用户名: 密码: 验证码:
超细晶粒Ti(C,N)基金属陶瓷组织与性能及其刀具切削行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用粉末冶金法制备了不同成分及粒度的Ti(C, N)基金属陶瓷材料和刀具。研究了粉末粒度、球磨工艺、晶粒生长抑制剂、渗硼处理对Ti(C, N)基金属陶瓷显微组织和性能的影响。并研究了几何角度对Ti(C, N)基金属陶瓷刀具切削性能的影响。
     介绍了Ti(C, N)基金属陶瓷的发展过程、制备方法、显微组织、力学性能、抗热震性能和切削性能。其中,重点概述了金属陶瓷的制备方法,包括混料、成形和烧结方法,总结了Ti(C,N)基金属陶瓷的显微组织特征、力学性能的测试方法,并指出了化学成分、粉末粒度和制备工艺对Ti(C, N)基金属陶瓷显微组织和力学性能的具体影响。介绍了渗硼技术的发展过程、方法及工艺和渗硼层的组织特点。其中,对几种常见的渗硼方法及其优缺点和各类材料的渗硼层组织特点进行了重点概述。另外,还介绍了金属切削有限元模拟技术的发展概况和应用价值。分析和总结了本文的研究目的和意义。
     研究了硬质相粉末粒度对Ti(C, N)基金属陶瓷组织和力学性能的影响。结果表明,与采用微米TiC制备的金属陶瓷材料相比,用纳米TiC制备的材料晶粒更细小,硬质相与粘结相的分布更均匀;以“纳米TiC+微米TiN”为硬质相粉末制备的材料中形成一种粗大的“灰芯-灰壳”结构晶粒,这种晶粒的形成是由微米TiN与纳米TiC颗粒在液相中的饱和溶解度存在巨大差异所引起;以“微米TiC+纳米TiN”和“纳米TiC+纳米TiN”制备的金属陶瓷分别具有最好的综合力学性能和最高的硬度。
     研究了球磨工艺对Ti(C, N)基金属陶瓷组织和性能的影响。研究发现在球料比较小、球磨时间较短或球磨转速较低的条件下,金属陶瓷材料中形成一种灰芯结构晶粒;球料比的增大使硬质相晶粒逐渐细化,组织趋于均匀,而材料的相对密度降低。适当增大球料比有利于提高材料的抗弯强度和硬度,改变球料比对断裂韧性影响不大;球磨时间的增加使组织趋于均匀,硬质相晶粒细化。随着球磨时间的增加,相对密度和硬度呈先增大后减小趋势,并都在球磨时间为11h时达最大值。增加球磨时间使抗弯强度和断裂韧性升高;增大球磨转速使组织的均匀程度提高,但不能细化硬质相晶粒。随球磨转速的增大,相对密度和硬度先增大后减小,断裂韧性逐渐升高。
     研究了晶粒生长抑制剂对Ti(C, N)基金属陶瓷组织和性能的影响。发现添加VC、Cr_3C_2以及复合添加VC/Cr_3C_2都使金属陶瓷的晶粒细化,但也导致材料的相对密度降低。VC添加量为1.5%时,硬质相晶粒最细。随着VC添加量的增加,抗弯强度和断裂韧性先升高后降低,并且都在VC添加量为1%时达到最大值。硬度随VC添加量的增加而先降低后升高,在VC添加量为1%时达到最小值;添加1.5%Cr_3C_2时,金属陶瓷的晶粒最细。添加金属陶瓷的抗弯强度、硬度和断裂韧性都随Cr_3C_2添加量的增大而呈现先升高后降低的趋势,抗弯强度和断裂韧性都在Cr_3C_2添加量为1%时达到最大值,硬度在Cr_3C_2添加量为1.5%时达到最大值;添加0.75VC-0.25Cr_3C_2时,金属陶瓷的晶粒最细。添加0.25VC-0.75Cr_3C_2时,材料的抗弯强度和硬度达到最大值,添加0.5VC-0.5Cr_3C_2时,断裂韧性达到最大值。
     研究了渗硼处理对Ti(C, N)基金属陶瓷显微组织、力学性能、抗热震性能以及切削性能的影响。研究发现经渗硼后,Ti(C, N)基金属陶瓷表层形成由硼化物层、扩散层和基体区组成的渗硼层组织,厚度约为100~140μm;渗硼处理使金属陶瓷的抗弯强度降低39.8%,表面硬度升高48.7%;渗硼处理使金属陶瓷的热震残留强度降低,使金属陶瓷表面的热震裂纹扩展速率增大。在热震温差较小的条件下,渗硼金属陶瓷缺口裂纹的孕育期长于未渗硼金属陶瓷;渗硼金属陶瓷刀具在较低切削速度(vc=200m/min)下的使用寿命明显长于未渗硼刀具,而在较高切削速度(vc=300、400m/min)下的使用寿命比未渗硼刀具短。
     利用有限元模拟和切削实验的方法研究了几何角度对纳米TiN改性和超细晶Ti(C, N)基金属陶瓷刀具切削性能的影响。结果表明,增大前角使主切削力、前刀面及后刀面的最大等效应力、最高温度值和磨损程度减小,并且,前角为-5°时的前、后刀面最高温度值和磨损程度最小;增大后角使主切削力、前刀面及后刀面的最高温度值和磨损程度减小,后角的变化对前、后刀面的最大等效应力影响不大;两种金属陶瓷刀具的最佳前角和后角都分别为:-5°和11°,超细晶Ti(C, N)基金属陶瓷刀具的使用寿命明显比纳米TiN改性Ti(C, N)基金属陶瓷刀具长。切削实验与有限元模拟方法得出的结果吻合较好,从而验证了有限元模型的正确性。
Ti(C, N)-based cermets with different compositions and grain sizes were prepared by powdermetallurgy method. The effects of powder size, ball milling parameter, grain growth inhibitor andboronizing on the microstructure and properties of Ti(C, N)-based cermets were researched. Theeffects of geometric angles on cutting performance of Ti(C, N)-based cermet tools were also studied.
     The development history, fabricating methods, microstructure, mechanical properties, thermalshock resistance and cutting performance of Ti(C, N)-based cermets were introduced. Thefabricating methods of cermets, including the methods of mixing, formation and sintering wereoutlined specially. The characteristics of microstructure and test methods of mechanical propertieswere summarized, and the detailed influences of chemical composition, powder size and fabricatingprocess on the microstructure and mechanical properties were pointed out. The development historyand technology methods of boronizing as well as microstructure of boronizing layer were introduced.Some common boronizing methods and their merits and demerits as well as the characteristics ofboronizing layer microstructure were outlined specially. Furthermore, the development situation andapplication value of finite element simulation technique of metal cutting were introduced. Thepurpose and significance of this desertation were also analyzed and summarized.
     The effect of hard particle size on microstructure and mechanical properties of Ti(C, N)-basedcermets were studied. The results show that compared with the cermets made from micron TiC, thecermets made from nano TiC possess finer grains and more homogeneous distribution of hard phaseand binder phase. There are coarse grains with the structure of “grey core-grey rim” in the cermetsmade from “nano TiC+micron TiN”, which is due to the great difference between the saturatedsolubility of micron TiN and nano TiC. The cermet made from “micron TiC+nano TiN” and “nanoTiC+nano TiN” possesses the best comprehensive property and the highest hardness respectively.
     The effect of ball milling parameter on microstructure and mechanical properties of Ti(C,N)-based cermets was researched. The research shows that under the condition of smallerball-to-powder weigth ratio, shorter milling time or lower milling rate, the grain with grey coreforms in cermets. The increase of ball-to-powder weigth ratio leads to the refinement of grains andhomogenization of microstructure, but results in the decrease of relative density. Appropriatelyincreasing ball-to-powder weigth ratio is helpful to promote the TRS and hardness, and the change of ball-to-powder weigth ratio does not influence fracture toughness hardly. The increase of millingtime makes the distribution of microstructure more homogeneous and the grains finer. With theincrease of milling time, the relative density and hardness increase at first and then decrease, andthey both reach the maximum when the milling time is11h. The increase of milling time results inthe increase of TRS and fracture toughness. The increase of milling rate makes the microstructuremore homogeneous, but is not useful to refine grains. With the increase of milling rate, the relativedensity and hardness increase at first and then decline, meanwhile, the fracture toughness increases.
     The effect of grain growth inhibitor on microstructure and mechanical properties of Ti(C,N)-based cermets was studied. It shows that the addition of VC, Cr_3C_2and VC/Cr_3C_2not only causethe refinement of grains, but also induce the decrease of relative density. The grain sizes of cermetadded1.5%VC are the finest. The TRS and fracture toughness increase at first and then decreasewith the increase of VC addition, and both reach the maximum when1%VC is added. With theincrease of VC addition, the hardness of cermet decrease at first and then increase, and the minimumis caused by1%VC. When1.5%Cr_3C_2is added, the grains of cermet are the finest. The TRS,hardness and fracture toughness all increase at first and then decrease with the increase of Cr_3C_2addition. The TRS and fracture toughness both reach the maximum for the addition of1%Cr_3C_2,and the hardness increases to the maximum because of the1.5%Cr_3C_2being added. The addition of0.75VC-0.25Cr_3C_2results in the TRS and hardness both increasing to the maximum, and theaddition of0.5VC-0.5Cr_3C_2causes the the maximum of fracture toughness.
     The effect of boronizing on microstructure, mechanical properties, thermal shock resistance andcutting performance of Ti(C, N)-based cermets was studied. The research shows that a boronizinglayer composed of boride layer, diffusion layer and substrate zone has formed in the surface layer ofTi(C, N)-based cermets boronized, which is about100~140μm thick. Boronizing decreases the TRSby39.8%and increases the hardness by48.7%. The residual strength of thermal shocked cermetdecreases because of boronizing. The thermal shock crack propagation rate of boronized cermet ishigher than that of the unboronized cermet. When thermal shock temperature difference is small, theinduction period of surface crack at the notch of boronized cermet is longer than that of theunboronized cermet. The life of boronized cermet tool is longer than that of unboronized cermet toolused in the lower speed(vc=200m/min) cutting, while the life of boronized cermet tool is shorterthan that of unboronized cermet tool used in the higher speed(vc=300、400m/min) cutting.
     The effect of geometric angles on the cutting performance of nano TiN modified Ti(C, N)-basedcermet tools and ultra-fine Ti(C, N)-based cermet tools was researched by the method of FEMsimulation and cutting experiment. The results show that the increase of rake angle cause thedecrease of main cutting force as well as max effective stress, the highest temperature and wear degree of rake face and flank face. When the rake angle is-5°, the highest temperature and weardegree of rake face and flank face are the lowest. The main cutting force as well as the highesttemperature and wear degree of rake face and flank face decrease because of the increase ofclearance angle, while the max effective stress is not obviously influenced by the change ofclearance angle. The most appropriate rake angle and clearance angle of the two cermets both are-5°and11°respectively. The life of ultra-fine Ti(C, N)-based cermet tools are remarkably longer thanthat of the nano TiN modified Ti(C, N)-based cermet tools. The cutting experiment resultscorrespond with the FEM simulation results, which indicates that the validity of finite elementmodels is verified.
引文
[1]张联盟.材料学[M].高等教育出版社,2005.
    [2]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002.
    [3]徐强,张幸红,曲伟等.金属陶瓷的研究进展[J].硬质合金,2002,19(04):221-225.
    [4]刘宁. Ti(C, N)基金属陶瓷材料[M].合肥:合肥工业大学出版社,2009.
    [5] P Ettmayer, W Lengauer. The story of cermets[J]. Powder Metall Int,1989,21:37-38.
    [6] P Ettmayer, H Kolaska, K Dreyer. Effect of the sintering atmosphere on the properties ofcermets[J]. Powder Metall Int,1991,23:224-229.
    [7]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1989.
    [8]《国外硬质合金》编写组.国外硬质合金[M].北京:冶金工业出版社,1976.
    [9]株洲硬质合金厂.硬质合金的生产[M].北京:冶金工业出版社,1974.
    [10]李沐山.八十年代世界硬质合金技术进展[M].株洲:硬质合金编辑部,1991.
    [11]张琳.改善碳化钛基合金韧性的研究[J].硬质合金,1980,2:10-19.
    [12] R Kieffer. Uber neuartige Nitrid-und Karbonitrid-Hartemetall[J]. Metall,1971,25(12):1335-1342.
    [13]黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金,1994,(04):43-49.
    [14]邹志强.难熔金属与硬质材料进展─从第十三届国际普兰西会议看发展动向(Ⅰ)[J].稀有金属与硬质合金,1994,(01):28-35.
    [15]晁晟.超细晶粒Ti(C, N)基金属陶瓷材料成分,组织,性能关系的研究[D].合肥:合肥工业大学硕士学位论文,2005.
    [16]陈文琳,刘宁,晁晟等.超细晶粒Ti(C,N)基金属陶瓷刀具切削性能[J].材料热处理学报,2008,29(3):80-84.
    [17] N Liu, S Chao, H D Yang. Cutting performances, mechanical property and microstructure ofultra-fine grade Ti(C,N)-based cermets[J]. Int J Refract Met Hard Mater,2006,24(6):445-452.
    [18] X B Zhang, N Liu, C L Rong. Effect of molybdenum content on the microstructure andmechanical properties of ultra-fine Ti(C, N) based cermets[J]. Mater Charact,2008,59(12):1690-1696.
    [19] Y Liu, Y Jin, H Yu, et al. Ultrafine (Ti, M)(C, N)-based cermets with optimal mechanicalproperties[J]. Int J Refract Met Hard Mater,2011,29(1):104-107.
    [20]丰平.超细晶粒Ti(C,N)基金属陶瓷的研究[D].武汉:华中科技大学博士学位论文,2004.
    [21]周书助.超细Ti(CN)基金属陶瓷粉末成形性能及刀具材料的研究[D].中南大学博士学位论文,2006.
    [22] N Liu, X S Liu, X B Zhang, et al. Effect of carbon content on the microstructure andmechanical properties of superfine Ti(C, N)-based cermets[J]. Mater Charact,2008,59(10):1440-1446.
    [23]韩成良.纳米改性Ti(C, N)基金属陶瓷材料及铣刀性能的研究[D].合肥:合肥工业大学硕士学位论文,2004.
    [24]许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能[J].复合材料学报,2003,20(1):33-37.
    [25] X B Zhang, N Liu. Microstructure, mechanical properties and thermal shock resistance ofnano-TiN modified TiC-based cermets with different binders[J]. Int J Refract Met Hard Mater,2008,26(6):575-582.
    [26] N Liu, Y D Xu, Z H Li, et al. Influence of molybdenum addition on the microstructure andmechanical properties of TiC-based cermets with nano-TiN modification[J]. Ceram Int,2003,29(8):919-925.
    [27] N Liu, Y D Xu, M Shi, et al. A new-type of cermets cutter with nano-TiN addition:Microstructure mechanical and cutting properties[J]. Journal of Wuhan University ofTechnology—Materials Science Edition,2006,21(1):63.
    [28] Y Zheng, W H Xiong, W J Liu, et al. Effect of nano addition on the microstructures andmechanical properties of Ti(C, N)-based cermets[J]. Ceram Int,2005,31(1):165-170.
    [29]纳米氮化钛陶瓷刀具研制成功[J].硅酸盐通报,2005,(05):13.
    [30] C Suryanarayana. Mechanical alloying and milling[J]. Prog Mater Sci,2001,46(1-2):1-184.
    [31]刘宁,刘灿楼.球磨工艺对Ti(C, N)基金属陶瓷组织和性能的影响[J].硬质合金,1993,10(4):216-221.
    [32]余立新,熊惟皓,李晨辉等.搅拌球磨制备亚微米晶粒Ti(C,N)基金属陶瓷[J].材料工程,2002,(7):12-15.
    [33] F L Zhang, M Zhu, C Y Wang. Parameters optimization in the planetary ball milling ofnanostructured tungsten carbide/cobalt powder[J]. Int J Refract Met Hard Mater,2008,26(4):329-333.
    [34]赵永峰,熊惟皓,张修海等. Ti(C,N)基金属陶瓷注射成形脱脂技术研究[J].材料导报,2007,21(03):140-143.
    [35]范畴,熊惟皓,魏京等. Ti(C,N)基金属陶瓷粉末注射成形技术研究概述[J].机械工程材料,2004,28(07):24-26.
    [36]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [37]陈平,张厚安,唐思文等.烧结工艺对Ti(C,N)基金属陶瓷性能的影响[J].材料热处理学报,2007,28(04):6-10.
    [38] M Leiderman, O Bostein, A Rosen. Sintering, microstructure and properties of submicrometrecemented carbides[J]. Powder Metall,1997,40(3):219-225.
    [39]郑勇,熊惟皓,宗校军等. Ti(C,N)基金属陶瓷氮化处理后的表面组织结构及形成机理[J].硅酸盐学报,2003,(03):262-267.
    [40]周永贵,郑江. Ti(C,N)基金属陶瓷制备工艺研究[J].硬质合金,2005,(03):156-160.
    [41]印红羽,盛挺,汪海宽.硬质合金低压热等静压烧结工艺[J].粉末冶金技术,1997,15(04):59-63.
    [42]王社权.影响超细硬质合金性能的几个因素[J].硬质合金,2000,17(1):9-12.
    [43] Q Fan, H Chai, Z Jin. Microstructural evolution of the titanium particles in the in-situcomposition of TiC-Fe by the combustion synthesis[J]. J Mater Process Tech,1999,96(1-3):102-107.
    [44]栾振涛,周丽,殷凤仕等. SHS-PHIP法制备TiC-Ni(Mo)金属陶瓷[J].热加工工艺,2003,(06):35-36.
    [45] J C Han, X H Zhang, J V Wood. In-situ combustion synthesis and densification of TiC-XNicermets[J]. Mater Sci Eng A,2000,280(2):328-333.
    [46] J C LaSalvia, M A Meyers, D K Kim. Combustion synthesis/dynamic densification of TiC-Nicermets[J]. J Mater Synth Proc,1994,2(4):255-274.
    [47] Y Li, N Liu, X B Zhang, et al. Effect of carbon content on the microstructure and mechanicalproperties of ultra-fine grade (Ti,W)(C,N)-Co cermets[J]. J Mater Process Tech,2008,206(1-3):365-373.
    [48] D Mari, S Bolognini, G Feusier, et al. TiMoCN based cermets: Part I. Morphology and phasecomposition[J]. Int J Refract Met Hard Mater,2003,21(1-2):37-46.
    [49]刘学松.碳含量对Ti(C,N)基金属陶瓷组织和性能的影响研究[D].合肥工业大学硕士学位论文,2006.
    [50]刘宁,刘灿楼,赵兴中等. TiN及WC加入量对Ti(C,N)基金属陶瓷组织与性能的影响[J].硬质合金,1994,(1):13-17.
    [51]陆庆忠,张福润,余立新. Ti(C,N)基金属陶瓷的研究现状及发展趋势[J].武汉科技学院学报,2002,(05):42-46.
    [52]许育东,刘宁,石敏等. Mo添加量对纳米改性金属陶瓷显微组织的影响[J].矿冶工程,2005,(02):77-80.
    [53] Y Li, N Liu, X B Zhang, et al. Effect of Mo addition on the microstructure and mechanicalproperties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets[J]. Int J Refract Met HardMater,2008,26(3):190-196.
    [54] Y Li, N Liu, X B Zhang, et al. Effect of WC content on the microstructure and mechanicalproperties of (Ti, W)(C, N)-Co cermets[J]. Int J Refract Met Hard Mater,2008,26(1):33-40.
    [55] P Wu, Y Zheng, Y Zhao, et al. Effect of TaC addition on the microstructures and mechanicalproperties of Ti(C, N)-based cermets[J]. Mater Design,2010,31(7):3537-3541.
    [56] S Kang. Some issues in Ti(CN)-WC-TaC cermets[J]. Mater Sci Eng A,1996,209(1-2):306-312.
    [57]谭锦颢,周书助,朱磊等. NbC含量对Ti(C,N)基金属陶瓷组织和力学性能的影响[J].硬质合金,2010,(2):78-82.
    [58]刘宁,吕庆荣,姜勇等.化学成分对Ti(C,N)基金属陶瓷力学性能的影响[J].硬质合金,1999,(4):206-209.
    [59]蔡威,刘宁.第二相碳化物对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2008,(2):126-130.
    [60]詹斌,刘宁. VC对纳米TiN改性Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2010,(04):214-220.
    [61] J Wang, Y Liu, P Zhang, et al. Effect of VC and nano-TiC addition on the microstructure andproperties of micrometer grade Ti(CN)-based cermets[J]. Mater Design,2009,(30):2222-2226.
    [62]郑勇,刘文俊,游敏等. Cr3C2和VC对Ti(C, N)基金属陶瓷中环形相的价电子结构和性能的影响[J].硅酸盐学报,2004,32(4):422-428.
    [63]何林,黄传真,孙静等. Cr3C2含量对Ti(C,N)基金属陶瓷力学性能的影响[J].材料工程,2003,(7):7-9.
    [64]詹斌,刘宁. Cr3C2对纳米TiN改性Ti(C,N)基金属陶瓷组织和性能的影响[J].热处理,2011,(3):39-44.
    [65]章晓波,刘宁. TiC-ZrC-Co-Ni金属陶瓷的抗热震性能[J].硬质合金,2009,(1):39-43.
    [66] X B Zhang, N Liu, C L Rong. Microstructure and fracture toughness of TiC-ZrC-WC-Mo-Nicermets[J]. Int J Refract Met Hard Mater,2008,26(4):346-356.
    [67]刘宁,崔昆,胡镇华. SiC晶须对金属陶瓷抗弯强度和断裂韧性的影响[J].稀有金属材料与工程,1996,(05):14-17.
    [68]丁燕鸿,杨杨. SiC晶须/颗粒增韧金属陶瓷切削刀具的研究[J].株洲工学院学报,2006,(04):60-62.
    [69]刘宁,胡镇华,崔昆等.钇对金属陶瓷力学性能和组织的影响[J].中国稀土学报,1997,(01):81-83.
    [70] W T Kwon, J S Park, S Kim, et al. Effect of WC and group IV carbides on the cuttingperformance of Ti(C,N) cermet tools[J]. Int J Mach Tools Manuf,2004,44(4):341-346.
    [71]刘宁,黄新民,周杰等. Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报,2000,(1):72-76.
    [72]周军.原始粉末粒度对Ti(C, N)基金属陶瓷显微组织和力学性能的影响研究[D].合肥工业大学硕士学位论文,2007.
    [73]殷卫海.原始粉末粒度对Ti(C, N)基金属陶瓷组织和性能的影响研究[D].合肥工业大学硕士学位论文,2006.
    [74]许育东,刘宁,李华等.纳米TiN粉分散工艺优化研究[J].硬质合金,2002,(2):78-82.
    [75]陈文革,王发展.粉末冶金工艺及材料[M].北京:冶金工业出版社,2011.
    [76] I Y Konyashin. Activated nitriding of TiCN-based cermets[J]. Surf Coat Technol,1995,73(1-2):125-131.
    [77] J Zackrisson, U Rolander, B Jansson, et al. Microstructure and performance of a cermetmaterial heat-treated in nitrogen[J]. Acta Mater,2000,48(17):4281-4291.
    [78] H O Andrén. Microstructure development during sintering and heat-treatment of cementedcarbides and cermets[J]. Mater Chem Phys,2001,67(1-3):209-213.
    [79]郑勇,熊惟皓,宗校军等. Ti(C,N)基金属陶瓷氮化处理后的表面组织结构及形成机理[J].硅酸盐学报,2003,31(03):262-267.
    [80]晏鲜梅,熊惟皓,周凤云等.氮化处理对Ti(C,N)基金属陶瓷组织结构和性能的影响[J].金属热处理,2006,(05):17-20.
    [81] W D Kingery. Factors Affecting Thermal Stress Resistance of Ceramic Materials[J]. J AmCeram Soc,1955,38(1):3-15.
    [82] D P H Hasselman. Elastic Energy at Fracture and Surface Energy as Design Criteria forThermal Shock[J]. J Am Ceram Soc,1963,46(11):535-540.
    [83] D P H Hasselman. Unified theory of thermal shock fracture initiation, crack propagation inbrittle ceramics[J]. J Am Ceram Soc,1969,52(11):600-604.
    [84]张玉军,张伟儒等.结构陶瓷材料及其应用[M].北京:化学工业出版社,2004.
    [85]刘宁. Ti(C, N)基金属陶瓷的疲劳裂纹扩展速率[J].华中理工大学学报,1995,(12):33-36.
    [86]刘宁,徐根应,许育东等.金属陶瓷热冲击疲劳裂纹形成机制[J].复合材料学报,1998,15(2):37-42.
    [87]张剑豪. Ti(C,N)基金属陶瓷的结构与性能研究[D].合肥工业大学硕士学位论文,2000.
    [88]许育东.颗粒型陶瓷-金属复合材料热冲击疲劳行为研究[D].合肥工业大学硕士学位论文,1997.
    [89] P Ettmayer, H Kolaska, W Lengauer, et al. Ti(C,N) cermets—Metallurgy and properties[J].Int J Refract Met Hard Mater,1995,13(6):343-351.
    [90] D Mari, S Bolognini, G Feusier, et al. TiMoCN based cermets Part II. Microstructure androom temperature mechanical properties[J]. Int J Refract Met Hard Mater,2003,21:47-53.
    [91]刘宁. Ti(C, N)基金属陶瓷的制备及成分、组织和性能的研究[D].武汉:华中理工大学博士学位论文,1994.
    [92] A Demoly, W Lengauer, C Veitsch, et al. Effect of submicron Ti(C,N) on the microstructureand the mechanical properties of Ti(C,N)-based cermets[J]. Int J Refract Met Hard Mater,2011,29(6):716-723.
    [93] M Ehira, A Egami. Mechanical properties and microstructures of submicron cermets[J]. Int JRefract Met Hard Mater,1995,13(5):313-319.
    [94] W Huang, Y Xu, Y Zheng, et al. The tribological performance of Ti(C,N)-based cermet slidingagainst Si3N4in water[J]. Wear,2011,270(9-10):682-687.
    [95]李德宝.纳米金属陶瓷刀具在绿色制造中的应用[J].现代制造工程,2003,(12):11-13.
    [96]陈树旺.渗硼热处理[M].北京:机械工业出版社,1985.
    [97] A Gf. V马图施卡.渗硼[M].北京:机械工业出版社,1987.
    [98]陈树旺,程焕武,陈卫东.渗硼技术的研究应用发展[J].国外金属热处理,2003,24(05):8-12.
    [99]孙希泰等.材料表面强化技术[M].北京:化学工业出版社,2005.
    [100]袁庆龙,曹晶晶.45钢渗硼工艺对渗层组织与性能的影响[J].热加工工艺,2010,39(2):134-136.
    [101]杨凯军,王西科,朱世杰.4Cr13不锈钢渗硼工艺及渗层组织研究[J].郑州大学学报(工学版),2003,(01):73-75.
    [102] M Usta, I Ozbek, C Bindal, et al. A comparative study of borided pure niobium, tungsten andchromium[J]. Vacuum,2006,80(11-12):1321-1325.
    [103]胡三媛,徐方超,李长林等. YG6硬质合金渗硼层厚度对抗弯强度的影响[J].中国农业大学学报,2003,8(6):45-47.
    [104] D Mu, B L Shen, X Zhao. Effects of boronizing on mechanical and dry-sliding wear propertiesof CoCrMo alloy[J]. Mater Design,2010,31(8):3933-3936.
    [105]尤显卿,宋雪峰. WC/钢复合材料渗硼中WC颗粒对硼化物生长的影响[J].材料热处理学报,2006,27(3):121-126.
    [106]郝少祥,孙玉福,杨凯军. Cr12MoV钢渗硼工艺及渗层的组织与性能[J].金属热处理,2006,(07):67-71.
    [107] M Usta, I Ozbekb, M Ipekb, et al. The characterization of borided pure tungsten[J]. Surf CoatTechnol,2005,194(2-3):330-334.
    [108]衣晓红,樊占国,张景垒等. TC4钛合金固体渗硼及渗硼过程动力学研究[J].东北大学学报(自然科学版),2010,31(1):88-91.
    [109] I zbek, H Akbulut, S Zeytin, et al. The characterization of borided99.5%purity nickel[J].Surf Coat Technol,2000,126(2-3):166-170.
    [110] M Usta. The characterization of borided pure niobium[J]. Surf Coat Technol,2005,194(2-3):251-255.
    [111] M Tarakci, Y Gencer, A Calik. The pack-boronizing of pure vanadium under a controlledatmosphere[J]. Appl Surf Sci,2010,256(24):7612-7618.
    [112] D Mu, B L Shen, C Yang, et al. Microstructure analysis of boronized pure nickel usingboronizing powders with SiC as diluent[J]. Vacuum,2009,83(12):1481-1484.
    [113] W Muhammad, K Hussain, A Tauoir, et al. Evaluation of halide-activated pack boriding ofINCONEL722[J]. Metalll Mate Trans A,1999,30(3):670-675.
    [114]黄拿灿,林福曾,朱海泉等.钴及钴基合金的渗硼和硼硅共渗强化[J].金属热处理,1987,(6):10-16.
    [115]饶孝权,刘兆年. YG8硬质合金渗硼层组织和性能的分析[J].金属热处理学报,1994,15(3):55-60.
    [116] D Mu, C Yang, B L Shen, et al. Oxidation resistance of borided pure cobalt[J]. J Alloy Compd,2009,479(1-2):629-633.
    [117] S A Kuznetsov, S V Kuznetsova, E V Rebrov, et al. Synthesis of molybdenum borides andmolybdenum silicides in molten salts and their oxidation behavior in an air–water mixture[J].Surf Coat Technol,2005,195(2-3):182-188.
    [118]衣晓红,樊占国,张景垒等. TC4钛合金的固体渗硼[J].稀有金属材料与工程,2010,(9):1631-1635.
    [119] K G Anthymidis, G Stergioudis, D N Tsipas. Boride coatings on non-ferrous materials in afluidized bed reactor and their properties[J]. Sci Technol Adv Mater,2002,3(4):303-311.
    [120]张忠健,林国标,邱智海等.硬质合金渗硼层组织及厚度的研究[J].硬质合金,2012,29(2):61-65.
    [121]尤显卿,刘圣明. GW30钢结硬质合金粉末渗硼处理[J].稀有金属与硬质合金,1993,(4):33-39.
    [122]方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,(04):641-645.
    [123] B A奥斯塔费耶夫.刀具动态强度计算[M].北京:机械工业出版社,1982.
    [124] B E Klamecki. Incipient chip formation in metal cutting-a three dimenstion finite analysis[D].Ubana: University of Illinois at Urbana-Champaign,1973.
    [125] M R Lajczok. A Study of Some Aspects of Metal Cutting By The Finite Element Method[D].Raleigh: North Carolina State University,1980.
    [126] E Usui, T Shirakashi. Mechanics of machining-from descriptive to predictive theory, on the artof cutting metals-75years later a tribute to F. W taylor[J]. ASME PED-7,1982:13-30.
    [127] J S Strenkowski, K J Moon. Finite element prediction of chip geometry and tool/workpiecetemperature distribution in orthogonal metal cutting[J]. Trans ASME J Eng Mater In,1990,127:313-318.
    [128] E Usui, K Maekawa, T Shirakashi. Simulation analysis of the built-up edge formation inmachining of low carbon steel[J]. Bull Jan Soc Proc Eng,1981,15(4):237-242.
    [129] K W Kim, H Sins. Development of a thermo-viscoplastic cutting model using finite elementmethod[J]. Int J Mach Tools Manuf,1996,36(3):379-397.
    [130] Xie. J. Q.,吴希让.有限元分析建模和模拟金属切削时剪切区切屑形成[J].国外金属加工,1999,(2):41-52.
    [131] H Sasahara, T Obikawa, T Shirakashi. FEM analysis of cutting sequence effect on mechanicalcharacteristics in machined layer[J]. J Mater Process Tech,1996,62(4):448-453.
    [132] D F Liu, X X Yu, P Y Lou. Finite Element Analysis of the Temperature Distribution inOrthogonal Metal[J]. J Beijing Inst Tech,1999,8(4):386-391.
    [133]王霖,秦勇,刘镇昌等.计算机仿真技术在磨削温度场中的应用[J].工具技术,2001,(10):19-21.
    [134]陈明,袁人炜,凡孝勇等.三维有限元分析在高速铣削温度研究中应用[J].机械工程学报,2002,(07):76-79.
    [135]谢大纲,赵清亮,袁哲俊等.麻花钻刚度的有限元分析[J].中国机械工程,2001,(S1):168-170.
    [136]谢峰,刘正士.金属切削起始阶段切削力变化过程的数值模拟[J].机械工程师,2003,(07):16-18.
    [137]周军,刘宁,卢茂华等.原始粉末粒度对Ti(C,N)基金属陶瓷组织性能的影响[J].硬质合金,2007,24(1):5-8.
    [138] D K Shetty, I G Wright, P N Mincer, et al. Indentation fracture of WC–Co cermets[J]. JMater Sci,1985,20(5):1873-1882.
    [139]许文博.最新粉末冶金金相图谱[M].北京:中国冶金出版社,2006.
    [140]周亚栋.无机材料物理化学[M].武汉:武汉理工大学出版社,1994.
    [141]许育东.高性能Ti(C, N)基金属陶瓷材料及其刀具切削性能研究[D].合肥:合肥工业大学博士学位论文,2005.
    [142]郑勇,范钟明,赵兴中等. TiN对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,1997,(3):139-143.
    [143] E O Hall. The Deformation and Ageing of Mild Steel: III Discussion of Results[J].Proceedings of the Physical Society: B,1951,64:747.
    [144] N Liu, Y D Xu, H Li, et al. Effect of nano-micro TiN addition on the microstructure andmechanical properties of TiC based cermets[J]. J Eur Ceram Soc,2002,22(13):2409-2414.
    [145] T L Anderson. Fracture Mechanics[M]. Boca Raton, FL, USA: CRC Press,2005.
    [146]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [147]王吉会等.材料力学性能[M].天津:天津大学出版社,2006.
    [148] N Liu, W H Yin, L W Zhu. Effect of TiC/TiN powder size on microstructure and properties ofTi(C, N)-based cermets[J]. Mater Sci Eng A,2007,445-446(0):707-716.
    [149]余立新,熊惟皓,丰平等.球磨方式对Ti(C,N)基金属陶瓷组织、性能的影响:中国颗粒学会2002年年会暨海峡两岸颗粒技术研讨会,广西桂林,2002[C].
    [150]甘可可,李溪滨,熊拥军等.球磨参数对TiC基钢结硬质合金性能的影响[J].粉末冶金工业,2004,14(2):21-23.
    [151] M H Enayati, G R Aryanpour, A Ebnonnasir. Production of nanostructured WC–Co powderby ball milling[J]. Int J Refract Met Hard Mater,2009,27(1):159-163.
    [152]郑勇,范钟明,赵兴中等.混料方法对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金,1997,(1):17-21.
    [153]郭圣达,羊建高,黄海平等.粗晶硬质合金硬度和强度影响因素的分析研究[J].稀有金属与硬质合金,2012,40(4):56-58.
    [154]张正富,黄莉玲,郭圣达等.粗晶硬质合金强度和致密度影响因素的研究[J].武汉理工大学学报,2010,32(23):1-4.
    [155] U K Bhaskar, S K Pradhan. Mechanosynthesis of nanocrystalline Ti0.9C0.1N at roomtemperature and its microstructural aspects[J]. Mater Sci Eng A,2012,534(0):400-407.
    [156] S A Hewitt, K A Kibble. Effects of ball milling time on the synthesis and consolidation ofnanostructured WC–Co composites[J]. Int J Refract Met Hard Mater,2009,27(6):937-948.
    [157] Q Yuan, Y Zheng, H Yu. Synthesis of nanocrystalline Ti(C,N) powders by mechanicalalloying and influence of alloying elements on the reaction[J]. Int J Refract Met Hard Mater,2009,27(1):121-125.
    [158]周新华,王力民.球磨时间对粗晶硬质合金性能的影响[J].硬质合金,2008,(1):23-27.
    [159]夏阳华,熊惟皓,丰平.高能球磨制备Ti(C,N)基金属陶瓷硬质相超微粉[J].硬质合金,2004,(2):81-85.
    [160]胡巍巍,李冠晓,刘宁等.球磨工艺对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2010,27(6):358-364.
    [161] S Chao, N Liu, Y P Yuan, et al. Microstructure and mechanical properties of ultrafineTi(CN)-based cermets fabricated from nano/submicron starting powders[J]. Ceram Int,2005,31(6):851-862.
    [162] N Liu, S Chao, X M Huang. Effects of TiC/TiN addition on the microstructure and mechanicalproperties of ultra-fine grade Ti (C, N)–Ni cermets[J]. J Eur Ceram Soc,2006,26(16):3861-3870.
    [163]胡耀波,熊惟皓. Ti(C,N)粉末的微晶化[J].硬质合金,2004,21(3):86-88.
    [164]赵声志,张忠健.工艺条件对WC-12%Co超细硬质合金性能的影响[J].硬质合金,2012,29(3):141-145.
    [165] S G Huang, R L Liu, L Li, et al. NbC as grain growth inhibitor and carbide in WC–Cohardmetals[J]. Int J Refract Met Hard Mater,2008,26(5):389-395.
    [166] H R Lee, D J Kim, N M Hwang, et al. Role of vanadium carbide additive during sintering ofWC–Co:mechanism of grain growth inhibition[J]. J Am Ceram Soc,2003,86(1):152-154.
    [167] L Sun, T Yang, C Jia, et al. VC, Cr3C2doped ultrafine WC–Co cemented carbides preparedby spark plasma sintering[J]. Int J Refract Met Hard Mater,2011,29(2):147-152.
    [168] J Weidow, H Andrén. Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbCor TaC additions[J]. Int J Refract Met Hard Mater,2011,29(1):38-43.
    [169] T Yamamoto, Y Ikuhara, T Watanabe, et al. High resolution microscopy study in Cr3C2-dopedWC-Co[J]. J Mater Sci,2001,36(16):3885.
    [170]史晓亮,邵刚勤,段兴龙等.超细硬质合金晶粒生长抑制剂VC、Cr3C2作用机理的研究[J].硬质合金,2006,23(4):193-197.
    [171]李海艳,刘宁. VC对WC-6.5%Co硬质合金组织和性能的影响[J].硬质合金,2009,26(4):206-211.
    [172]吴恩熙,雷贻文.超细硬质合金中晶粒生长抑制剂的作用[J].硬质合金,2002,19(3):136-139.
    [173] S Ahna, S Kang. Effect of various carbides on the dissolution behavior of Ti(C0.7N0.3) in aTi(C0.7N0.3)–30Ni system[J]. Int J Refract Met Hard Mater,2001,19(4-6):539-545.
    [174] P Feng, Y H He, Y F Xiao, et al. Effect of VC addition on sinterability and microstructure ofultrafine Ti(C, N)-based cermets in spark plasma sintering[J]. J Alloy Compd,2008,460(1-2):453-459.
    [175] J Wang, Y Liu, Y Feng, et al. Effect of NbC on the microstructure and sinterability of Ti(C0.7,N0.3)-based cermets[J]. Int J Refract Met Hard Mater,2009,27(3):549-551.
    [176] Y Zheng, M You, W H Xiong, et al. Effect of Cr3C2on Valence-Electron Structure andPlasticity of Rim Phase in Ti(C,N)-Based Cermets[J]. J Am Ceram Soc,2004,87(3):460-464.
    [177] Y Zheng, W J Liu, S X Wang, et al. Effect of carbon content on the microstructure andmechanical properties of Ti(C, N)-based cermets[J]. Ceram Int,30(8):2111-2115.
    [178]郑勇.细晶粒Ti(C, N)基金属陶瓷复合材料的研究[D].武汉:华中科技大学博士学位论文,2002.
    [179] P Feng, Y H He, Y F Xiao, et al. Effect of VC addition on sinterability and microstructure ofultrafine Ti(C, N)-based cermets in spark plasma sintering[J]. J Alloys Compd,2008,460:453-459.
    [180]刘宁,胡镇华,崔昆. Ti(C, N)基金属陶瓷中环形相的本质及形成过程[J].复合材料学报,1996,13(4):41-48.
    [181] Y Kang, G H Lee, S Kang. Growth of ultrafine Ti (CN) particles in Ti (CN)-Ni cermets[J].Scripta Mater,2007,56:133-136.
    [182] M Humenik, N M Parikh. Cermets: I, Fundamental Concepts Related to Micro-structure andPhysical Properties of Cermet Systems[J]. J Am Ceram Soc,1956,39(2):60-63.
    [183] S Shin. Experimental and simulation studies on grain growth in TiC and WC-based cermetsduring liquid phase sintering[J]. Met Mater Int,2000,6(3):195.
    [184] B Roebuck, E A Almond. Deformation and fracture processes and the physical metallurgy ofWC-Co hardmetals[J]. Int Mater Rev,1988,33(2):90-112.
    [185] B Wittmann, W Schubert, B Lux. WC grain growth and grain growth inhibition in nickel andiron binder hardmetals[J]. Int J Refract Met Hard Mater,2002,20(1):51-60.
    [186]潘金生.材料科学基础[M].北京:清华大学出版社,2000.
    [187] L Sun, C C Jia, M Xian. A research on the grain growth of WC–Co cemented carbide[J]. Int JRefract Met Hard Mater,2007,25(2):121-124.
    [188] M Ueki, T Saito, H Suzuki. The sinterability of nitrogen containing TiC–Mo2C–Nicermet[J]. J Jpn Soc Powder Metall,1989,36(4):371-373.
    [189]何林,黄传真,刘玉先等. Ti(C,N)基金属陶瓷的力学性能与显微结构的研究[J].硅酸盐学报,2003,31(3):324-328.
    [190] W Wan, J Xiong, M Yang, et al. Effects of Cr3C2addition on the corrosion behavior of Ti(C,N)-based cermets[J]. Int J Refract Met Hard Mater,2012,31:179-186.
    [191] S G Shin, J H Lee. Effect of carbide additions on grain growth in TiC Ni cermets[J]. MetMater Int,2006,12(1):57.
    [192] J Zackrisson, M Thuvander, P Lindahl, et al. Atom probe analysis of carbonitride grains in (Ti,W, Ta, Mo)(C, N)(Co/Ni) cermets with different carbon content[J]. Appl Surf Sci,1996,94-95:351-355.
    [193] P Ettmayer, H Kolaska, W Lengauer, et al. Ti(C,N) cermets—Metallurgy and properties[J]. IntJ Refract Met Hard Mater,1995,13(6):343-351.
    [194] N Liu, S Chao, H D Yang. Cutting performances, mechanical property and microstructure ofultra-fine grade Ti(C,N)-based cermets[J]. Int J Refract Met Hard Mater,2006,24(6):445-452.
    [195] N Liu, C L Han, H D Yang, et al. The milling performances of TiC-based cermet tools withTiN nanopowders addition against normalized medium carbon steel AISI1045[J]. Wear,2005,258(11-12):1688-1695.
    [196] S Sen, U Sen, C Bindal. The growth kinetics of borides formed on boronized AISI4140steel[J]. Vacuum,2005,77(2):195-202.
    [197]周泽华.金属切削原理[M].上海:上海科学技术出版社,1992.
    [198]宋建华,张恒大,苗晋琦等.真空渗硼预处理在CVD金刚石-硬质合金涂层工具中的应用[J].金属热处理,2003,28(2):46-48.
    [199] H C Chen, E Pfender, J Heberlein. Structural changes in plasma-sprayed ZrO2coatings afterhot isostatic pressing[J]. Thin Solid Films,1997,293:227-235.
    [200]章为夷.固体渗硼时硼砂型渗剂中活性硼原子输运方式研究[J].材料热处理学报,2003,24(2):29-32.
    [201]蒋百灵,雷廷权,刘威等.20钢渗硼过程中硼化物形核和生长的TEM观察及室温形变的影响[J].金属学报,1990,26(2):41-45.
    [202]蒋百灵,雷廷权.渗硼层的形成和生长机制及其动力学过程分析[J].金属热处理,1991,(4):16-20.
    [203]张焱,尤显卿,汪冬梅等.电渣熔铸钢结硬质合金渗硼初探[J].硬质合金,2007,24(3):140-143.
    [204]尤显卿. WC-钢复合材料渗硼层的组织结构[J].兵器材料科学与工程,1992,15(11):37-42.
    [205]黄道远,易丹青,李荐等.热震作用对硬质合金力学性能的影响及其失效机理[J].材料热处理学报,2006,27(2):83-87.
    [206]周玉.陶瓷材料学[M].北京:科学出版社,2004.
    [207]刘宁,徐根应,许育东等. Ti(C,N)基金属陶瓷的抗热冲击性能[J].中国有色金属学报,1997,7(4):139-143.
    [208]尤显卿,刘圣明.渗硼对钢结硬质合金GJW50热疲劳性能的影响[J].热加工工艺,1988,(6):10-13.
    [209]李鹏南,唐思文,张厚安等. Ti(C,N)基金属陶瓷刀具的高速切削性能与磨损机理[J].中国有色金属学报,2008,(7):1286-1291.
    [210] S Novak, M Komac. Wear of cermet cutting tools coated with physically vapour depositedTiN[J]. Wear,1997,205:160-180.
    [211] F Monteverde, A Bellosi. Oxidation behavior of titanium carbonitride based materials[J].Corros Sci,2002,44(9):1967-1982.
    [212] A Bellosi, R Calzavarini, M G Faga, et al. Characterisation and application of titaniumcarbonitride-based cutting tools[J]. J Mater Process Tech,2003,143-144:527-532.
    [213]陈日耀.金属切削原理[M].北京:机械工业出版社,1985.
    [214] N Camu cu, E Aslan. A comparative study on cutting tool performance in end milling of AISID3tool steel[J]. J Mater Process Tech,2005,170(1-2):121-126.
    [215]艾兴,肖诗纲.切削用量简明手册[M].北京:机械工业出版社,1994.
    [216] C H Lee, S Kobayashi. New Solutions to Rigid-Plastic Deformation Problems Using a MatrixMethod[J]. Trans ASME, J Eng for Ind,1973,95(3):865-873.
    [217]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [218]董湘怀.材料成形计算机模拟[M].北京:机械工业出版社,2006.
    [219]张凯锋,魏艳红,魏尊杰等.材料热加工过程的数值模拟[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [220]陈文琳.超细晶粒Ti(C, N)基金属陶瓷刀具与切削性能研究[D].合肥工业大学博士学位论文,2007.
    [221]林新波. DEFORM-2D和DEFORM-3DCAE软件在模拟金属塑性变形过程中的应用[J].模具技术,2000,(03):75-80.
    [222]格林著,龚江宏译.陶瓷材料力学性能导论[M].北京:化学工业出版社,2003.
    [223] E G Ng, D K Aspinwall, D Brazil, et al. Modelling of temperature and forces whenorthogonally machining hardened steel[J]. Int J Mach Tools Manuf,1999,39(6):885-903.
    [224] P L B Oxley. Mechanics of Machining: An Analytical Approach to AssessingMachinability[M]. West Sussex, England: Ellis Horwood Limited,1989.
    [225]李伟.基于Ti(C, N)基金属陶瓷刀具的金属切削过程的有限元分析[D].合肥工业大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700