用户名: 密码: 验证码:
日冕物质抛射的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用理想磁流体力学方程组(MHD)作为太阳大气动力学过程的控制方程组,定性数值模拟日冕物质抛射(CME)现象。
    首先,根据不同形式MHD方程组的特点,发展与之相适应的数值算法。首次推广了无振荡、无自由参数格式(NND),把它应用于守恒形式的MHD方程组。主要做了两个方面的工作,第一,为了降低由磁场散度数值上不为零造成的Lorentz力误差,把磁场分解成两部分,一部分为势场,不随时间变化,另一部分为非势场,随时间变化,得到改进的守恒形式MHD方程组。第二,针对MHD方程组的特点 提出了一种适用于守恒型MHD方程组的通量分裂方法,这种方法能够把NND格式有效地应用于MHD方程组。对非守恒形式的MHD方程组,把二阶精度的MacCormackII格式推广应用到三维MHD方程组,首次把无反射投影特征线边界条件应用于三维情况下的内边界,有效地稳定了数值计算。采用这种数值模式进行计算,得到了1998年5月1935卡林顿周稳定和自洽的背景太阳风,这为模拟CME事件打下了基础。
    其次,为消除一般两维MHD模式在太阳子午面内极区的几何奇异性,引入两维MHD方程组的新模式,采用这种模式成功地模拟了98年5月2日观测到的子午面内日冕亮度图。
    最后数值模拟CME在日冕内的传播特征。CME传播所需的背景结构是采用时间松弛方法计算得到的,这保证背景结构是自洽和稳定的。触发CME时采用具有同心圆磁场位形的触发模式,触发的CME事件具有和磁云横截面磁场相似的结构。模拟结果给出在太阳表面不同位置触发CME事件在太阳子午面内的传播特征,数值上验证了CME向电流片的偏转传播效应。
    在两冕流间CME事件的数值模拟过程中,采用偶极子场和六极子场适当迭加得到初始猜解磁场,由猜解磁场和太阳风流动相互作用计算出稳态自洽解,稳态自洽解的背景磁场在太阳南北极符号相反,这符合观测。在两个冕流间采用具有同心圆磁场位形的触发模型触发CME事件,研究CME的日冕传播特征。模
    
    拟结果表明,CME被约束在两冕流间传播,CME闭磁场位形和磁云横截面磁场位形相似,可以解释1AU处观测磁云的部分特征;在CME附近,存在压力和Lorentz起主要作用的区域,这可以为分析1AU处CME的观测数据提供帮助
The ideal Magnetohydrodynamic equations(MHD), the governing equations of the solar atmosphere dynamical process, are taken to numerically simulate Coronal Mass Ejection(CME) phenomena.
    At first, we develop suitable numerical algorithms corresponding to the features of different forms of MHD equations. We generalize Non-oscillatory, Non-free parameter Discrete scheme(NND) for the first time and apply it to the conservative form of MHD equations. The work lies in two main aspects: 1) To effectively reduce the error of Lorentz force caused by the non-zero numerical value of magnetic field divergence, we divided magnetic field into two parts, one is potential field invariant of time and the other is non-potential field varying with time and get an improved conservative form of MHD equations. 2) Considering MHD equation features, we put forward a flux splitting method applicable for the conservative form of MHD equations. With the method we can apply NND scheme to MHD equation effectively. About non-conservative form of MHD equations, we apply second order accuracy MacCormackII scheme to three dimensional MHD equations and apply non-reflective projected characteristic boundary condition to inner boundary for the first time in this three-dimensional case, which effectively stabilize computation. With the numerical model, we get a stable and self-consistent background solar wind of Carrington rotation 1935 at May 1998. This makes a foundation for simulating CME events.
    Second, in order to eliminate geometry singularity related to usual two-dimensional MHD governing equations in solar meridian plane at solar poles, we
    
    introduce a new two-dimensional MHD model. With the model, we succeed in simulating LACO-C2 image observed at May 2 1998.
    Finally, we simulate CME propagation features in corona numerically. Background structure for CME propagation is obtained by the time relaxation method, which guarantees it stable and self-consistent. CME triggering model has concentric circular magnetic field profiles to make CME magnetic field structure similar to that in the section of the magnetic cloud structure. Numerical results present propagation features in meridian plane of CME events triggered at different places of solar surface and numerically testify the effect of propagating CME deflecting to current sheet.
     When numerically simulating CME events between two streamers, we construct a potential magnetic field by properly combining a dipole and a hexadpole and calculate a stable and self-consistent background after a long time interaction between the potential magnetic field and solar wind flow. Agreeing with observation, the polarity at two solar-magnetic poles are opposite in the background of the stable and self-consistent solution. With this background, we trigger CME with the triggering model between two streamers to make research about propagation features of CMEs. Numerical results tell us that CMEs are confined by two streamers to propagate between them. CME magnetic field profiles are similar to those in the section of magnetic cloud, which can explain partial features of magnetic cloud observed at 1AU. Near CMEs, there exist areas that pressure and Lorentz force play a central role, which can help for analysis of CME observational data at 1AU
引文
1. Anzer U., Can coronal loop transients be driven magnetically?, Solar Phys., 1978, 57,111.
    2. Anzer U. and Pneuman G. W., Magnetic reconnection and coronal transients, Solar Phys., 1982, 79,129.
    3. Brackbill J. C., Barnes D. C., Note: the effect of nonzero on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 1980, 35:426-430.
    4. Brio M, Wu C C. An upwind difference scheme for the equations of magnetohydrodynamics. J Comput. Phys., 1988, 75:400-422..
    5. Burlaga L. F., Magnetic clouds, Physics of the inner Heliosphere II,edited by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, 1991, 1-22.
    6. Chen J. and Garren D. A., Interplanetary magnetic clouds: Topology and driving mechanism, Geohophys. Res. Lett., 1993, 20,2319.
    7. Chen J., Theory of prominence eruption and propagation: Interplanetary consequences, J. Geophys. Res., 1996, 101,27,499.
    8. Chen P. F. and Shibata K., An emerging flux trigger mechanism for coronal mass ejections, The Astrophysical Journal, 2000, 545:524-531.
    9. Colella P. A Direct Eulerian MUSCL Scheme for Gas Dynamics. SIAM J. Sci. Stat. Comput. 1985, 6(1):104-117
    10 Colella P, Woodward P R. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. J. Comput Phys., 1984, 54: 174-201
    11. Crooker,N.U.,G.L. Siscoe,S. Shodhan, D. F. Wegg, J.T. Gosling and E.J. Smith, Multiple heliospheric current sheets and coronal streamer belt dynamics, J. Geophys. Res., 1993, 98,9371.
    12. Dahlburg, R. B. and J. T. Karpen, A triple current sheet model for adjoining coronal helmet streamers, J. Geophys. Res., 1995, 100, 23489.
    
    
    13. Detman T. R., Dryer M., Yeh T., Han S. M., Wu S. T. and McComas D. J., A time-dependent, three-dimensional MHD numerical study of interplanetary magnetic draping around plasmoids in the solar wind. Journal of Geophysics Research, 1991, 96(A6):9531-9540.
    14. Dryer M.,Wu S. T and Wilson R. M., Magnetohydrodynamic models of coronal transients in the meridional plane. II. Simulation of the coronal transient of 1973 August 21, Astrophys. J., 1979, 227,1059.
    15. Godunov S K. A Difference Scheme for Numerical Computational of Discontinuous Solutions of Hydrodynamics Equations. Math. Sbornik, 1959, 47:271-306
    16. Gosling J. T., Hildner E., MacQueen R. M., Munro R. H., Poland A. I. and Ross C. L., Mass Ejection from the sun: A view from Skylab, J. Geophys. Res., 1974, 79,4581.
    17. Gosling J. T., Hildner E., MacQueen R. M., Munro R.H., Poland A. I. and Ross C. L., The Speeds of Coronal Mass Ejection Events, Solar Phys., 1976, 48, 389-397.
    18. Gosling J. T., The solar flare myth, J. Geophys. Res. 1993,98,18,937-18,949.
    19. Han S M, Wu S T, Dryer M., A three-dimensional time-dependent numerical modeling of super-sonic super-Alfvenic MHD flow, Computer and Fluids, 1988, 16(1): 81-103.
    20. Harten A. High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys., 1983, 49:357-393
    21. Harten A, Osher S. Uniformly High-Order Accurate Nonoscillatory Schemes. I. SIAM Journal on Numerical Analysis, 1987, 24:279-309
    22. Harten A, Engquist B, Osher S, Chakravarthy S. Uniformly High Order Accurate Essentially Non-Oscillatory Schemes. J. Comput. Phys., 1987, 71:231-303
    23. Harten A. ENO Schemes with Subcell Resolution. J. Comput. Phys., 1989, 83:148-184
    24. Howard R. A., Sheeley N. R., Jr. M. J. Koomen, D. J. Michels, Coronal Mass Ejection, 1979-1981, J. Geophys. Res., 1985, 90, 8173.
    25. Howard R. A., Sheeley N. R., Jr. M. J. Koomen, D. J. Michels, The Solar Cycle
    
    Dependence of Coronal Mass Ejections, The Sun and The Heliosphere in Three Dimensions, Edited by R. G. Marsden, (Dordrecht: D. Reidel), 1986, 107.
    26. Hu Youqiu, Ruth Esser and Shadia R. Habbai, A four-fluid turbulence-driven solar wind model for preferential acceleration and heating of heavy ions, Journal of Geophysics Research, 2000,105(A3):5,093-5,111.
    27. Hu W. R., The dynamical process of a coronal transient associated with an eruptive prominence, Astrophys. Space Sci., 1983 a ,92,373.
    28. Hu W. R., The dynamical process of a coronal transient associated with an eruptive prominence, Astrophys. Space Sci., 1983 b ,92,395.
    29. Hundhausen A. J., Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984-1989, J. Geophys. Res., 1993, 98:13,177-13,200.
    30 Hundhausen A. J., Burkepile J. T., St. Cyr O. C., The Speeds of Coronal Mass Ejections: SMM Observations from 1980 and 1984-1989, J. Geophys. Res., 1994, 99,6543-6552.
    31. Hundhausen A. J., Coronal Mass Ejection: A summary of SMM observations from 1980 and 1984-1989, in The Many Faces of the Sun; Scientific Highlights of the Solar Maximum Mission, Edited by K. T. Strong, J. Saba and B. Haisch(New York, NY:Springer-Verlag),1997a.
    32. Hundhausen A. J., Coronal Mass Ejection, Cosmic Winds and the Heliosphere, edited by J. R. Jokipii et al., (Tucson, AZ: Univ. Arizona Press), 1997b.
    33. Illing R. M. E. and Hundhausen A. J., Observation of a coronal transient from 1.2 to 6 solar radii, J. Geophys. Res., 1985, 90,275.
    34. Illing R. M. E. and Hundhausen A. J., Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection, J. Geophys. Res., 1986, 91,10,951.
    35. Kahler, S. W., Ann. Rev. Astron. Astrophys. 1992, 30,133.
    36. Lindemuth I. R, Ph. D. Numerical Model of MHD Equations, Thesis, University of Califonia/Livermore, USA, 1971.
    37. Low B. C., Self-similar magnetohydrodynamics. I the (=4/3 polytrope and the
    
    coronal transient, Astrophys. J., 1982, 254,796.
    38. Martin D. A. and Gordon N. JR., Magnetic fields and the structure of the solar corona, Solar Physics, 1969, Vol.9, 131-149.
    39. Miki? Z., Barnes D. C. and Schnack D. D., Astrophys. J., 1988, 328,830.
    40. Mouschovias T. and Poland V. I., Expansion and broadening of coronal loop transients : A theoretical explanation, Astrophys. J., 1978, 220,675.
    41. Munro R. J., Gosling J. T., Hildner E., MacQueen R. M., Poland A. I. and Ross C. L., The association of coronal mass ejection and other forms of solar activity, Solar Phys., 1979, 61,201.
    42. Nakagawa Y., Wu S. T. and Han S. M., Magnetohydrodynamics of atmospheric transients, III. Basic results of nonplanar two-dimensional analysis, Astrophys. J., 1981, 224,331.
    43. Odstrcil D. and Pizzo V. J., Distortion of the interplanetary magnetic field by hree-dimensional propagation of coronal mass ejections in a structured solar wind, Journal of Geophysics Research, 1999, 104(A12):28,225-28,239.
    44. Parker E. N., Interplanetary Dynamical processes, John Wiley and Sons, New York, 1963.
    45. Pneuman G. W., Kopp R. A., Gas-Magnetic field interactions in the solar corona, Solar Phys., 1971(18), 258-270.
    46. Roe P L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys., 1981, 43:357-372
    47. Roe P L, Balsara D S, "Notes on the Eigensystem of Magnetohydrodynamics", SIAM J. Appl., 1996, 56(1):57-67
    48. Rust D. M., Spawning and shedding helical magnetic fields in the solar atmosphere, Geophys. Res.Lett.,1994,21,241.
    49. Sheeley N. R., R. A. Howard Jr., Koomen M. J. and Michels D. J., Association between coronal mass ejections and Soft-X ray events, Astrophys. J., 1983, 272,349.
    50. Sheeley N.R.,et al., Measurements of flow speeds in the corona between 2 and 30 Rs, Astrophys. J., 1997, 484,472-487.
    
    
    51. Sheeley Jr N. R., Walters J. H., Wang Y. M. and Howard R. A., Continuous tracking of coronal outflows:two kind coronal mass ejections, Journal of Geophysics Research, 2000,104(A11):24,739-24,767.
    52. Solar-Geophysical Data Prompt Reports, July 1998,No.647,41.
    53. Steinolfson R. S., Suess S. T., Wu S. T., The steady global corona, Astrophys. J., 1982, 255: 730-742.
    54. Subramanian Prasad, Rich N. B. and Howard R. A., The relationship of coronal mass ejections to streamers, Journal of Geophysics Research, 1999, 104(A10):22,321-22,330.
    55. Tanaka T. Finite Volume TVD Scheme on an Unstructured Grid System for Three-Dimensional MHD Simulation of Inhomogeneous Systems Including Strong Background Potential Fields. J. Comput. Phys., 1994, 111: 381-389.
    56. Tokumaru Munetoshi, Kojima Masayoshi, and Fujiki Ken'ichi, Three-dimensional propagation of interplanetary disturbances detected with radio scintillation measurements at 327 MHz, Journal of Geophysics Research, 2000, Vol.105(A5), 10,435-10453.
    57. Toch G. , Odstrcil, Comparison of Some Flux Corrected Transport and Total Variation Diminishing Numerical Schemes For Hydrodynamic and magnetodynamic Problems. Journal of Computational Physics. 1996 Vol.128: 82-100.
    58. Usmanov A. V., Interplanetary magnetic field structure and solar wind parameters as inferred from solar magnetic field observations and by using a numerical 2-D MHD model, Solar Physics, 1993,143:345-363.
    59. Usmanov A. V and Dryer M., A global 3-D simulation of interplanetary dynamics in June 1991, Solar Physics, 1995,159:347-370.
    60. Van Leer B. Towards the Ultimate Conservative Difference Scheme IV. A New Approach to Numerical Convection. J Comput. Phys., 1977, 23:276-299
    61. Van Leer B. Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to Godunov's Method. J Comput. Phys., 1979, 32:101-136
    62. Wang A.H.,Wu S. T., Analyses and modeling of coronal holes observed by
    
    coronas-I II. MHD simulation, Proceedings of the Third SOLTIP Symposium, oct. 14-18, Beijing, China, 1996:273-278.
    63. Wang Y. M., Ye P. Z., Wang S., Zhou G. P. and Wang J. X., A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000, Journal of Geophysics Research, 2002, 107(A11),1340.
    64. Washimi H, Yoshino Y, Ogino T. Two-dimensional structure of the solar wind near sun. Geophys. Res. Lett., 1987,14: 487-499.
    65. Webb D. F. and Hundhausen A. J., Activity associated with solar origin of coronal mass ejections, Solar Phys., 1987,108,383.
    66. Wei Fengsi and Dryer M., Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridianal plane. Solar Physics, 1991, 132:373-394.
    67. Wei Fengsi, Influence of the Heliospheric current sheet on the propagation of flare-associated interplanetary shock wave (invited paper), Proceedings of the First SOLTIP Symposium, Edited by Fisher and Vandas, Czechoslovak Academy of Sciences, 1992,1:294-305.
    68. Woodward P R, Colella P. The Numerical Simulation of Two-Dimensional Fluid flow with Strong Shocks. J. Comput. Phys., 1984, 54: 115-173
    69. Wu S. T., Nakagawa Y., Han S. M. and Dryer M., Magnetohydrodynamics of atmospheric transients IV. Non-plane two-dimensional analysis of energy conversion and magnetic field evolution, Astrophys. J., 1982,262,369.
    70. Wu S. T., Hu Y. Q., Nakagawa Y. and Tandberg-Hanssen E., Astrophys. J., 1983,266,866.
    71. Wu S.T., Numerically-simulated formation and propagation of interplanetary shocks, Computer Simulation of Space Plasma, Terra Scientific Publishing Company, Tokyo, 1984, 179:201.
    72. Wu S. T., Song M. T., Martens P. C. H. and Dryer M., Solar Phys., 1991,134, 353.
    73. Wu S. T. and W. P. Guo, and J. F. Wang, Dynamic evolution of a coronal streamer-bubble system, I. A Self-Consistent, Planar Magneto-hydrodynamic Simulation, Solar Physics, 1995, 157:325-348.
    
    
    74. Wu S. T. and Guo W. P., MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: an analysis of the January 1997 sun-earth connection event, Journal of Geophysics Research, 1999, 104(A7):14,789-14,801.
    75. Yeh T. and Dryer M., An acceleration mechanism for loop transients in the outer corona, Solar Phys., 1981, 71,141.
    76. Yeh T., A magnetohydrodynamic theory of coronal loop transients, Solar Phys., 1982,78,287.
    77. Zhang Beichen and Wang Jingfang, The simulation of the coronal mass ejection-shock system in the inner corona. Journal of Geophysics Research, 2000, 105(A6):12,593-12,603.
    78. 胡文瑞,日冕瞬变的观测特征和理论解释,空间科学学报,1984,4,232。
    79. 胡强,行星际空间磁重联事件数值模拟,中国科学院空间科学与应用研究中心,1997,8-16。
    80. 姜新英,郭伟平,熊东辉。四极子磁场位形的冕流太阳风解《武汉大学学报》(空间物理专刊),1993, 97-100.
    81. 李枫林,姜新英和熊东辉,两冕流间物质抛射事件的数值模拟,空间科学学报, 1999, 19(4):308-314.
    82. 李敬群,非对称日冕物质抛射数值模拟,中国科学院空间中心博士论文,2000。
    83. 刘新萍,太阳日冕环的运动(二),天体物理学报,1983,3,36。
    84. 卢先河,涂传冶, Alfven 脉动串级加热加速太阳风的二元流体模型,《地球物理学报》1997,40:1-8.
    85. 卢先河,魏奉思等,Ulysses的观测与太阳风加热机理初议。地球物理学报, Vol.14, No.4, 1998, p437-446.
    86. 王水,日冕物质抛射与空间天气学,中国基础科学. 科学前沿,2000,4,12-15.
    87. 王水, 胡友秋, 吴士灿, 球坐标中的Euler全隐士计算格式及其对太阳物理现象的应用。《中国科学》(A辑),1982,10:929-940.
    88. 王水,吴式灿,王爱华, 二维磁流体动力学平衡日冕。空间科学学报,1991,
    
    11(2):81-89.
    89. 张北辰,王敬芳和熊东辉,类环状CMEs形成的数值模拟,地球物理学报,1997, 40(5):589-596.
    90. 张涵信。差分计算中激波上、下游解出现波动的探讨。空气动力学报1984, 2(1):12-19
    91. 张涵信。无振动、无自由参数耗散差分格式。空气动力学报1988, 7(2):143-165
    92. 张剑虹, 魏奉思, 日球子午面内背景太阳风流场和磁场的相互作用。中国科学(A辑),1993,23(4):427-436.
    93. 朱晓梅,涂传冶,胡友秋, 高频Alfven波供能的日冕和太阳风模型,《地球物理学报》1997,17(3):193-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700