sensors' Position.Proceedings of the Second Iriternational Symposium on Instrumentation Science and Technology,Jinan,China,2002.706-709
    [16]汪希平,陈学军.陀螺效应对电磁轴承系统设计的影响.机械一二程学报,2001,30(6)
    [17]胡业发,王晓光,吴华春.磁力轴承支承特性的研究与仿真.武汉理工大学学报(信息与管理工程版),200l,23(4)
    [18]赵韩,杨志轶,王忠臣.磁力轴承电磁力计算的两种建模方法与比较.农业机械学报,2002,7:84-8
    [19]崔艳昌,刘向东.磁悬浮飞轮测试系统设计.工业控制计算机,2006,05:17-18
    [20]武丽梅.径向磁力轴承系统的时间响应特性分析.沈阳航空工业学院学报,2000,06:9-11
    [21]吴华春,胡业发,江征风,高小明.柔性磁悬浮转子动态特性的研究.机械工程与自动化,2002,10:1-3
    [22]尚玲艳,周坚刚.基于MATLAB的钢板磁悬浮系统仿真研究.系统仿真学报,2006,02:983-983
    [23]刘晓军,刘小英,胡业发,柴苍修.轴向数控磁力轴承电磁力计算及刚度研究.武汉工业学院学报,2001,02:3-5
    [24]卢健康,范慧赟,方晓厅,高扬.磁悬浮无轴承电机的解耦控制.微电机,2006,06:15-18
    [25]汪希平,张直明,丁良,万金贵.轴向磁悬浮轴承的力学特性分析.应力力学学报,2000,09:30-34
    [26]邢涛,张庆春,李国栋,梁迎春.电磁轴承耦合特性及电磁力分析.哈尔滨工业大学学报,2005,06:748-749
    [27]Mohd-Mokhtar,R;Liuping Wang.System Identification of MIMO Magnetic Bearing Via Cont Continuous Time and Frequency Response Data.Mechatronics,2005.ICM' 05.IEEE International Conference on 10-20 July 2005 Page(s):191-196
    [28]Hartavi,A.E.;Ustun,O.;Experimental Study of Active Magnetic Bearing.Electric Machines and Drives Conference,2001 Page(s):492-495
    [29]Duan,G.R.;Wu,Z.Y.;Bingham,C.M.;Howe,D..Robust Active Magnetic Bearing Control Using Stabilizing Dynamical Compensators.Electric Machines and Drives,1999.International Conference IEMd' 999-12 May 1999
    [30]Tamisier,V.;Font,S.;Carrere,F..Anew Anti-Vibration Algorithm For Active Magnetic Bearings Application.Control Applications,2OO2.Proceedings of the 20002International Conference on Volume 1,18-20 Sept.2002 Page(s):168-173 vol.1
    [31]Schulz,A.;Schneeberger,M.;Wassermann,J..A Reliable Switching Amplifier for Active Magnetic Bearings Error Detection Strategies and Measurement Results.lndustrial Technolog,2OO4.IEEE ICIT' 04,2004
    [32]David C.Meeker,Eric H.Maslen,Mary Kasarda.Influence of actuator geometry on Rotating Losses in Heteroplal Magnetic Bearings
    [33]Polajzer,.;Stumberger,G.;Dolinar,D.;Hameyer,K..Determination of Force and Flux Linkage Characteristics of Radial Active Magnetic Bearings.EUROCON 2003.Computer as a Tool.The IEEEReqion 8,Volume 1,22-24 Sept.2003 Page(s):442-444vol.1
    [34]Y Xiao,K Y Zhu,C Zhang,K J Tseng and K V Ling.Stabilizing Synchronization Contrl of Rotor-Magnetic Bearing Systems[J].Proc.ImechE Vol.219 Part Ⅰ:J Systems and Control Engineering.July 2005
    [35]Mouille,P.;Lottin,J..Unbalancing Estimation in Active Magnetic Bearings.Systems,Man and Cybernetics,1993.Systems Engineering in the Service of Humans,Conference Proceedings.International Conference 17-20 Oct,1993Page(s):210-215 vol.4
    [36]Boehm,J.;Gerber,R.;Hartley,J.R.;Whitley,S11Development of Active Magnetic Bearings for High Speed Rotors.Magnetics,IEEE Transactions on Volume 26,Issue 5,Sep 1990 Page(s):2544-2546
    [37]钟一谔,何衍宗,王正,李方泽.转子动力学.清华大学出版社,1987,11
    [38]罗芳,张昆仑.磁悬浮列车U型悬浮电磁力的数值计算与分析.机车电传动,2002,05:32-39
    [39]张丹红,陈建华,苏义鑫,周祖德.主动磁力轴承系统的模糊逆建模.中国电机工程学报,2006,07:126-130
    [40]Min Sig Kang;Woo Hyun Yoon.Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-X LMS Algorithm.Control Systems Techology,IEEE Transactions on Volume 14,Issue 1,Jan.2006 Page(s):134-140
    [41]Rundell,A.E.;Drakunov,S.V.;DeCarlo,R.A..A Sliding Mode Observer and Controller for Stabilization of Rotational Motion of a Vertical Shaft Magnetic Bearing.Control Systems Technology,1996,9
    [42]Srinivasan,S.,Young Man Cho.Modeling and System Edentification of Active Magnetic Bearing Systems.Control Applications 1995,Proceeding of the 4th IEEE Transactions on Volume 4,Issue 5,Sept.1996 Page(s):598-608
    [43]Long,M.L.;Carroll,J.J.;Mukundan,R..Adaptive Control of Active Magnetic Bearings under Unknown Static Load Change and Unbalance.Control Applications,1996,Proceedings of the 1996 IEEE International Conference on 15-18Sept.1996 Page(s):876-881
    [44]张海林.提高频谱分析仪幅度测量准确度的方法.中国仪器仪表,2007,01:84-86
    [45]王春麟,喻应东,胡业发,江征风.磁力轴承模糊PID控制算法的研究.机床喻液压,2006,11:157-159
    [46]胡业发,高小明,吴华春.磁悬浮转子不平衡补偿的研究.机械制造,2006,08:24-26
    [47]宋方臻,宋波,孙选,常素芳.复杂结构振动对磁悬浮轴承性能影响的研究.济南大学学 报(自然科学版),2006,02:153-156
    [48]佘龙华,柳贵东,施晓红.磁悬浮系统的HOPF分岔自适应控制研究.动力学与控制学报,2006,01:54-57
    [49]黄忠霖.控制系统MATLAB计算及仿真.国防工业出版社,2001.11
    [50]王晓光.磁悬浮转子系统的耦合研究[博士学位论文].武汉理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700