用户名: 密码: 验证码:
铋系多铁氧化物的铁电起源及相关电控磁性机制的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多铁性材料是一类同时具有两种或两种以上铁性特征(铁电性、铁磁性、铁弹性或铁涡性)的多功能材料,而其中各种铁性之间存在耦合关系使得多铁性材料具有潜在的应用前景。作为多铁性材料的研究先锋,BiFeO3(BFO)是少数在室温条件下同时具有反铁磁性和铁电性的单相多铁性材料,其磁电耦合效应和电控磁性受到研究者的广泛关注。而作为自旋电子学的一个重要分支,电控磁性成为目前信息科学的研究热点之一,并且在基础研究与信息存储领域有着重要的意义。
     目前普遍的观点认为BFO的铁电性起源于Bi-6s孤对电子,但这很难解释四方相BFO的铁电极化强度以及铁电极化方向和磁化易轴存在的耦合关系。本论文采用第一性原理计算方法,结合我们发展的轨道选择性外场(Orbital Selective External Potential, OSEP)方法,阐明了BFO的铁电起源,并揭示了相关电控磁性的物理机制。主要内容和创新点如下:
     1和南京大学万贤纲教授合作发展了OSEP方法。该方法可以精确地控制特定原子轨道的移动,有助于研究原子轨道对材料物理和化学性质的影响。OSEP方法可以同时在不同原子轨道上施加外势场,这给研究体系的某些现象或是起源问题提供了多种选择性。
     2在间接磁交换体系中发现一种全新的铁电形成机制,磁性相互作用有利于形成铁电相,若磁性能具备克服弹性能的条件,体系会呈现铁电相。以经典的反铁磁材料MnO为例,计算得到双轴压应力可以增加磁性能,降低弹性能,从而导致铁电相的出现。
     3研究了BFO的铁电起源。计算发现除了Bi-6s孤对电子对铁电性有影响之外,Fe-3d态对铁电性也有贡献,包括间接超交换作用和Fe-O成键。尤其是在四方相BFO中,由于Fe-O-Fe超交换作用的增强,使得Fe-3d态对铁电性的影响更加明显,铁电极化强度也随之增强。
     4研究了类四方相BFO的电控磁有序和金属-绝缘相变。结果发现[001]极化态的BFO在晶格常数为3.91A附近其反铁磁序出现从C1型向G型的转变,而这种改变可以用海森堡交换积分常数Jc和J2c的竞争来解释。同时,由于[111]极化态一直保持在G型反铁磁序,因此在一定条件下外加电场使得铁电极化从[001]转到[111]方向,相应的反铁磁序从C1型转变为G型,从而实现了电控磁有序。而通过计算类四方相BFO的线性和非线性光学性质,发现在低频处二次谐波系数χzzz(2)对C1型反铁磁序的响应要比G型反铁磁序强很多,因此可以通过探测χzzz(2)来区别C1型和G型反铁磁序。应力和铁电极化方向不仅能改变磁有序,也能诱导金属-绝缘相变,当晶格常数逐渐增加时,[001]极化态从绝缘态变为金属态,而[110]极化态却从金属态变为绝缘态,因此在一定的晶格常数下外加电场可以改变铁电极化方向来引起金属-绝缘相变的出现。
     5研究了BFO的磁晶各向异性能和净磁矩。计算发现当铁电极化从[111]转到[001]方向时,其磁晶各向异性能将会增加一个数量级,这增强了体系中Dzyaloshinskii-Moriya相互作用。通过考虑BFO的非共线磁序,计算得到磁矩偏角以及净磁矩都会出现明显的增加,从而体现出一种电控净磁矩的效应。
Multiferroic material is a kind of material simultaneously exhibiting two or more of the primary ferroic properties (ferroelectricity, ferromagnetism, ferroelasticity and ferrotoroidicity), more interestingly, couplings between these ferroic orderings have potential applications. As a pioneer example in researching multiferroic material, BiFeO3(BFO) is the most attractive candidate among single-phase multiferroics at room temperature, and it shows both ferroelectricity and antiferromagnetism. Its magnetoelectric effect and electric-field control of magnetism have attracted intense interest. As one of the most important field in spintronics, electric-field control of magnetism has became the focus in information science studying, and played an important role in the field of fundamental research and information storage.
     It is a common belief that the ferroelectric of BFO originates from Bi-6s lone pair. However, it can not explain the ferroelectric polarization magnititude in tetragonal BFO as well as the strong couplig between the direction of ferroelectric polarization and the easy axis of magnetization. Here we use the first-principles calculation with orbital selective external potential (OSEP) method to clarify the ferroelectric origin of BFO, and reveal the physical mechanism of electric-field control of magnetism. The main works and innovations of this dissertation are listed as follows:
     1Cooperating with Prof. Wan in Nanjing university, we have developed OSEP method which can shift the energy level of a specific atomic orbital and illustrate the effects of atomic orbital for physical or chemical properties. In the OSEP method, multiple orbital-dependent potentials can be applied to the system simultaneously, providing great flexibility to study various effects on the problem of origin and hybridization.
     2In indirect magnetic exchange systems, interatomic magnetic exchange interaction is favourable to ferroelectric phase, which is a new microscopic mechanism for ferroelectric origin. If magnetic energy can overcome elastic energy, the system shows ferroelectric phase. In the case of classicical antiferromagnetic material MnO, compressive epitaxial strain can increase magnetic energy and decrease elastic energy to induce ferroelectric phase.
     3The ferroelectric origin of BFO is investigated. Besides the influence of Bi-6s lone pair, Fe-3d states also contribute to ferroelectricity, and the influence of Fe-3d states include Fe-O-Fe superexchange interaction and Fe-O bonding. Because Fe-O-Fe superexchange interaction is enhanced in tetragonal phase, the effect of Fe-3d states play a more important role in ferroelectricity. The ferroelectric polarization can be also increased correspondingly.
     4Electric-field control of the magnetic ordering and metal-insulator transition are investigated in tetragonal-like BFO. A transition from Cl to G-type antiferromagnetic phase exists at the [001] polarized state with the in-plane constant3.91A, and such magnetic phase transition can be explained by the competition between the heisenberg exchange constants J1c and J2c under a biaxial strain. At the same time [111] polarized state remains G-type antiferromagnetic phase. Therefore, under appropriate epitaxial strains, electric-field control of the polarization direction from [001] to [111] can influence the magnetic ordering. Researching the linear and nonlinear optical properties of tetragonal-like BFO, we find that at low frequencies second-harmonic generation susceptibility X(1) of C1-type antiferromagnetic are larger than that of G-type antiferromagnetic. Therefore, we can take advantage of X(2) to detect C1and G-type antiferromagnetic ordering. The strain and polarization direction can not only influence the magnetic ordering, but also induce metal-insulator transition. Increasing the lattice constant, the [001] polarized state changes from insulator to metal, but the [110] polarized state changes from metal to insulator. Therefore, electric-field control of the polarization direction can induce metal-insulator transition under appropriate epitaxial strains.
     5The magnetocrystalline anisotropy energy and net magnetic moment are investigated in BFO. When the polarization direction is changed from [111] to [001] direction, magnetocrystalline anisotropy energy can be increased by an order of magnitude, which can increase Dzyaloshinskii-Moriya interaction. Therefore, the role of noncollinear magnetic ordering should be considered. The calculations show that both canting angle and net magnetic moment increase, representing the effect of electric-field control of net magnetic moment.
引文
1. M. Fiebig. Revival of the magnetoelectric effect [J]. J. Phys. D:Appl. Phys., 2005,38:R123-R152
    2. N. A. Spaldin and M. Fiebig. The renaissance of magnetoelectric multiferroics [J]. Science,2005,309:391-392
    3. R. Ramesh and N. A. Spaldin. Multiferroics:progress and prospects in thin films [J]. Nat. Mater.,2007,6:21-29
    4. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan. Multiferroic magnetoelectric composites:Historical perspective, status, and future directions [J]. J. Appl. Phys.,2008,103:031101
    5. J. F. Scott and C. A. Paz de Araujo. Ferroelectric Memories [J]. Science,1989, 246:1400-1405
    6. G. A. Prinz. Magnetoelectronics [J]. Science,1999,283:330-330
    7. C. Chappert, A. Fert, and F. N. Van Dau. The emergence of spin electronics in data storage [J]. Nat. Mater.,2007,6:813-823
    8. J. F. Scott. Data storage-Multiferroic memories [J]. Nat. Mater.,2007,6: 256-257
    9.段纯刚.磁电效应研究进展[J].物理学进展,2009,29:215-238
    10. M. Bibes and A. Barthelemy. Multiferroics:Towards a magnetoelectric memory [J]. Nat. Mater.,2008,7:425-426
    11.施科,何泓材,王宁.多铁性磁电材料应用于存储技术的研究现状[J].硅酸盐学报,2011,39:1792-1799
    12. Z. Z. Bandic and R. H. Victora. Advances in Magnetic Data Storage Technologies [J]. Proc. IEEE,2008,96:1749-1753
    13. R. R. Katti and T. Zhu. Attractive magnetic memories [J]. IEEE Circuits Devices Mag.,2001,17:26-34
    14. J. H. Krieger. Physical concepts of memory device operation based on piezoacousto and pyroelectric properties of ferroelectric films [J]. J. Appl. Phys., 2009,105:061629
    15. N. Setter, D. Damjanovic, L. Eng, G Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer. Ferroelectric thin films:Review of materials, properties, and applications [J]. J. Appl. Phys.,2006,100:051606
    16.施展,王翠萍,刘兴军,南策文.基于磁电复合材料的四态存储器[J].科学通报,2008,53:1177-1179
    17. F. Yang, Y. C. Zhou, M. H. Tang, F. Liu, Y. Ma, X. J. Zheng, W. F. Zhao, H. Y. Xu, and Z. H. Sun. Eight-logic memory cell based on multiferroic junctions [J]. J. Phys. D:Appl. Phys.,2009,42:072004
    18. H. Schmid. Multi-ferroic magnetoelectrics [J]. Ferroelectrics,1994,162: 317-338
    19. W. Eerenstein, N. D. Mathur, and J. F. Scott. Multiferroic and magnetoelectric materials [J]. Nature,2006,442:759-765
    20. G. A. SMOLENSKY, V. A. ISUPOV, and A. I. AGRONOVSKAYA. A newgroup of ferroelectrics-(with layered structure) [J]. Sov. Phys. Solid State,1959,1: 149-150
    21. N. A. Hill. Why Are There so Few Magnetic Ferroelectrics? [J]. J. Phys. Chem. B,2000,104:6694-6709
    22. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura. Magnetic control of ferroelectric polarization [J]. Nature,2003,426:55-58
    23. P. Silvia and E. Claude. First principles studies of multiferroic materials [J]. J. Phys.:Condens. Matter,2009,21:303201
    24. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields [J]. Nature,2004,429:392-395
    25. K. F. Wang, J. M. Liu, and Z. F. Ren. Multiferroicity:the coupling between magnetic and polarization orders [J]. Adv. Phys.,2009,58:321-448
    26. R. E. Cohen. Origin of ferroelectricity in perovskite oxides [J]. Nature,1992, 358:136-138
    27. A. Filippetti and N. A. Hill. Coexistence of magnetism and ferroelectricity in perovskites [J]. Phys. Rev. B,2002,65:195120
    28. A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson. Stereochemistry of post-transition metal oxides:revision of the classical lone pair model [J]. Chem. Soc. Rev.,2011,40:4455-4463
    29. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono. Structure determination of ferromagnetic perovskite BiMnO3 [J]. J. Solid State Chem., 1999,145:639-642
    30. F. Sugawara, S. Iiida, Y. Syono, and S.-I. Akimoto. Magnetic Properties and Crystal Distortions of BiMnO3 and BiCrO3 [J]. J. Phys. Soc. Jpn.,1968,25: 1553-1558
    31. R. Seshadri and N. A. Hill. Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3 [J]. Chem. Mater.,2001,13: 2892-2899
    32. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura. Magnetocapacitance effect in multiferroic BiMnO3 [J]. Phys. Rev. B,2003,67: 180401
    33. G Catalan and J. F. Scott. Physics and Applications of Bismuth Ferrite [J]. Adv. Mater.,2009,21:2463-2485
    34. D. Khomskii. Classifying multiferroics:Mechanisms and effects [J]. Physics, 2009,2:20
    35. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin. The origin of ferroelectricity in magnetoelectric YMnO3 [J]. Nat. Mater.,2004,3:164-170
    36. E. F. Bertaur, R. Pauthenet, and M. Mercier. Structure and magnetic properties of YMnO3 [J]. Phys. Lett.,1963,7:1963
    37. D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. J. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo. Ferroelectricity Driven by Y d0-ness with Rehybridization in YMnO3 [J]. Phys. Rev. Lett.,2007,98:217601
    38. C. Ederer and N. A. Spaldin. Origin of ferroelectricity in the multiferroic barium fluorides BaMF4:A first-principles study [J]. Phys. Rev. B,2006,74:024102
    39. J. Ma, J. Hu, Z. Li, and C.-W. Nan. Recent Progress in Multiferroic Magnetoelectric Composites:from Bulk to Thin Films [J]. Adv. Mater.,2011, 23:1062-1087
    40. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. A tunable topological insulator in the spin helical Dirac transport regime [J]. Nature,2009,460:1101-1105
    41. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh. Multiferroic BaTiO3-CoFe2O4 nanostructures [J]. Science,2004,303:661-663
    42. V. A. Murashov, D. N. Rakov, V. M. Ionov, I. S. Dubenko, Y. V. Titov, and V. S. Gorelik. Magnetoelectric (Bi, Ln)FeO3 compounds:crystal growth, structure and properties [J]. Ferroelectrics,1994,162:11-21
    43. Y. F. Popov, A. M. Kadomtseva, G. P. Vorob'ev, and A. K. Zvezdin. Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field [J]. Ferroelectrics,1994,162:135-140
    44. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science,2003,299:1719-1722
    45. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals [J]. Phys. Rev. B,2007,76:024116
    46. http://www.isiknowledge.com/WOS
    47. F. Kubel and H. Schmid. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 [J]. Acta Crystallogr. Sect. B: Struct. Sci.,1990, B46:698-702
    48. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe. First-principles study of spontaneous polarization in multiferroic BiFeO3 [J]. Phys. Rev. B,2005,71:014113
    49. H. C. Ding, S. Q. Shi, W. H. Tang, and C. G. Duan. Ferroelectric switching path in monodomain rhombohedral BiFeO3 crystal:a first-principles study [J]. J. Adv. Dielectrics 2011,1:179-184
    50. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson. Theoretical investigation of magnetoelectric behavior in BiFeO3 [J]. Phys. Rev. B,2006,74: 224412
    51. C. Ederer and N. A. Spaldin. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite [J]. Phys. Rev. B,2005,71:060401
    52. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature [J]. Nat. Mater.,2006,5:823-829
    53. I. Dzyaloshinskii. A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics [J]. J. Phys. Chem. Solids,1958,4:241-255
    54. T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism [J]. Phys. Rev.,1960,120:91-98
    55. I. Sosnowska, T. P. Neumaier, and E. Steichele. Spiral magnetic ordering in bismuth ferrite [J]. Journal of Physics C (Solid State Physics),1982,15: 4835-4846
    56. D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille, and A. Gukasov. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature [J]. Phys. Rev. Lett.,2008,100:227602
    57. F. Zavaliche, S. Y. Yang, T. Zhao, Y. H. Chu, M. P. Cruz, C. B. Eom, and R. Ramesh. Multiferroic BiFeO3 films:domain structure and polarization dynamics [J]. Phase Transitions,2006,79:991-1017
    58. M. B. Holcomb, L. W. Martin, A. Scholl, Q. He, P. Yu, C. H. Yang, S. Y. Yang, P. A. Glans, M. Valvidares, M. Huijben, J. B. Kortright, J. Guo, Y. H. Chu, and R. Ramesh. Probing the evolution of antiferromagnetism in multiferroics [J]. Phys. Rev. B,2010,81:134406
    59. Y. H. Chu, L. W. Martin, M. B. Holcomb, and R. Ramesh. Controlling magnetism with multiferroics [J]. Mater. Today,2007,10:16-23
    60. Y.-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J]. Nat. Mater.,2008,7:478-482
    61. J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y. H. Chu, S. Salahuddin, and R. Ramesh. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure [J]. Phys. Rev. Lett., 2011,107:217202
    62. P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh. Interface Ferromagnetism and Orbital Reconstruction in BiFe03-La0.7Sr0.3Mn03 Heterostructures [J]. Phys. Rev. Lett.,2010,105:027201
    63. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes. Reversible electric control of exchange bias in a multiferroic field-efifect device [J]. Nat. Mater.,2010,9:756-761
    64. P. Yu, Y.-H. Chu, and R. Ramesh. Oxide interfaces:pathways to novel phenomena [J]. Mater. Today,2012,15:320-327
    65. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hart, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W, Martin, and R. Ramesh. A Strain-Driven Morphotropic Phase Boundary in BiFeO3 [J]. Science,2009,326:977-980
    66. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom. Room-temperature ferroelectricity in strained SrTiO3 [J]. Nature,2004,430:758-761
    67. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G Schlom, and C. B. Eom. Enhancement of ferroelectricity in strained BaTiO3 thin films [J]. Science,2004, 306:1005-1009
    68. A. R. Damodaran, C.-W. Liang, Q. He, C.-Y. Peng, L. Chang, Y.-H. Chu, and L. W. Martin. Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films [J]. Adv. Mater.,2011,23:3170-3175
    69. J. X. Zhang, B. Xiang, Q. He, J. Seidel, R. J. Zeches, P. Yu, S. Y. Yang, C. H. Wang, Y. H. Chu, L. W. Martin, A. M. Minor, and R. Ramesh. Large field-induced strains in a lead-free piezoelectric material [J]. Nat. Nanotech., 2011,6:98-102
    70. Q. He, Y. H. Chu, J. T. Heron, S. Y. Yang, W. I. Liang, C. Y. Kuo, H. J. Lin, P. Yu, C. W. Liang, R. J. Zeches, W. C. Kuo, J. Y. Juang, C. T. Chen, E. Arenholz, A. Scholl, and R. Ramesh. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics [J]. Nat. Commun.,2011,2:225
    71. E. Dagotto. Complexity in Strongly Correlated Electronic Systems [J]. Science, 2005,309:257-262
    72. E. Dagotto, T. Hotta, and A. Moreo. Colossal magnetoresistant materials:the key role of phase separation [J]. Phys. Rep.,2001,344:1-153
    73. Y. Tokura. Critical features of colossal magnetoresistive manganites [J]. Rep. Prog. Phys.,2006,69:797
    74. H. J. A. Molegraaf, J. Hoffman, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J.-M. Triscone. Magnetoelectric Effects in Complex Oxides with Competing Ground States [J]. Adv. Mater.,2009,21:3470-3474
    75. C. A. F. Vaz, J. Hoffman, Y. Segal, J. W. Reiner, R. D. Grober, Z. Zhang, C. H. Ahn, and F. J. Walker. Origin of the Magnetoelectric Coupling Effect in Pb(Zro.2Tio.8)03/La0.8Sr0.2Mn03 Multiferroic Heterostructures [J]. Phys. Rev. Lett.,2010,104:127202
    76. C. A. F. Vaz, Y Segal, J. Hoffman, R. D. Grober, F. J. Walker, and C. H. Ahn. Temperature dependence of the magnetoelectric effect in Pb(Zro.2Tio.s)03/ Lao.8Sro.2Mn03 multiferroic heterostructures [J]. Appl. Phys. Lett.,2010,97: 042506
    77. X. Hong, A. Posadas, A. Lin, and C. H. Ahn. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1-xSrxMnO3 [J]. Phys. Rev. B,2003,68:134415
    78. Z. Fang, I. V. Solovyev, and K. Terakura. Phase Diagram of Tetragonal Manganites [J]. Phys. Rev. Lett.,2000,84:3169-3172
    79. J. D. Burton and E. Y. Tsymbal. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface [J]. Phys. Rev. B,2009, 80:174406
    80. H. Chen and S. Ismail-Beigi. Ferroelectric control of magnetization in La1-xSrxMnO3 manganites:A first-principles study [J]. Phys. Rev. B,2012,86: 024433
    81. S. Dong, X. Zhang, R. Yu, J. M. Liu, and E. Dagotto. Microscopic model for the ferroelectric field effect in oxide heterostructures [J]. Phys. Rev. B,2011,84: 155117
    82. C. A. F. Vaz, J. Hoffman, Y. Segal, M. S. J. Marshall, J. W. Reiner, Z. Zhang, R. D. Grober, F. J. Walker, and C. H. Ahn. Control of magnetism in Pb(Zr0.2Ti0.8)03/La0.8Sro.2Mn03 multiferroic heterostructures [J]. J. Appl. Phys., 2011,109:07D905
    83. T. Kanki, H. Tanaka, and T. Kawai. Electric control of room temperature ferromagnetism in a Pb(Zro.2Tio.8)03/Lao.85Bao.1sMn03 field-effect transistor [J]. Appl. Phys. Lett.,2006,89:242506
    84. J. D. Burton and E. Y Tsymbal. Giant Tunneling Electroresistance Effect Driven by an Electrically Controlled Spin Valve at a Complex Oxide Interface [J]. Phys. Rev. Lett.,2011,106:157203
    85. E. Y. Tsymbal and H. Kohlstedt. Tunneling Across a Ferroelectric [J]. Science, 2006,313:181-183
    86. J. P. Velev, C.-G. Duan, J. D. Burton, A. Smogunov, M. K. Niranjan, E. Tosatti, S. S. Jaswal, and E. Y. Tsymbal. Magnetic Tunnel Junctions with Ferroelectric Barriers:Prediction of Four Resistance States from First Principles [J]. Nano Lett.,2008,9:427-432
    87. C.-G. Duan, S. S. Jaswal, and E. Y. Tsymbal. Predicted Magnetoelectric Effect in Fe/BaTiO3 Multilayers:Ferroelectric Control of Magnetism [J]. Phys. Rev. Lett.,2006,97:047201
    88. V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane, and A. Barthelemy. Ferroelectric Control of Spin Polarization [J]. Science,2010,327:1106-1110
    89.熊家炯,材料设计[M].天津:天津大学出版社,2000.
    90.吴兴惠,项金钟,现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    91.谢希德,陆栋,固体能带理论[M].上海:复旦大学出版社,2007.
    92. M. Born and J. R. Oppenheimer. On the quantum theory of molecules [J]. Ann. Phys.,1927,84:457-484
    93. D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1928,24:89-110
    94.黄昆,固体物理学[M].北京:高等教育出版社,2006.
    95. V. Fock. Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems [J]. Z. Physik,1930,61:126-148
    96. P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964, 136:B864-B871
    97. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev.,1965,140:A1133-A1138
    98. J. C. Slater. A Simplification of the Hartree-Fock Method [J]. Phys. Rev.,1951, 81:385-390
    99. D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a Stochastic Method [J]. Phys. Rev. Lett.,1980,45:566-569
    100. J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45:13244-13249
    101. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671-6687
    102. A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A,1988,38:3098-3100
    103. C. Lee, W. Yang, and R. G Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37:785-789
    104. A. D. Becke. Density functional calculations of molecular bond energies [J]. J Chem Phys.,1986,84:4524-4529
    105. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996,77:3865-3868
    106. W. Kohn. Nobel Lecture:Electronic structure of matter-wave functions and density functionals [J]. Rev. Mod. Phys.,1999,71:1253-1266
    107. H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13:5188-5192
    108. J. D. Pack and H. J. Monkhorst. "Special points for Brillouin-zone integrations"-a reply [J]. Phys. Rev. B,1977,16:1748-1749
    109. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations:; molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys.,1992,64: 1045-1097
    110. E. Fermi. Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali [J]. Nuovo Cim,1934,11:157-166
    111. H. Hellmann. [J]. Acta Physiochimica URSS,1935,1:913-940
    112. D. R. Hamann, M. Schluter, and C. Chiang. Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett.,1979,43:1494-1497
    113. G. B. Bachelet, D. R. Hamann, and M. Schltiter. Pseudopotentials that work: From H to Pu [J]. Phys. Rev. B,1982,26:4199-4228
    114. N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations [J]. Phys. Rev. B,1991,43:1993-2006
    115. D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41:7892-7895
    116. P. E. Blochl. Projector augmented-wave method [J]. Phys. Rev. B,1994,50: 17953-17979
    117. H. Hellmann, Einfuhrung in die Quantenchemie [M]. Leipzig:Franz Deuticke, 1937.
    118. R. P. Feynman. Forces in Molecules [J]. Phys. Rev.,1939,56:340-343
    119. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes:The Art of Scientific Computing [M]. Cambridge:Cambridge University Press, 1986.
    120. N. V. Sidgwick and H. M. Powell. Bakerian Lecture. Stereochemical Types and Valency Groups [J]. Proc. R. Soc. Lond. A,1940,176:153-180
    121. R. J. Gillespie and R. S. Nyholm. Inorganic stereochemistry [J]. Quart. Rev. London,1957,11:339
    122. L. E. Orgel.769. The stereochemistry of B subgroup metals. Part II. The inert pair [J]. J. Chem. Soc.,1959:3815-3819
    123. R. A. Wheeler and P. Kumar. STEREOCHEMICALLY ACTIVE OR INACTIVE LONE PAIR ELECTRONS IN SOME 6-COORDINATE, GROUP-15 HALIDES [J]. J. Am. Chem. Soc.,1992,114:4776-4784
    124. X. Wang, Q. Cui, Y. Pan, W. Gao, J. Zhang, and G Zou. High pressure effects on the Jahn-Teller distortion in perovskite La0.5-xBixCao.5Mn03 [J]. J. Alloys Compd.,2001,321:72-75
    125. S. Suehara, P. Thomas, A. P. Mirgorodsky, T. Merle-Mejean, J. C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, and S. Inoue. Localized hyperpolarizability approach to the origin of nonlinear optical properties in TeO2-based materials [J]. Phys. Rev. B,2004,70:205121
    126. P. Becker and L. Bohaty. Thermal Expansion of Bismuth Triborate [J]. Cryst. Res. Technol.,2001,36:1175-1180
    127. S. Haussiihl, L. Bohaty, and P. Becker. Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6 [J]. Appl. Phys. A,2006, 82:495-502
    128. S. Sallis, L. F. J. Piper, J. Francis, J. Tate, H. Hiramatsu, T. Kamiya, and H. Hosono. Role of lone pair electrons in determining the optoelectronic properties of BiCuOSe [J]. Phys. Rev. B,2012,85:085207
    129. G W. Watson and S. C. Parker. Origin of the lone pair of alpha-PbO from density functional theory calculations [J]. J. Phys. Chem. B,1999,103: 1258-1262
    130. G W. Watson, S. C. Parker, and G Kresse. Ab initio calculation of the origin of the distortion of a-PbO [J]. Phys. Rev. B,1999,59:8481-8486
    131. D. J. Payne, R. G. Egdell, A. Walsh, G W. Watson, J. Guo, P. A. Glans, T. Learmonth, and K. E. Smith. Electronic Origins of Structural Distortions in Post-Transition Metal Oxides:Experimental and Theoretical Evidence for a Revision of the Lone Pair Model [J]. Phys. Rev. Lett.,2006,96:157403
    132. A. Walsh and G W. Watson. Influence of the anion on lone pair formation in Sn(II) monochalcogenides:A DFT study [J]. J. Phys. Chem. B,2005,109: 18868-18875
    133. J. Yang and M. Dolg. Computational investigation of the Bi lone-pairs in monoclinic bismuth triborate BiB3O6 [J]. Phys. Chem. Chem. Phys.,2007,9: 2094-2102
    134. Y. Du, H.-C. Ding, L. Sheng, S. Y. Savrasov, X. Wan, and C.-G. Duan. Microscopic origin of stereochemically active lone pair formation from orbital selective external potential calculations [J]. J. Phys.:Condens. Matter,2014,26: 025503
    135. X. G Wan, J. Zhou, and J. M. Dong. The electronic structures and magnetic properties of perovskite ruthenates from constrained orbital-hybridization calculations [J]. Europhys. Lett.,2010,92:57007
    136. V. I. Anisimov, J. Zaanen, and O. K. Andersen. Band theory and Mott insulators: Hubbard U instead of Stoner I[J]. Phys. Rev. B,1991,44:943-954
    137. G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B,1993,47:558-561
    138. J. Leciejewicz. On the crystal structure of tetragonal (red) PbO [J]. Acta Cryst., 1961,14:1304
    139. R. D. King-Smith and D. Vanderbilt. Theory of polarization of crystalline solids [J]. Phys. Rev. B,1993,47:1651-1654
    140. G Shirane, H. Danner, and R. Pepinsky. Neutron Diffraction Study of Orthorhombic BaTiO3 [J]. Phys. Rev.,1957,105:856-860
    141. A. M. Glazer and S. A. Mabud. Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3 [J]. Acta Crystallographica Section B,1978,34:1065-1070
    142. M. Mostovoy. Ferroelectricity in Spiral Magnets [J]. Phys. Rev. Lett.,2006,96: 067601
    143. I. A. Sergienko and E. Dagotto. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites [J]. Phys. Rev. B,2006,73:094434
    144. S.-W. Cheong and M. Mostovoy. Multiferroics:a magnetic twist for ferroelectricity [J]. Nat. Mater.,2007,6:13-20
    145. J. R. Schrieffer and P. A. Wolff. Relation between the Anderson and Kondo Hamiltonians [J]. Phys. Rev.,1966,149:491-492
    146. W. A. Harrison, Electronic Structure and the Properties of Solids:The Physics of the Chemical Bond [M]. Dover Publications,1989.
    147. P. W. Anderson. New Approach to the Theory of Superexchange Interactions [J]. Phys. Rev.,1959,115:2-13
    148. J. P. Perdew, K. Burke, and Y. Wang. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996, 54:16533-16539
    149. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study [J]. Phys. Rev. B,1998,57:1505-1509
    150. J. R. Teague, R. Gerson, and W. J. James. Dielectric hysteresis in single crystal BiFeO3 [J]. Solid State Commun.,1970,8:1073-1074
    151. G A. SMOLENSKII, Y. A. AGRANOVSKA, and V. A. ISUPOV. New ferroelectrics of complex composition:Pb2MgWO6, Pb3Fe2WO9 and Pb2FeTa06 [J]. SOVIET PHYSICS-SOLID STATE,1958,3:1981-1983
    152. J. Kanamori. Superexchange interaction and symmetry properties of electron orbitals [J]. J. Phys. Chem. Solids,1959,10:87-98
    153. H.-C. Ding, Y.-W. Li, W. Zhu, Y.-C. Gao, S.-J. Gong, and C.-G. Duan. Improved multiferroic behavior in [111]-oriented BiFeO3/BiAlO3 superlattice [J]. J. Appl. Phys.,2013,113:123703
    154. A. J. Hatt, N. A. Spaldin, and C. Ederer. Strain-induced isosymmetric phase transition in BiFeO3 [J]. Phys. Rev. B,2010,81:054109
    155. D. G Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone. Strain tuning of ferroelectric thin films [J]. Annu. Rev. Mater. Res., 2007,37:589-626
    156. J. Cao and J. Wu. Strain effects in low-dimensional transition metal oxides [J]. Materials Science and Engineering:R:Reports,2011,71:35-52
    157. L. W. Martin, Y. H. Chu, and R. Ramesh. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films [J]. Mat. Sci. Eng. R,2010,68:89-133
    158. J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh. Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-like BiFeO3 [J]. Phys. Rev. Lett.,2011, 107:147602
    159. J. B. Goodenough, Magnetism and the Chemical Bond [M]. New:York Wiley, 1963
    160. C. Ederer and N. A. Spaldin. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics [J]. Phys. Rev. Lett.,2005,95:257601
    161. H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, M. D. Biegalski, M. S. Rzchowski, X. Q. Pan, D. G Schlom, L. Q. Chen, R. Ramesh, and C. B. Eom. Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films [J]. Phys. Rev. Lett.,2008,101:107602
    162. H.-C. Ding and C.-G Duan. Electric-field control of magnetic ordering in the tetragonal-like BiFeO3 [J]. Europhys. Lett.,2012,97:57007
    163. A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan. Linear and nonlinear optical properties of BiFeO3 [J]. Appl. Phys. Lett.,2008,92:121915
    164. A. Kumar, S. Denev, R. J. Zeches, E. Vlahos, N. J. Podraza, A. Melville, D. G Schlom, R. Ramesh, and V. Gopalan. Probing mixed tetragonal/ rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation [J]. Appl. Phys. Lett.,2010,97:112903
    165. S. Ju and T.-Y. Cai. Ab initio study of ferroelectric and nonlinear optical performance in BiFeO3 ultrathin films [J]. Appl. Phys. Lett.,2009,95:112506
    166. R. C. Haislmaier, N. J. Podraza, S. Denev, A. Melville, D. G.Schlom, and V. Gopalan. Large nonlinear optical coefficients in pseudo-tetragonal BiFeO3 thin films [J]. Appl. Phys. Lett.,2013,103:031906
    167. P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt. Optical properties of quasi-tetragonal BiFeO3 thin films [J]. Appl. Phys. Lett.,2010,96:131907
    168. H. Dong, H. Liu, and S. Wang. Optical anisotropy and blue-shift phenomenon in tetragonal BiFeO3 [J]. J. Phys. D:Appl. Phys.,2013,46:135102
    169. H. L. Liu, M. K. Lin, Y. R. Cai, C. K. Tung, and Y. H. Chu. Strain modulated optical properties in BiFeO3 thin films [J]. Appl. Phys. Lett.,2013,103:181907
    170. C. G. Duan, J. Li, Z. Q. Gu, and D. S. Wang. Interpretation of the nonlinear optical susceptibility of borate crystals from first principles [J]. Phys. Rev. B, 1999,59:369-372
    171. C. G. Duan, J. Li, Z. Q. Gu, and D. S. Wang. First-principles calculation of the second-harmonic-generation coefficients of berate crystals [J]. Phys. Rev. B, 1999,60:9435-9443
    172. C. G. Duan, W. N. Mei, W. G. Yin, J. J. Liu, J. R. Hardy, M. J. Bai, and S. Ducharme. Theoretical study on the optical properties of polyvinylidene fluoride crystal [J]. J. Phys.:Condens. Matter,2003,15:3805-3811
    173. G. Y. Guo, K. C. Chu, D. S. Wang, and C. G. Duan. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations [J]. Phys. Rev. B,2004,69:205416
    174. D. A. Kleinman. Nonlinear Dielectric Polarization in Optical Media [J]. Phys. Rev.,1962,126:1977-1979
    175. M. Imada, A. Fujimori, and Y. Tokura. Metal-insulator transitions [J]. Rev. Mod. Phys.,1998,70:1039-1263
    176. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G.Catalan, and J. F. Scott, beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3 [J]. Phys. Rev. B,2008,77:014110
    177. P. Lightfoot, D. C. Arnold, K. S. Knight, and F. D. Morrison. Ferroelectric-Paraelectric Transition in BiFeO3:Crystal Structure of the Orthorhombic beta Phase [J]. Phys. Rev. Lett.,2009,102:027602
    178. O. E. Gonzalez-Vazquez and J. Iniguez. Pressure-induced structural, electronic, and magnetic effects in BiFeO3 [J]. Phys. Rev. B,2009,79:155112
    179. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, M. Y. Hu, and H. K. Mao. Phase transition with suppression of magnetism in BiFeO3 at high pressure [J]. Jetp Lett.,2005,82:224-227
    180. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura. Current switching of resistive states in magnetoresistive manganites [J]. Nature,1997,388:50-52
    181. V. Keppens. Structural transitions:'Ferroelectricity'in a metal [J]. Nat. Mater., 2013,12:952-953
    182. Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y. Shirako, M. Akaogi, N. Wang, K. Yamaura, and A. T. Boothroyd. A ferroelectric-like structural transition in a metal [J]. Nat. Mater.,2013,12:1024-1027
    183. Q. He, J. C. Yang, C. Y. Kuo, C. W. Liang, H. J. Liu, H. C. Ding, H. J. Chen, C. G Duan, Z. Hu, M. J. Huang, H. J. Lin, A. Tanaka, C. T. Chen, E. Arenholz, R. Ramesh, and Y. H. Chu. Electrically enhanced strong magnetization in highly strain BiFeO3 films [J]. unpublished,2014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700