用户名: 密码: 验证码:
上行离子流对亚暴膨胀相起始的触发作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁层亚暴则是地球空间最重要的能量输入、耦合和耗散过程。磁层动力学最为重要的研究任务就是对磁层亚暴的理解。亚暴膨胀相是亚暴最为活跃的部分。膨胀相的触发机制现在还不明确。这是空间物理领域最为核心和前沿的问题之一。
    上行离子作为磁层-电离层耦合的重要方式,不仅对磁层的粒子成分有着重要的影响,同时上行离子对磁尾动力学过程有重要的影响。我们知道电离层是磁层H~+和O~+的重要源区,高纬电离层为磁层提供高通量的低能(热)等离子体,总的质量可以达到1kg/ s~(-1)。这样高通量的上行离子对磁层的离子成分和动力学的影响迄今仍是一个疑问。上行离子流(ions upflow)同时对亚暴过程也有着重要的影响,它有可能是膨胀相起始(substorm onset)的触发机制。对这个问题的研究无疑是具有重要意义的。
    我们利用三维MHD 方法首次对上行离子流触发的亚暴膨胀相起始过程进行了研究。主要的模拟工作包括下面几个部分:
    (1)磁静时起源于夜侧电离层极光椭圆带源区的上行离子对磁尾等离子体片动力学过程的影响;
    (2)在同样的磁场位型下,对流电场对磁尾等离子体片动力学过程,主要是亚暴增长相(growth phase)和膨胀相起始的影响;
    (3)在亚暴增长相期间,上行离子流对膨胀相起始的触发作用等问题进行了模拟研究。
    由于亚暴膨胀相起始的重要标志是场向电流(field-aligned current)的突然增加,我们对每个过程中场向电流的特性都进行了重点分析。
    第一部分的研究主要是为了了解起源于夜侧电离层极光椭圆带源区的上行离子对场向电流的影响及可能引起近地磁尾电流片不稳定性的机制。在第三章我们详细介绍了这部分工作。这部分工作的主要结果包括:
    ·上行离子对磁尾的影响主要发生在近地区域。上行离子对磁尾的影响与上行离子的通量密切相关,上行离子的通量越高,影响越大。
    ·随着进入磁尾的上行离子通量的增加,磁尾尤其是在近地等离子体片内
It is well known that the ionosphere is an important source of magnetospheric plasma, especially H~+ ions and O~+ ions, the high latitude ionosphere transport the high flux and low energy (hot) plasma to the magnetosphere, the whole quality is up to 1kg/ s~(-1). The effect of such high flux upflowing ions on the composition and the dynamic process of the magnetosphere is still unclear. The key problem is if the ions upflow can really trigger the substorm onset?
    A 3-D resistive MHD simulation is carried out to study the effect of the ions upflow on the dynamic process of the magnetotial and the triggering of the substorm onset. The whole work is divided into three parts:
    (1) The effects of the ions upflow original from the night-side auroral oval on the near-earth magnetotail during the quiet time;
    (2) The effect of the convection electric field on the dynamic process of the magnetotail, mainly on the substorm growth phase and the onset process;
    (3) The effect of the ions upflow presented during the substorm growth phase on the substorm process, the most interesting question is if the ions upflow can trigger the substorm onset.
    In the magnetotail, one of the most significant observational features at substorm onset is the sudden enhancement of the field-aligned current and an increase of the north-south component of the magnetic field (Bz) up to its dipolar value, so we especially analysis the change of the field-aligned current and the Bz in each part.
    The first part of the simulation is to understand the effects of the ions upflow original from the night-side auroral oval on the near-earth magnetotail during the quiet time. This is important for us to understand the current instability triggered by the upflows in the near earth region. The main conclusions include that:
    ·During the quiet time, the up-flowing ions original from the night-side auroral oval have effect mainly on the near-earth magnetotail. The effect of the upflow ions on the
    dynamic process of the magnetotail depends on the flux of the upions entered the plasma sheet. The main effects include: (1) with the entering of the upflowing ions, the pressure in the near-earth plasma sheet decrease; (2) the density of the plasma in the plasma sheet decrease; (3) the cross-tail current increase in the near-earth region, and decrease beyond 20Re in the plasma sheet; (4) the plasma flow in the plasma sheet is the earth-direction inside 20Re, and the tail-direction outside 20Re. This is important for us to understand the role of the upflowing ions on the substorm process. Inducing the enhancement of field-aligned current in the near-earth magnetotail. The distribution region of the FAC is mainly divieed into three regions, including: high-latitude region, mid-latitude region and plasma sheet boundary. The distribution of the FAC in the dark-aside and dawn-aside have reversal multi-layer structure, including low-latitude. The intensity of the FAC depends not only on the up-flowing ions energy flux transfer into the plasma sheet, but also on the velocity of the upflows. The second part of the simulation is to understand the substorm process under the effect of the convection electric field, and forming the thin current sheet in the magnetotail. The main conclusions include that: The convection electric field have important effects on the location of the X-line and the process of the substorm With the growth of the magnetic-island in the x and z direction, the plasmoid moved tail-ward, and the near-earth X line moved earth-ward fastly. The moving velocity of the X-line mainly depends on the convection electric field. With the earth-ward moving of the X-line, the significant symbol of the substorm is presented, including the thinning of the plasma sheet, the increasement of the cross-tail current and the forming of the thin current sheet in the near-earth magnetotail The third part is based on the results of the second part, and is mainly about the triggering of the current instability by the ions upflow original from the night-side auroral oval. This can induce the substorm onset during the late growth phase. The main conclusions include that:
引文
[1] Akasofu, S.-I. The development of the auroral substorm, Planet. Space Sci., 12, 1964
    [2] Angelopoulos, V., Baumjohann, W., C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Lühr, and G. Paschmann, Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97, 4027-4039, 1992.
    [3] Axford, W.I., and C.O.Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys. 39, 1433, 1961
    [4] Baker, D. N. et al, Global properties of the magnetosphere during a substorm growth phase, J. Geophys. Res., 86, 8941, 1981
    [5] Baker, D. N., et al, Average plasma and magnetic field ariations in the distant magnetotail associated with near-Earth substorm effects. J. Geophys. Res., 92, 71, 1987
    [6] Baker, D. N. et al, CDAW 9 analysis of magnetospheric events on May 3, 1986: Event C, J. Geophys. Res., 98, 3815, 1993
    [7] Baker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPheron, Neutral line model of substorm: Past results and present view, J. Geophys. Res., 101, 12,975, 1996. 389, 12-17 May, 1996
    [8] Baker, D. N., Magnetic Reconnection during magnetospheric substorms, Proceedings of the Third International Conference on Substorms (ICS-3), ESA SP-
    [9] Baumjohann, W., G. Paschmann, and H. Lühr, Characteristics of high-speed ion flows in the plasma sheet, J. Geophys. Res., 95, 3801-3809, 1990.
    [10] Bhattacharjee, A., Z. W. Ma, and X. Wang, Dynamics of thin current sheets and their disruption by ballooning instabilities: A mechanism for magnetospheric substorms, Phys. Plasmas, 5, 2001, 1998b
    [11] Birn, J., and M. Hesse, Details of current disruption and diversion in simulations of magnetotail dynamics, J. Geophys. Res., 101, 15345, 1996
    [12] Birn, J., and M. Hesse, The substorm current wedge and field-aligned current in MHD simulations of magnetotail reconnection, J. Geophys. Res., 96, 1611, 1991
    [13] Birn, J., and E.W. Hones, Three-dimensional computer modeling of dynamic reconnection in the geomagnetic tail, J. Geophys. Res., 86, 6802, 1981
    [14] Chanteur, G. Spatial interpolation for four spacecraft:Theory,,in:Analysis Methods for Multi-Spacecraft Data, G.Paschmann and P.Daly (Eds), 349-369, 1998
    [15] Chappell. C. R. et al, Pitch-angle variations in magnetospheic theral plasma-initial observations from Dynamic Explorer-1, Geopys. Res. Lett., 9, 933, 1982
    [16] Chappell. C. R., B.L. Giles et al. The Ionosphere as a Fully Adequate Source of Plasma for the Earth’s Magnetosphere ,J. Geophys Res, Vol 92, N. A6, P5896-5910 1987
    [17] C.R. Chappell, B.L. Giles et al. The adequacy of the ionospheric source in supplying magnetospheric, plasmas J Atmospheric and solar-terrestrical Phy 421-436 2000
    [18] Cheng, C. Z., and A. T. Y. Lui, Theory and observation of magnetic field perturbations during substorm current disruption, International conference on Substroms-4, 1998
    [19] Cladis J B and Francis W E. The polar ionosphere as a source of the storm time ring current. J Geophys Res, 90, 3465, 1985
    [20] Collin H. L et al, The magnitude and composition of the outflow of energetic ions from the ionosphere. J Geophys Res, 89, 2185, 1984
    [21] Coroniti, F. V., and C. F. Kennel, Polarization of the auroral electrojet, J. Geophys. Res., 77, 2835, 1972.
    [22] Cully, C. M>, E. F. Donovan, A. W. Yao, and G. G. Arkos, Akebano/Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions, J. Geophys. Res., doi:10.1029/2001JA009200, 2002
    [23] Cummings W D et al. Field-aligned currents in the magnetosphere, J Geophys Res, 72:1007 1967
    [24] D.C.Delcourt, et al. A three-dimensional numerical model of Ionospheric plasma in the magnetotail , J. Geophys. Res., Vol. 94, No. A9, P11893-11920, 1989
    [25] D.C.Delcourt, et al, Dynamics of single particle orbits during substorm expansion phase, J. Geophys. Res., 95, 1258, 1990
    [26] D.C.Delcourt, J.A. Sauvaud et al. Polar wind ion dynamics in the magnetotail, J. Geophys. Res., Vol. 98, No. A6, P9155-9169, June 1,1993
    [27] Elpphinstone, R. D. et al, VIKING observations of the UV dayside aurora and their relationship to DMSP particle boundary definitions, Ann. Geophysicae, 10, 815, 1977
    [28] Fairfield, D. H., and N. F. Ness, Configuration of the geomagnetic tail during substorms, J. Geophys. Res., 75, 7032-, 1970.
    [29] Fairfield, D. H., R. P. Lepping, E. W. Hones, Jr., S. J. Blame, and J. R. Asbridge, Simultaneous measurements of magnetotail dynamics by IMP spacecraft, J. Geophys. Res., 86, 1396-1414, 1981.
    [30] G. Atkinson, Reconnection in the centre of the Near-Earth Plasma Sheet: control of Onset by Plasma drifts and magnetic flux convection close to the earth
    [31] Gazey, N G. J., et al, The development of substorm cross-tail current disruption as seen from the ground, J. Geophys. Res, 100, 9633, 1995
    [32] Gazey, N G. J., et al, EISCAT/CRRES observations: nightside ionosphereic ion outflow and oxygen-rich substorm injections, Ann. Geophysicae 14, 1032-1043(1996)
    [33] Ghielmetti A G, Johnson R G, Sharp R D et al The latitudenal, diurnal and altitudinal distributions of upward flowing energetic ions of ionospheric origin. Geophys Res Lett, 59 1978
    [34] Harvey, C.C., 1998, Spatial gradients and volumetric tensor,in:Analysis Methods for Multi-Spacecraft Data, G.Paschmann and P.Daly (Eds), 307-322
    [35] Hones, E. W., Jr., Substorm processes in the magnetotail: Comments on “On hot tenuous plasma fireballs and boundary layers in the Earth’s magnetotail: by L. A. Frank et al, J Geophys Res, 82, 5633, 1977
    [36] Hones, E. W., Jr., et al, Transient phenomena in the magetotail and their relation to substorms, space sci Rev, 23, 393, 1979
    [37] Hones, E. W., Jr., et al, Structure of te magnetic tail at 220re and its response to geomagnetic activity, Geophys Res Lett, 11, 5, 1984
    [38] Hones, E. W., Jr et al, Associations of geomagnetic activity with plasma sheet thinning and expansion: A statictical study, J Geophys Res, 89, 5471, 1984a
    [39] Hones, E. W., Jr et al, Structure of the magnetotail at 220 Re and its response to geomagnetic activity, Geophys Res Lett, 11,5, 1984b
    [40] Hones, E. W., Jr et al, Evidence supporting the near-eart neutral line model of substorms: A reminder an update, Proceedings of International Conference on Substorms 2, 167, 1994
    [41] I. A. Daglis, E. T. Sarris and G. Kremser, Ionospheric contribution to the cross-tail current enhancement during the substorm growth phase
    [42] Iijima T et at. The amplitude distribution of field-aligned currents at north high latitudes observed by Triad, J Geophys Res, 81:2165 1976
    [43] Iijima T et at. Field-aligned currents in the south polar cusp and their relationship to the interplanetary magnetic field, J Geophys Res, 83:5595 1978
    [44] Kan, J. R., A global magnetosphere-ionosphere coupling model of substorms, J. Geophys. Res., 98, 17,263, 1993
    [45] Kan, J. R., A globally integrated substorm model: tail reconnection and M-I coupling, J. Geophys Res., 103, 11,787, 1998
    [46] Kan, J. R., Dipolarization: A consequence of substorm expansion onset, Geophys. Res. Lett., 18, 57, 1991
    [47] Kan, J. R., and W. Sun, Substorm expansion phase caused by an intense localized convection imposed on the ionosphere, J. Geophys. Res., 101, 27,271, 1996
    [48] Keatinig, J. G., et al, A statistical study of large field-aligned flows of thermal ions at high latitudes, Planet. Space Sci., 38, 1187-1102, 1990
    [49] Kistler, L. M. et al, Motion of auroral ion outflow structures observed with CLUSTER and IMAGE FUV, J Geophys Res, 107, 101029, 2002
    [50] Lui, A. T. Y., R. E. Lopez, B. J. Anderson, K. Takahashi, L. J.\ Zanetti, R. W. McEntire, T. A. Potemra, D. M. Klumpar, E. M.\ Greene, and R. Strangeway, Current disruptions in the near-Earth neutral sheet region, J. Geophys. Res., 97, 1461, 1992
    [51] Lockwood, M., M. o. Chandler, J. L. Horwitz, J. H. Waite et al . The cleft ion fountain, J. Geophys. Res., 90 9736 1985a
    [52] Lockwood, M., et al, Te geomagnetic mass spectrometer-mass and energy dispersions of ionospheric ion flows into the magnetosphere, Nature, 316, 612, 1985b
    [53] Lockwood, M., Large-scale fields and flows in the magnetosphere-ionosphere system, Surv. Geophys., 16, 389-441,1995
    [54] Lopez, R. E. et al, Substorm variations in the magnitude of the magnetic field: AMPTE/CCE observations, J. Geophys. Res., 93, 14,444, 1988
    [55] Lopez, R. E. et al, Simultaneous observation of the poleward expansion of substorm electrojet activity and the tailward expansion of current sheet disruption in the near-earth magnetotail, J. Geophys. Res., 98, 9285, 1993
    [56] Lyon, J. G., A new theory for magnetospheric substorms, J. Geophys. Res., 100, 19069, 1995
    [57] Mats Andre , Andrew Yau, Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Science Review 80: 27-48,1997
    [58] McPherron, R. L., V. Angelopoulos, D. N. Baker, and E. W. Hones, Jr., Is there a near-earth neutral line?, Adv. Space Res., 13(3), 173, 1993
    [59] Mcpherron, R. L, Magnetospheric substorms, Rev. Geophys., 17, 657, 1979
    [60] Mcpherron, R. L et al, Satellite studies of magnetospheric substorms on August 15, 1968, 9, Phenomenological model for substorms, J. Geophys. Res., 78, 3131, 1973
    [61] McPherron, R. L., Substorm related changes in the geomagnetic tail: The growth phase, Planet. Space Sci., 20, 1521-1539, 1972.
    [62] Moldwin, M. B and Hughes, W. On the formation and evolution of plasmoids: A survey of ISEE 3 geotail data. J. Geophys. Res., 97, 19259, 1992
    [63] Moldwin, M. B and Hughes, W. Geomagnetic substorm association of plasmoids, J. Geophys. Res., 98, 81, 1993
    [64] Moldwin, M. B and Hughes, W. Observation of earth and tailward propagating flux rope plasmoids: Expanding the plasmoid model of geomagnetic substorms, J. Geophys. Res. 99, 183, 1994
    [65] Moore T E. 1991. Origining of magnetospheric plasma. Rev Geophys, Supl, 1039, April
    [66] Murphree, J. S. et al, Interpretation of optical substorm onset observations, J. Atmos. Terr. Phys., 55 1159, 1993
    [67] Nagai, T., et al, Initial GEOTAIL survey of magnetic substorm signatures in the magnetotail. Geopys Res Lett, 21, 2991, 1994
    [68] Nagai, T., T. Mukai, T. Yamamoto, A. Nishida, S. Kokubun, and R. P. Lepping, Plasma sheet pressure changes during the substorm growth phase, Geophys. Res. Lett., 24, 963-966, 1997
    [69] Ohtani, S., K. Takahashi, L. J. Zanetti, T. A. Potemra, R. W.\ McEntire, and T. Iijima, Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration: explosive growth phase, J. Geophys. Res., 97, 19,311, 1992.
    [70] Pulkkiinen, T. I. et al, Global and local current sheet thickness estimates during the late growth phase, in Substorms1, 1992
    [71] Priest, E. R. The magnetohydrodynamics of current sheets, Rep. Prog. Phys. , 48, 995, 1985
    [72] Reme, H., et al, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical CLUSTER Ion Spectrometry (CIS) experiment, Ann. Geophys., 19, 1303, 2001
    [73] Richard L. Kaufmann, et al. Cross-tail current, field-aligned current, and By, J. Geophys. Res., Vol. 99, No. A6, P11277-11295, 1984
    [74] R. M. Winglee Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions J Atmospheric and solar-terrestrial Physics P.27-540 1999
    [75] R. M. Winglee, Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions, J. Atm and Sol-Ter Phy. 62, 527-540, 2000
    [76] R. M. Winglee, Multi-fluid simulations of the magnetosphere: The identification of the geopause and its variation with IMF. Geophysical Res Lett, Vol. 25, No.24, 4441, 1998
    [77] Robert L, McPherron, Formation of NENL expansion onset, COSPAR, May 6, 2004
    [78] Roux, A., S. Perraut, P. Robert, A. Morane, A. Pedersen, A. Korth, G.\ Kremser, B. Aparicio, D. Rodgers, and R. Pellinen, Plasma sheet instability related to the westward traveling surge, J. Geophys.\ Res., 96, 17,697, 1991
    [79] Samson, J. C. et al, Proton aurora and substorm intensifications, Geophysical Res Lett,19, 2167, 1992a
    [80] Samson, J. C. et al, Substorm intensifications and field-line resonances iin the nightside magnetosphere, J. Geophys. Res., 97, 8495, 1992b
    [81] Samson, J. C., A. K. Macaulay, R. Rankin, P. Fryca, I. Voronkov, and L. L. Cogger, Substorm intensifications and resistive shear flow-ballooning instabilities in the near-Earth magnetotail, Proceedings of the Third International Conference on Substroms, p399, 1996
    [82] Sato, T., R.J. Walker, and M. Ashour-Abdalla, Driven magnetic reconnection in three dimensions: Energy conversion and field-aligned currents, J. Geophys. Res., 89, 9761, 1984
    [83] Scholer, M. and A. Otto, Magnetotail reconnection: Current diversion and field-aligned current, Geophys. Res. Lett. 18, 733, 1991
    [84] Sergeev, B. A. et al, Structure of the tail plasma/current sheet at ~ 11Re and its changes in the course of a substorm, J. Geophys. Res., 98, 17,345, 1993
    [85] Sharp R D, Lennartsson W and Strangeway R J, The ionospheric contribution to the plasma environment in near-earth space. Radio Sci, 12, 456, 1985
    [86] Sheley E G, Jonson R G and sharp R D. 1972. Satellite observations of energetic heavy ions during a geomagnetic storm. J Geophys, 77:6104
    [87] Shi Jian-Kui, Li Chun-Qiang, Liu Zhen-Xing, Transport of Ionospheric up-flowing o + ion along the field line at various longitude to the magnetosphere, Chinese Journal of Geophysic Vol. 45, No.3 May, 2002
    [88] Shiokawa, K., W. Baumjohann, and G. Haerendel, Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 24, 1179-1182, 1997.
    [89] Slavin J A et al, CDAW 8 observation of plasmoid signatures in the geomagnetic tail: A ssessment, J. Geophys. Res., 94, 15153, 1989
    [90] Slavin J A et al, Isee 3 observaton of traveling compression regions in the earth’s magnetotail, J. Geophys. Res., 98, 15425, 1993
    [91] Slavin J A et al, Cluster four spacecraft measurements of small traveling compression regions in the near-tail, Geophys. Res. Lett. 30, 2208, 2003
    [92] Slavin J A et al, Geotail observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res., 108, 1015, 2003
    [93] Thomas, B. T., and P. Hedgecock, Substorm effects in the neutral sheet inside 10 Re, in Magnetospheres of the Earth and Jupiter, 1975
    [94] Ueno, G., S. Nachida, T. Mukai et al, Distribution of X-type magnetic neutral lines in the magnetotail with Geotail observations. Geophys. Res. Lett., 26, 3341, 1999
    [95] Ugai, M., Computer simulations of Field-aligned currents generated by fast magnetic reconnection in three dimensions, J. Geophys. Res., 96, 21173, 1991
    [96] Vasyliunas, V. M., in magnetospheric Particles and Fileds, p. 99, 1976
    [97] Vasyliunas, V. M., The substorm as a flux transfer process, Abstracts of the Thired International Conferrence on Substorms, p. 169, 1996
    [98] Yau, A . W. et. Al., Energetic auroral and polar ion outflow at ED 1 altitudes: Magnitude, composition and magnetic activity dependence and long term variations. J. Geophys. Res., Vol. 90, P.8471, 1985
    [99] Yau, A . W. and Andrew, M., Sources of Ion Outflow in the High Latitude Ionosphere, Sci. Rev., 1997
    [100] Yung, D. T. et al,Correlations of magnetosphere ion composition and geomagnetic and solar

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700