用户名: 密码: 验证码:
基于三维移动载荷理论的细长轴工件加工过程振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在切削加工中,细长轴工件是难加工零件之一,工件振动、加工稳定性、加工质量都是必须解决的关键问题。尤其是旋转工件表面上移动载荷的作用,工件振动与切削力的相互影响,都加剧了切削工件的振动甚至引起颤振,制约了加工质量和生产效率的提高,影响加工过程顺利进行。因此,研究切削加工过程中细长轴工件的振动规律,己成为实施和解决细长轴工件切削加工技术的瓶颈环节,是亟需解决的关键技术。本文从移动载荷作用下旋转细长轴工件振动分析的角度,针对切削加工过程中三维移动切削力作用下旋转工件的振动问题,采用理论建模与实验研究相结合的方法,开展了车削、外圆磨削加工过程中三维移动载荷作用下旋转细长轴工件的振动研究。
     (1)考虑了切削加工过程中移动载荷的作用,以及工件的变质量、变直径、变刚度等时变特性因素的影响,用Rayleigh连续梁振动理论,建立了切削加工过程中三维移动载荷作用下旋转细长轴工件振动的动力学模型和二阶耦合微分方程。此外,还考虑了工件表面的再生效应的影响,建立了切削加工过程中三维移动载荷作用下旋转工件振动的延时动力学模型和二阶延时微分方程。用上述模型研究了车削、外圆磨削加工过程中旋转细长轴工件的振动和颤振问题,并对工件振动方程进行求解和理论分析。
     (2)建立了切削加工过程中三维移动载荷作用下旋转工件振动的转子动力学模型,将切削加工过程中细长轴工件的振动简化为质量集中系统的已加工、在加工和待加工的三转子动力学系统,考虑了加工过程中工件质量和直径随时间变化,以及加工表面的再生效应对工件振动的影响。
     (3)开展了切削加工过程中工件振动的稳定性研究,考虑了工件和刀具两者振动相互作用的影响,用工件振动方程和质量集中系统的刀具振动方程,建立了车削工件颤振稳定性分析模型,求解车削用量临界极限值,从而避免工件颤振发生。
     (4)分析了切削加工过程中工件的不同夹紧方式及其边界条件的建立,并求解工件的振动方程;用理论计算方法,分析了车削、外圆磨削加工过程中切削用量、工件直径等参数对工件振动及其稳定性的影响。
     (5)进行了切削加工振动实验,对移动载荷作用下工件振动的理论模型进行验证;对加工中不同夹紧边界下(如车削、磨削)的工件、刀具和刀架进行模态分析及其参数识别;分别开展了车削和磨削加工过程中的工件振动、加工精度和表面粗糙度的测量实验。为了测量外圆磨削力,自主研制了外圆磨削用压电式测力装置,并对该装置进行了标定、精度分析和测力实验。
     本文对细长轴工件振动的研究表明,切削加工过程中移动载荷作用、旋转工件的质量和直径的时变特性对工件振动都有影响,移动载荷作用下旋转细长轴工件振动模型能够准确地反映加工过程中工件的振动规律,为今后进一步开展切削加工过程中移动载荷作用下不同截面的细长轴工件的振动研究奠定了良好的基础。
A long slender workpiece is one of the most difficult-to-cut parts in machining process, in which workpiece vibration, machining stability and machining quality are the key issues to be solved. Especially, the effect of moving load acting on surface of the workpiece and interaction between workpiece vibration and cutting force exacerbate the vibration and then chatter in machining process. These reasons limit promotion of machining quality and production rate and affect the machining process also. Thus, research on vibration of a long and slender workpiece in machining process has become bottlenecks of implement and solution of machining technology for the workpiece and it is an urgent and key technology to be resolved.
     From the point of view of theory on vibration analysis of shaft subjected to moving loads, this paper analyzes vibration of a long and slender workpiece subjected to three dimensions moving cutting forces in machining process. Moreover, it is studied that vibration analysis of rotation workpiece is subjected to three dimensions cutting force machining process such as turning operation and external grinding process with the method of combination of theoretical model establishment and experiment.
     Rayleigh continuous beam vibration theory is used to establish motion equation of vibration of dynamic model for a rotation workpiece subjected to three-dimension moving cutting force. The model is used to study the workpiece vibration in turning process and external grinding. The effect of moving load and variable mass and diameter of the workpiece are considered in establishment of two-order time-varying differential equations of the workpiece for dynamic vibration analysis in turning and external grinding process. So the motion equations of the model are derived, from which numerical solutions of the equation are computed. On the basis of the model, with consideration of regenerative effect, two-order differential delay equations of model for vibration analysis of rotation workpiece are derived in machining process. The motion equations of two models are solved and used to study vibration and chatter analysis of rotation slender workpiece in turning and external grinding process.
     Based on vibration theory of rotor dynamics, rotor dynamics model of rotating workpiece subjected to the three-dimensions cutting force is built in machining process, in which the workpiece is simplified as a concentrated mass system consisted of three rotors, i.e., the machined, the machining, the unmachined part of shaft, respectively. The model is used to study vibration of workpiece in turning and external grinding operation. Moreover variable mass and diameter of workpiece is considered in machining process. So the equations of motion of rotation shaft are derived.
     In order to research machining stability, stability of turning process is discussed, in which combination of the motion equations of workpiece and one degree of freedom motion equation of tool is used and interactive influence of cutter post and workpiece. And a predictive stability model of choosing critical values of machining parameters is established for prediction of chatter in turning process.
     According to different clamped conditions for workpiece in machine tools, vibration equation of rotation shaft is numerically solved in corresponding boundary conditions and initial values, in which the effect of cutting parameters such as depth of cut, rotation speed, diameter of workpiece, etc. on dynamic response of vibration and stability of cutting are discussed in turning process and external grinding operations.
     Modal test of workpiece are made in boundary conditions of machine tool for the turning and external grinding operation. Identification of modal parameters for workpiece is conducted. Moreover, fundamental Frequency and modal parameters is tested in different cutting condition. Stiffness of chucked end as elastic support end in turning process is computed.
     According to requirement of vibration test for grinding process, three-dimension dynamometer of piezoelectric on external grinding is designed and installed. Static calibration of the dynamometer is conducted and then the dynamometer is used to test cutting force in grinding process. Meanwhile, vibration and machined surface roughness of workpiece is tested in machining process such as turning and external grinding. Numerical analysis and experimental verification of dynamic response of vibration, stability model, surface roughness model of turning and external grinding for workpiece is conducted in turning and grinding process.
     The research on a long and slender workpiece vibration shows the variable mass and diameter of the workpiece has an obvious effect on the vibration of workpiece and the model is exactly able to describe vibration of the workpiece subjected to the moving load in machining process. The results lay a good foundation for the further research on the rotation workpiece vibration with different cross-sections subjected to the moving load in machining process.
引文
[1]SMITH S., WINFOUGH W. R., BORCHERS H. J. Power and stability limits in milling [J]. Annals of the CIRP-Manufacturing Technology,2000,49(1):309-312.
    [2]SUH C. S., KHURJEKAR P. P., YANG B. Characterization and identification of dynamic inst-ability in milling operation [J]. Mech. Syst. Signal Pr.,2002,16(5):853-872.
    [3]SCHULZ H., MORIWAKI T. High-speed machining [J]. Annals of the CIRP-Manufacturing Technology,1992,41(2):637-642.
    [5]ALTINTAS Y., WECK M. Chatter stability of metal cutting and grinding [J]. Annals of the CIRP-Manufacturing Technology,2004,53(2):619-642.
    [6]TAYLOR F. On the art of cutting metals [J]. Transactions of the ASME,1907,28:31-35.
    [7]ARNOLD R. H. The mechanism of tool vibration in the cutting of steel [J]. Proceedings of the Institution of Mechanical Engineers,1946,154:261-284.
    [8]TOBIAS S. A., FISHWICK W. Theory of regenerative machine tool chatter [J]. The Engine-ering,1958,205:199-203.
    [9]TOBIAS S. A., FISHWICK W. The vibration of radial-drilling machines under test and working conditions [J]. Proceedings of the Institution of Mechanical Engineers,1956,170:232-264.
    [10]TOBIAS S. A., FISHNICK W. The chatter of lathe tools under orthogonal cutting conditions [J]. Transactions of the ASME,1958,80(5):1079-1086.
    [11]TLUSTY J., POLACEK M. The stability of machine tools against self-excited vibrations in machining [J]. International Research in Production Engineering,1963,465-474.
    [12]MERRITT H. E. Theory of self-excited machine tool chatter [J]. Journal of Engineering for Industry-Transactions of the ASME,1965,87(4):447-454.
    [13]KATO S., MARUI E. On the cause of regenerative chatter due to workpiece deflection [J]. Journal of Engineering for Industry-Transactions of ASME,1974,96:176-186.
    [14]TLUSTY J. A method of analysis of machine-tool stability [J]. International Journal Machine Tool Design Research,1965,6:5-14.
    [15]MINIS E., MAGRAB I., PANDELIDIS I. Improved methods for the prediction of chatter in turning, Part 3:A generalized linear theory [J]. Journal of Engineering for Industry-Transac-tions of the ASME,1990,112:28-35.
    [16]OLGAC N., HOSEK M. A new perspective and analysis of machine tool chatter [J]. Int. J. Mach. Tool Manu.,1998,38:783-798.
    [17]YANG F. L., ZHANG B, YU J. Y. Chatter suppression with multiple time-varying parameters in turning [J]. J. Mater. Process Tech.,2003,141:431-438.
    [18]FOFANA M. S., EE K. C, JAWAHIR I. S. Machining stability in turning operation when cutting with a progressively worn tool insert [J]. Wear,2003,255:1395-1403.
    [19]TLUSTY J. Analysis of the state of research in cutting dynamics [J]. Annals of the CIRP-Man- ufacturing Technology,1978,27(2):583-589.
    [20]CHIOU Y. S., CHUNG E. S., LIANG S. Y. Analysis of tool wear effect on chatter stability in turning [J]. Int. J. Mech. Sci.,1995,7(4):391-404.
    [21]VELA-MARTINEZA L., JAUREGUI-CORREA J. C, RUBIO-CERDA E, et al. Analysis of compliance between the cutting tool and the workpiece on the stability of a turning process [J]. Int. J. Mach. Tool Manu.,2008,48:1054-1062.
    [22]SEKAR M., SRINIVAS J., KOTAIAH K. R., et al. Stability analysis of turning process with tailstock-supported workpiece [J]. Int. J. Adv. Manuf. Tech.,2009,43:862-871.
    [23]HANNA N. H., TOBIAS S. A. A theory of non-linear regenerative chatter [J]. Journal of Engineering for Industry-Transactions of the ASME,1974,96(1):247-255.
    [24]SHI H. M., TOBIAS S. A. Theory of finite amplitude machine tool instability [J]. International Journal of Machine Tool Design and Research,1984,24:45-69.
    [25]TLUSTY J., ISMAIL F. Basic non-linearity in machining chatter [J]. Annals of the CIRP-Manufacturing Technology,1981,30:299-304.
    [26]KONDO Y., KAWANO O., SATO H. Behavior of self-excited chatter due to multiple regene-rative effect [J]. Journal of Engineering for Industry-Transactions of ASME,1981,103:324-329.
    [27]KANEKO T., SATO T., TANI Y., et al. Self-excited chatter and its marks in turning [J]. Journal of Engineering for Industry-Transactions of ASME,1984,103:222-228.
    [28]LIN J. S., WENG C. I. Non-linear dynamics of cutting process [J]. Int. J. Mech. Sci.,1991,23: 645-657.
    [29]HWANG C. C., FUNG R. F., LIN J. S. Strong non-linear dynamics of cutting processes [J]. Journal of Sound and Vibration,1997,203:363-372
    [30]CHANDIRAMANI N. K., POTHALA T. Dynamics of 2-dof regenerative chatter during turning [J]. Journal of Sound and Vibration,2006,290:448-464.
    [31]TARNG Y. S., YOUNG H. T., LEE B. Y. An analytical model of chatter vibration in metal cutting [J]. Int. J. Mach. Tool Manu.,1994,34:183-197.
    [32]WU D. W., LIU C. R. An analytical model of cutting tool dynamics, Part 1:model building, Part 2:verification [J]. Journal of Engineering for Industry,1985,107:107-118.
    [33]BERGER B. S., ROKNI M., MINIS I. The nonlinear dynamics of metal cutting [J]. Inter-national Journal of Engineering Sciences,1992,30:1433-1440.
    [34]JOHNSON M. A., MOON F. C. Nonlinear techniques to characterize pre-chatter and chatter vibrations in the machining of metals [J]. International Journal of Bifurcation & Chaos,2001, 11(2):449-467.
    [35]MOON F. C. Chaotic dynamics and fractals in material removal processes, in non-linearity and chaos in engineering dynamics [M]. Chichester:John Wiley & Sons,1994,25-37.
    [36]NOSYREVA E. P., MOLINARI A. Analysis of nonlinear vibrations in metal cutting [J]. Int. J. Mech. Sci.,1998,40(8):735-748.
    [37]KONDO E., OTA H., KAWAI I. A new method to detect regenerative chatter using spectral analysis, Part 1:Basic study on criteria for detection of chatter [J]. Journal of Manufacturing Science and Engineering-Transactions of ASME,1997,119:461-466.
    [38]INSPERGER T., STEPAN G., TURI J. State-dependent delay in regenerative turning processes [J]. Nonlinear Dynamics,2007,47:275-283.
    [39]INSPERGER T., BARTON D. A. W., STEPAN G. Criticality of Hopf bifurcation in state dependent delay model of turning processes [J]. International Journal of Non-Linear Mechanics, 2008,43:140-149.
    [40]SEN A. K., LITAK G., SYTA A. Cutting process dynamics by nonlinear time series and wavelet analysis [J]. Chaos,2007,17:1-9.
    [41]BAKER J. R., ROUCH K. E. Use of finite element structural models in analyzing machine tool chatter [J]. Finite Elements in Analysis and Design,2002,38:1029-1046.
    [42]NIGM M. M., SADEK M. M., TOBIAS S. A. Determination of dynamic cutting coefficients from steady state cutting data [J]. International Journal of Machine Tool Design and Research, 1977,17(1):19-37.
    [43]WANG Z. C., CLEGHORN W. L. Stability analysis of spinning stepped-shaft workpieces in a turning process [J]. Journal of Sound and Vibration,2002,250:356-367.
    [44]DASSANAYAKE A. V., STEVE S. C. On nonlinear cutting response and tool chatter in turning operation [J]. Commun. Nonlinear Sci. Numer. Sim.,2008,13:979-1001.
    [45]DASSANAYAKE A. V., SUH C. S. Machining dynamics involving whirling, Part I:Model development and validation [J]. Journal of Vibration and Control,2007,13:475-506.
    [46]DASSANAYAKE A. V., SUH C. S. Machining dynamics involving whirling,Part II: Machining motions described by nonlinear and linearized models [J]. Journal of Vibration and Control,2007,13:507-526.
    [47]师汉民.影响机床振动的几个非线性因素及其数学模型[J].华中工学院学报,1984,12:101-112.
    [48]杨玉坚,梅志坚,杨叔子,等.用机床颤振的非线性理论对变速切削抑制颤振的研究[J].四川工业学院学报,1988,8(1):10-16.
    [49]刘习军,陈予恕.机床速度型切削颤振的非线性研究[J].振动与冲击,1999,2:4-9.
    [50]杨叔子,刘经燕,师汉民,等.金属切削过程颤振预兆的特性分析[J].华中工学院学报,1985,13(5):79-86.
    [51]梅志坚,刘经燕,师汉民,等.金属切削过程颤振的计算机模式识别及在线监控[J].华中工学院学报,1987,15(2):42-48.
    [52]孔繁森,于骏一,潘志刚.切削过程再生颤振的模糊稳定性分析[J].振动工程学报,1998,11(1):106-109.
    [53]林洁琼,周晓勤,孔繁森等.再生切削颤振系统动态响应谐参数辨识[J].吉林大学学报(工学版),2009,39(4):964-969.
    [54]韩荣第,郭建亮.加跟刀架的细长轴车削加工尺寸误差的仿真[J].南京航空航天大学学报,2005,11:108-112.
    [55]赵海涛,杨建国,童恒超.细长轴车削加工的振动及其补偿控制闭.上海交通大学学报,2005,39(1):117-120.
    [56]张明强,邢恩辉.减缓细长轴车削加工时振动的方法[J].佳木斯大学学报(自然科学版).2007,25(2):169-171.
    [57]郭建亮.细长轴类工件车削加工的研究[D].哈尔滨工业大学,2006.
    [58]崔伯第.细长轴车削参数优化及尺寸误差监测系统研究[D].哈尔滨工业大学,2008.
    [59]李晓舟,殷立仁.利用磁力跟刀架减小细长轴车削振动[J].现代机械,1996,3:47-48.
    [60]李桂华,马修水.误差补偿技术在轴加工中的应用[J].机械制造,2004,42(6):53-54.
    [61]武文革,庞思勤,常兴.可逆向车削细长轴加工误差的力学分析[J].北京理工大学学报,2004,24(2):109-112.
    [62]ALTINTAS Y. Manufacturing Automation:Metal Cutting Mechanics, Machine Tool Vibra-tions, and CNC Design [M]. Cambridge, U K:Cambridge University Press,2000.
    [63]SEGALMAN D. J., BUTCHER E. A. Suppression of regenerative chatter via impedance modulation [J]. Journal of Vibration and Control,2000,6:243-256.
    [64]TARNG Y. S., KAO J. Y., LEE E. C. Chatter suppression in turning operations with a tuned vibration absorber [J]. J. Mater Process Tech.,2000,105:55-60.
    [65]FREYER B. H., THERON N. J., HEYNS P. S. Simulation of tool vibration control in turning, using a self-sensing actuator [J]. Journal of Vibration and Control,2008,14:999-1019.
    [65]CHEN M., KNOSPE C. R. A new approach to the estimation of cutting dynamics using active magnetic bearings [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2005,127:773-780.
    [67]GANGULI A., DERAEMAEKER A., PREUMONT A. Regenerative chatter reduction by active damping control [J]. Journal of Sound and Vibration,2007,300:847-862.
    [68]LIAO Y. S., YOUNG Y. C. A new on-line spindle speed regulation strategy for chatter control [J]. Int. J. Mach. Tool. Manu.,1996,36:651-660.
    [69]DEMIR A., HASANOV A., NAMACHCHIVAYA N. S. Delay equations with fluctuating delay related to the regenerative chatter [J]. International Journal of Non-Linear Mechanics, 2006,41:464-474.
    [70]MEI C, CHERNG J. G., WANG Y. Active control of regenerative chatter during metal cutting process [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2006,128:346-349.
    [71]TARNG Y. S., HSEIH Y. W., LI T. C. Automatic selection of spindle speed for suppression of regenerative chatter in turning [J]. Int. J. Adv. Manuf. Tech.,1996,11:12-17.
    [72]SOLIMAN E., ISMAIL F. Chatter suppression by adaptive speed modulation [J]. Int. J. Mach Tool Manu.,1997,37:355-369.
    [73]TARNG Y. S., LEE, E. C. A critical investigation of the phase shift between the inner and outer modulation for the control of machine tool chatter [J]. Int. J. Mach. Tool Manu.,1997,37: 1661-1672.
    [74]YILMAZ A., AL-REGIB E., NI J. Machine tool chatter suppression by multi-level random spindle speed variation [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2002,124:208-216.
    [75]AL-REGIB E., NI J., LEE S. H. Programming spindle speed variation for machine tool chatter suppression [J]. Int. J. Mach. Tool Manu.,2003,43:1229-1240.
    [76]NAMACHCHIVAYA N. S., BEDDINI R. Spindle speed variation for the suppression of regenerative chatter [J]. Journal of Nonlinear Science,2003,13:265-288.
    [77]NAMACHCHIVAYA N. S., VAN ROESSEL H. J. A centre-manifold analysis of variable speed machining [J]. Dynamical Systems:An International Journal,2003,18(3):245-270.
    [78]PAKDEMIRLI M., ULSOY A. G. Perturbation analysis of spindle speed variation in machine tool chatter [J]. Journal of Vibration and Control.1997,3(3):261-278.
    [79]高国利,王启义,王仁德.变参数车削对颤振的影响及颤振抑制[J].东北大学学报,1994,15(6):576-580.
    [80]王仁德,高国利,王启义.变速切削抑振机理[J].东北大学学报,1996,17(5):544-548.
    [81]王文才,于骏一,周晓勤,等.变速切削系统的振动响应特征[J].吉林工业大学学报,1996,26(4):25-29.
    [82]杨辅伦,于骏一,张海燕.刀具工作前角时变系统切削稳定性的研究[J].振动工程学报,1994,7(1):80-85.
    [83]王茂华,于骏一,张永亮.电流变技术在机床颤振控制中应用的研究[J].机械工程学报,2000,36(11):94-97.
    [84]张永亮,于骏一,侯东霞等.基于电流变效应的车削颤振预报控制技术的研究[J].机械工程学报,2005,41(4):206-211.
    [85]王民,费仁元.基于电流变材料的切削颤振在线监控技术研究[J].机械工程学报,2002,38(12):93-97.
    [86]WEI Z. C., WANG M. J., HAN X. G. Cutting forces prediction in generalized pocket machining [J]. Int. J. Adv. Manuf. Tech.,2010,50(5-8):449-458.
    [87]吴雅.机床切削系统的颤振及其控制[M].北京:科学出版社,1993.
    [88]谢黎明,唐林虎,张季惠.高速旋转刀具系统的振动分析及控制途径[J].工具技术,2006,2:33-35.
    [89]INASAKI I., TONOU K., YONETSU S. Regenerative chatter in cylindrical plunge grinding [J]. Bulletin of the JSME,1977,20(150):1648-1654.
    [90]HAHN R. S. On the theory of regenerative chatter in precision-grinding operations [J]. Transactions of the ASME,1954,76(1):593.
    [91]BARTALUCCI B., LISINI G. G. Grinding process instability [J]. Journal of Engineering for Industry-Transaction of the ASME, Series B,1969,91(3):597-606.
    [92]FURUKAWA Y., MIYASHITA M., SHIOZAKI S. Chatter vibration in centerless grinding [J]. Bulletin of the JSME,1970,13(64):1274-1283.
    [93]THOMPSON R. A. Character of regenerative chatter in cylindrical grinding [J]. Journal of Engineering for Industry-Transaction of the ASME,1973,95(3):858-864.
    [94]THOMPSON R. A. On the doubly regenerative stability of a grinder:the theory of chatter growth [J]. Journal of Engineering for Industry-Transactions of the ASME,1986,108:75-82.
    [95]THOMPSON R. A. On the doubly regenerative stability of a grinder:the mathematical analysis of chatter growth [J]. Journal of Engineering for Industry-Transactions of the ASME,1986,108: 83-92.
    [96]SNOEYS R., BROWN D. Dominating parameters in grinding wheel and workpiece regenera-tive chatter [C]. Proceedings of the 10th International Machine Tool Design and Research Conference, Manchester,1969,325-348.
    [97]LIAO Y. S., SHIANG L. C. Computer simulation of self-excited and forced vibrations in the external cylindrical plunge grinding process [J]. Journal of Engineering for Industry-Trans-actions of the ASME,1991,113:297-304.
    [98]YUAN L., KESKINEN E., JARVENPAA V. M. Stability analysis of roll grinding system with double time delay effects [C]. IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, Solid Mechanics and Its Applications,2005,130:375-387.
    [99]YUAN L., JARVENPAA V-M., KESKINEN E., et al. Simulation of roll grinding system dyna-mics with rotor equations and speed control [J]. Communications in Nonlinear Science and Nu-merical Simulation,2002,7:95-106.
    [100]LIU Z., PAYRE G. Stability analysis of doubly regenerative cylindrical grinding process [J]. Journal of Sound and Vibration,2007,301(3-5):950-962.
    [101]BIERA J., VINOLAS J., NIETO F. J. Time-domain dynamic modeling of the external plunge grinding process [J]. Int. J. Mach. Tool. Manu.,1997,37:1555-1572.
    [102]EL-WARDANI T., SADEK M. M., YOUNIS M. A. Theoretical analysis of grinding chatter [J]. Journal of Engineering for Industry-Transaction of ASME,1987,109:314-320.
    [103]LI H. Q., SHIN Y. C. A time-domain dynamic model for chatter prediction of cylindrical plunge grinding processes [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2006,128(2):404-415.
    [104]STANESCU N. D. A non-linear model in grinding [J]. Advances in Manufacturing Engineering, Quality and Production Systems,2009,1:242-248.
    [105]HESTERMAN D., STONE B. Improved model of chatter in grinding, including torsional effects [J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-Body Dynamics,2002,216(2):169-180.
    [106]ENTWISTLE R. D. Torsional compliance and chatter in grinding [D]. The University of Western Australia,1997.
    [107]ENTWISTLE R. D., STONE B. J. Torsional compliance in grinding chatter [C]. Proceeding of 1 lth Annual Meeting of the American Society for Precision Engineering,1996,420-423.
    [108]SHIAU T. N., HUANG K. H., WANG F. C., et al. Dynamic response of a rotating ball screw subject to a moving regenerative force in grinding [J]. Applied Mathematical Modelling,2010, 34(7):1721-1731.
    [109]CHENG C. C., KUO C. P., WANG F. C., et al. Moving follower rest design using vibration absorbers for ball screw grinding [J]. Journal of Sound and Vibration,2009,326(1-2):123-136.
    [110]王龙山,崔岸,于爱兵.砂轮变速磨削抑制工件颤振的研究[J].中国机械工程,1999,10:1-10.
    [111]蒋永翔,王太勇,黄国龙,等.外圆纵磨再生颤振稳定性理论及评价方法的研究[J].振动与冲击,2008,27:61-78.
    [112]蒋永翔,王太勇,张莹,等.外圆切入磨再生颤振稳定性理论及评价方法[J].天津大学学报,2009,42:283-286.
    [113]杨高伟,李大磊,黄乐.外圆磨削加工过程非线性振动仿真分析[J].制造业自动化,2011,33:26-28.
    [114]庞川,熊焕庭.外圆切入磨削颤振的预报及时变进给控制[J].磨床与磨削,1998,3:28-31.
    [115]吴祥,薛秉源,贝季瑶.变速磨削的试验研究[J].精密制造与自动化,1985,2:2-5.
    [116]申晓龙,张来希,陈根余.抑制高速磨削颤振实验研究[J].现代制造工程,2006,6:119-120.
    [117]徐燕申,牛文铁,李刚.有限随机进给法抑制磨削颤振的研究[J].金刚石与磨料磨具工程,2003,3:40-42.
    [118]KATZ R., LEE C. W., ULSOY A. G., et al. Dynamic stability and response of a beam subjected to a deflection-dependent moving load [J]. Journal of Vibration, Acoustics, Stress and Reliability in Design-Transactions of the ASME,1987,109:361-365.
    [119]LEE C. W., KATZ R., ULSOY A. G., et al. Modal analysis of a distributed parameter rotating shaft [J]. Journal of Sound and Vibration,1988,122(1):119-130.
    [120]KATZ R., LEE C. W., ULSOY A. G., et al. The dynamic response of a rotating shaft subject to a moving load [J]. Journal of Sound and Vibration,1988,122(1):134-148.
    [121]HUANG S. C., HSU B. S. Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load [J]. Journal of Sound and Vibration,1990,136(2):215-228.
    [122]HAN R. P. S., ZU W. Z. Modal analysis of rotating shafts:a body-fixes axis formulation approach [J]. Journal of Sound and Vibration,1992,156(1):1-16.
    [123]ARGENTO A., SCOTT R. A. Dynamic response of a rotating beam subjected to an accelera-ting distributed surface force [J]. Journal of Sound and Vibration,1992,157(2):221-231.
    [124]ARGENTO A., MORANO H. L.,SCOTT R. A. Accelerating load on a rotating Rayleigh beam [J]. Journal of Vibration and Acoustics-Transactions of the ASME,1994,116(3):397-403.
    [125]ARGENTO A. A spinning beam subjected to a moving deflection dependent load, Part I: response and resonance [J]. Journal of Sound and Vibration,1995,182(4):595-615.
    [126]ARGENTO A., MORANO H. L. A spinning beam subjected to a moving deflection dependent load, Part II:parametric resonance [J]. Journal of Sound and Vibration,1995,182(4):617-622.
    [127]CHOI S. H., PIERRE C., ULSOY A. G. Consistent modeling of rotating Timoshenko shafts subject to axial loads [J]. Journal of Vibration and Acoustics-Transactions of the ASME,1992, 114(2):249-259.
    [128]CHEN L. W., KUD. M. Dynamic stability of a cantilever shaft-disk system [J]. Journal of Vibration and Acoustics-Transactions of the ASME,1992,114:326-329.
    [129]TAN T. H., LEE H. P., LENG G. S. B. Parametric instability of spinning pretwisted beams subjected to sinusoidal compressive axial loads [J]. Computers and Structures,1998,66(6): 745-764.
    [130]LEE H. P. Dynamic response of a rotating Timoshenko shaft subject to axial forces and moving loads [J]. Journal of Sound and Vibration,1995,181(1):169-177.
    [131]PAVLOVIC R., RAJKOVIC P., PAVLOVIC I. Dynamic stability of the viscoelastic rotating shaft subjected to random excitation [J]. Int. J. Mech. Sci.,2008,50(2):359-364.
    [132]HUANG Y. M., LEE C. Y. Dynamics of a rotating Rayleigh beam subject to a repetitively travelling force [J]. Int. J. Mech. Sci.,1998,40(8):779-792.
    [133]ZIBDEH H. S., JUMA H. S. Dynamic response of a rotating beam subjected to a random moving load [J]. Journal of Sound and Vibration,1999,223:741-758.
    [134]YANG S. M., SHEU G. J. Vibration control of a rotating shaft:An analytical solution [J]. Journal of Applied Mechanics-Transactions of the ASME,1999,66(1):254-259.
    [135]SHEU G. J., YANG S. M. Dynamic analysis of a spinning Rayleigh beam [J]. Int. J. Mech. Sci., 2005,47(2):157-169.
    [136]KIM J. Rotation effects on vibration of structures seen from a rotating beam simply supported off the rotation axis [J]. Journal of Vibration and Acoustics-Transactions of the ASME,2006, 128(3):328-337.
    [137]EL-SAEIDY F. M. A. Finite element dynamic analysis of a rotating shaft with or without non-linear boundary conditions subjected to a moving load [J]. Nonlinear Dynamics,2000,21: 377-407.
    [138]KATZ R. The dynamic response of a rotating shaft subject to an axially moving and rotating load [J]. Journal of Sound and Vibration,2001,246(5):757-775.
    [139]CHENG C. C., LIN J. K. Modelling a rotating shaft subjected to a high-speed moving force [J]. Journal of Sound and Vibration,2003,261(5):955-965.
    [140]SHIAU T. N., CHEN E. C., HUANG K. H., et al. Dynamic response of a spinning Timoshenko beam with general boundary conditions under a moving skew force using global assumed mode method [J]. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2006,49(2):401-410.
    [141]OUYANG H. Moving-load dynamic problems:A tutorial (with a brief overview) [J]. Mechan-ical Systems and Signal Processing,2011,25:2039-2060.
    [142]OUYANG H., WANG M. J. A dynamic model for a rotating beam subjected to axially moving forces [J]. Journal of Sound and Vibration,2007,308(3-5):674-682.
    [143]OUYANG H., WANG M. J. Dynamics of a rotating shaft subject to a three-directional moving load [J]. Journal of Vibration and Acoustics-Transactions of the ASME,2007,129:386-389.
    [144]HUANG Y. M, YANG M. L. Dynamic analysis of a rotating beam subjected to repeating axial and transverse forces [J]. Int. J. Mech. Sci.,2009,51:256-268.
    [145]张文Timoshenko转轴模型的若干讨论[J].上海力学,1987,3:63-70.
    [146]鲁周勋.转轴的弯-扭耦合振动研究[J].汽轮机技术,1994,36(5):265-268.
    [147]朱怀亮.大位移Timoshenko转轴三维耦合动力学分析[J].应用数学和力学,2002,23(12):1261-1268.
    [148]RAO G. V. Linear dynamics of an elastic beam under moving loads [J]. Journal of Vibration and Acoustics-Transactions of ASME,2000,122:281-289.
    [149]YANG F., ZHANG B., YU J. Chatter suppression via an oscillating cutter [J]. Journal of Manu-facturing Science & Engineering-Transactions of ASME,1999,121(1):54-60.
    [150]DAI L., WANG J. The effects of workpiece deflection and motor features on quality of mach-ining process [J]. Nonlinear vibrations analysis-Journal of Vibration and Control,2007,13: 557-582.
    [151]LITAK G. Chaotic vibrations in a regenerative cutting process [J]. Chaos, Solitons& Fractals, 2002,13:1531-1535.
    [152]KALMAR-NAGY T., STEPAN G., MOON F. C. Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations [J]. Nonlinear Dynamics,2001,26:121-142.
    [153]KIM P., SEOK J. Bifurcation analyses on the chatter vibrations of a turning process with state-dependent delay [J]. Nonlinear Dynamics.2012,69:891-912.
    [154]RAO B. C., SHIN Y. C. A comprehensive dynamic cutting force model for chatter prediction in turning [J]. Int. J. Mach. Tool Manu.,1999,39:1631-1654.
    [155]WERNER G., KONIG W. Influence of work material on grinding forces [J]. Annals of the CIRP-Manufacturing Technology,1978,27(1):243-248.
    [156]李力钓,傅杰才.磨削力数学模型的研究[J].湖南大学学报(自然科学版),1979,3:44-55.
    [157]YOUNIS M., SADEK M. M., ELWARDANI T. A new approach to development of a grinding force model [J]. Journal of Engineering for Industry-Transactions of the ASME,1987,109(4): 306-313.
    [158]王龙山,李国发.磨削过程模型的建立及其计算机仿真[J].中国机械工程,2002,13:1-5.
    [159]王君明,汤漾平,宾鸿赞,等.轴向进给周边轮廓通用磨削力模型[J].华中科技大学学报(自然科学版),2010,38:8-11.
    [160]刘蒲生,张树声.高速强力外圆磨削和外圆深切缓进给强力磨削时磨削力的研究明.磨料磨具与磨削,1982,5:6-12.
    [161]芮晓明,郑焕文,张澄.外圆强力切入磨削中磨削力的一些试验研究[J].东北工学院学报,1984,39(2):127-135.
    [162]BRINKSMEIER E., TONSHOFF H. K., INASAKI I., et al. Basic parameters in grinding report on a cooperative work in STC-G [J]. Annals of the CIRP-Manufacturing Technology,1993,42 (2):795-799.
    [163]陈章燕.外圆和平面磨削时磨削力的计算公式[J].机械,1990,17(4):40-43.
    [164]LIU Q., CHEN X., WANG Y., et al. Empirical modeling of grinding force based on multi-variate analysis [J]. J. Mater. Process Tech.,2008,203:420-430.
    [165]ALI Y., ZHANG L. C. Estimation of residual stress induced by grinding using a fuzzy logic approach [J]. J. Mater. Process Tech.,1997,63:875-880.
    [166]NANDI A. K., PRATIHAR D. K. Design of a genetic-fuzzy system to predict surface finish and power requirement in grinding [J]. Fuzzy Sets and Systems,2004,148(3):487-504.
    [167]SARAVANAN R., SACHITHANANDAM M. Genetic algorithm (GA) for multivariable sur-face grinding process optimization using a multi-objective function model [J]. Int. J. Adv. Manuf. Tech.,2001,17:330-338.
    [168]GOPAL A. V., RAO P. V. The optimization of the grinding of silicon carbide with diamond wheels using genetic algorithms [J]. Int. J. Adv. Manuf. Tech.,2003,22:475-480.
    [169]SAKAKURA M, INASAKI I. A neural network approach to the decision-making process for grinding operation [J]. Annals of the CIRP-Manufacturing Technology,1991,41(1):353-356.
    [170]AMAMOU R., BEN FREDJ N., FNAIECH F. Improved method for grinding force prediction based on neural network [J]. Int. J. Adv. Manuf. Tech.,2008,39:656-668.
    [171]GREENWOOD D. T. Advanced Dynamics [M]. U K:Cambridge University Press,2003.
    [172]VANCE J., ZEIDAN F., MURPHY B. Machinery Vibration and Rotor dynamics [M]. N.J: John Wiley & Sons, Inc,2010.
    [173]JEFFCOTT H. H. The lateral vibration of loaded shafts in the neighborhood of a whirling speed-the effect of want of balance [J]. Philosophical Magazine,1919,37(6):304.
    [174]GONCALVES P. J. P., BRENNAN M. J., ELLIOTT S. J. Numerical evaluation of high-order modes of vibration in uniform Euler-Bernoulli beams [J]. Journal of Sound and Vibration,2007, 301:1035-1039.
    [175]CHEN C. K., TSAO Y. M. A stability analysis of turning a tailstock supported flexible work-piece [J]. Int. J. Mach. Tool Manu.,2006,46(1):18-25.
    [176]VERNON A., OZEL T. Factors affecting surface roughness in finish hard turning [C]. the 17th International Conference on Production Research, Blacksburg, Virginia,2003.
    [177]LIAN Z., WEN X. Analysis of the effects of vibration on the surface roughness generation using simulation model in turning operations [J]. China Mechanical Engineering,2004,15(23): 2085-2087.
    [178]GROOVER M. P. Fundamentals of modern manufacturing:materials, processes, and systems [M]. Upper Saddle River, N.J.:Prentice Hall,1996.
    [179]LU C. Study on prediction of surface quality in machining process [J]. J. Mater. Process Tech., 2008,205(1-3):439-450.
    [180]JANG D. Y., CHOI Y. G., KIM H. G., et al. Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning [J]. Int. J. Mach. Tool Manu.1996,36(4):453-564.
    [181]LI Z. C., LIN B. Experimental studies on grinding forces and force ratio of the unsteady state grinding technique [J]. J. Mater. Process Tech.,2002,129(1-3):76-80.
    [182]BUKKAPATNAM S. T. S., PALANNA R. Experimental characterization of nonlinear dynam-ics underlying the cylindrical grinding process [J]. Journal of Manufacturing Science and Eng-ineering-Transactions of the ASME,2004,126(2):341-344.
    [183]COUEY J. A., MARSH E. R. Monitoring force in precision cylindrical grinding [J]. Precision Engineering,2005,29(3):307-314.
    [184]GOVEKAR E., BAUS A. A new method for chatter detection in grinding [J]. Annals of the CIRP-Manufacturing Technology,2002,51(1):267-270.
    [185]DREW S. J., MANNAN M. A. The measurement of forces in grinding in the presence of vibration [J]. Int. J. Mach. Tool Manu.,2001,41(4):509-520.
    [186]张军,孙宝元,钱敏.切削力测试系统研究[J].机械工程学报,2002,38:151-154.
    [187]SIDDHPURA M., PAUROBALLY R. A review of chatter vibration research in turning [J]. International Journal of Machine Tools & Manufacture,2012,61:27-47.
    [188]VYAS A., SHAW M. C. Mechanics of saw-tooth chip formation in metal cutting [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,1999,211:163-172.
    [189]OBIKAWA T., USUI E. Computational machining of titanium alloy-finite element modeling and a few results [J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,1996,118:208-215.
    [190]KOMANDURI R., TURKOVICH B. F. V. New observations on the mechanism of chip formation when machining titanium alloys [J]. Wear,1981,69:179-188.
    [191]BARRY J., BYRNE G., LENNON D. Observations on chip formation and acoustic emission in machining Ti6A14V alloy [J]. Int. J. Mach. Tool Manu.,2001,41:1055-1070.
    [192]KOMANDURI R., HOU Z. B. On the thermo plastic shear instability in the machining of a titanium alloy (Ti6A14V) [J]. Metallurgical and Materials Transactions,2002,33:2995-3010.
    [193]NURULAMIN A. K. M. Investigation of the mechanism of chatter formation during metal cutting process [J]. Mechanical Engineering Res Bulletin,1983,6:11-18.
    [194]PATWARI A., AMIN N., FARIS W., et al. Investigations of formation of chatter in a non-wavy surface during thread cutting and turning operations [J]. Advanced Materials Research, 2010,83:637-645.
    [195]NURULAMIN A. K. M., JAAFAR I, PATWARI A., et al. Role of discrete nature of chip formation and natural vibrations of system components in chatter formation during metal cutting [J]. IIUM Engineering Journal,2010,11:124.
    [196]TANGJITSITCHAROEN S., MORIWAKI T. Intelligent monitoring and identification of cutting states of chips and chatter on CNC turning machine [J]. Journal of Manufacturing Processes,2008,10:40-46.
    [197]TANGJITSITCHAROEN S. In-process monitoring and detection of chip formation and chatter for CNC turning [J]. Journal of Materials Processing Technology,2009,209:4682-4688.
    [198]SUN S., BRANDT M., DARGUSCH M. S. Characteristics of cutting forces and chip formation in machining of titanium alloys [J]. Int. J. Mach. Tool Manu.,2009,49:561-568.
    [199]BARRY J., BYRNE G. Study on acoustic emission in machining hardened steels. Part 1: acoustic emission during saw-tooth chip formation [J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2001,215:1549-1559.
    [200]PATWARI M. A. U., AMIN A. K. M. N., FARIS W. F. Influence of chip serration frequency on chatter formation during end milling of Ti6A14V.[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2011,133(1):011013-(1-12).
    [201]MAHNAMA M., MOVAHHEDY M. R. Prediction of machining chatter based on FEM simulation of chip formation under dynamic conditions [J]. International Journal of Machine Tools & Manufacture,2010,50(7):611-620.
    [202]PALMAI Z., CSERNAK G. Chip formation as an oscillator during the turning process [J]. Journal of Sound and Vibration,2009,326(3-5):809-820.
    [203]TAYLOR C. M., TURNER S, SIMS N. Chatter, process damping, and chip segmentation in turning:a signal processing approach [J]. Journal of Sound and Vibration,2010,329(23): 4922-4935.
    [204]RAO S. S. Mechanical Vibration,5th edition [M]. N. J.:Pearson Eduction, Inc,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700