用户名: 密码: 验证码:
聚晶金刚石复合体界面及复合机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚晶金刚石复合体作为一种特殊的复合材料,以其特有的性能在非金属及硬脆材料的加工方面获得了愈来愈广泛的应用。然而金刚石属于非金属材料,它与金属(或合金)之间在强度、硬度、弹性模量及结构等方面存在着较大的差异,特别是二者之间的界面能很高,使得绝大多数的单质金属或合金都难以有效地润湿和粘结金刚石颗粒,界面结合弱,限制了其应用范围。因此,研究金刚石与粘结金属间的界面结合问题及其复合机理具有特别重要的意义。
     鉴于目前国内外聚晶金刚石复合体的研究现状及存在的问题,以湖南省自然科学基金项目《聚晶金刚石复合体界面及复合机理的研究》(项目编号为00JJY2044)为依托,在导师的指导和前人工作的基础上展开本论文的研究。采用SEM、EDS、XRD、TEM、TG-DTA等研究方法,主要开展了以下几方面的研究:
     1、在六面顶压机上高温高压合成φ20mm聚晶金刚石复合体。并对合成φ34mm聚晶金刚石复合体所需的φ40mm的反应腔体进行了设计。
     2、在前人工作的基础上,系统地分析了PDC材料在超高温高压烧结过程中金刚石-钴的相互作用,进而提出PDC材料超高压液相活化强化烧结机理为:聚晶金刚石超高压液相烧结的塑性流动机理;聚晶金刚石超高压液相烧结的再结晶生长机理和聚晶金刚石超高压液相烧结的中介结合机理。
     3、以钴作为粘结相,分析研究了钴扩散规律及作用机理,并对超高压烧结材料的界面精细结构、界面结合、界面反应、界面结构及对PDC复合材料性能的影响。研究结果表明:
     (1)WC-Co基底与金刚石层没有明显的结合界面,界面结合主要以WC-Co-D结合;混合烧结系统中界面处钴的富积区域较金刚石的原位烧结系统中大。
     (2)金刚石的原位烧结系统中,金刚石颗粒间大部分形成了牢固的D-D直接结合,结构较致密;金刚石与钴粉的混合烧结系统中,主要以D-Co-D结合,钴基本上沿晶界呈叶脉状分布。
     (3)原位烧结样品的晶界中的WC、Co_2C、Co_3C和η—Co_3W_3C含量较高;随着烧结温度的升高,钴-碳的共晶化合物Co_xC含量逐渐降低。
     (4)金刚石-金刚石界面实际上就是原始金刚石颗粒表面与析出
    
    金刚石的生长相遇的界面,这种晶界呈大角度倾斜晶界结构;在界面
    处存在大量的晶体缺陷,主要表现为孪晶、位错、包裹体。
     (5)聚晶金刚石复合体的热应力、耐热性主要取决于结合剂种
    类及结合剂与金刚石形成的晶界物相。
     4、本文研究了WC一C。层与金刚石层的复合、金刚石颗粒之间的
    复合机理。研究结果表明:
     (1) WC一CO与金刚石层界面的结合强度不仅与界面上钻含量有
    关,而且与界面上钻的组织结构、合成PDC的金刚石原料颗粒粒度、
    界面形状有关。
     (2)WC一CO基体在超高温高压烧结后的脆性相刁一刃。撇C明显减
    少;WC一C。基体在超高温高压烧结后出现了碳的石墨峰。
     (3)原位烧结样品中WC一C。基底侧往界面方向钻含量明显减少,
    W含量有逐渐增加趋势;而金刚石与钻粉的混合烧结样品中这一现象
    不太明显。
     (4)D--D结合区域和D一Co一D结合区域的晶粒间界中钻的存在
    形式是不同的。D一Co一D结合区域的晶粒间界上的钻大部分是烧结过
    程结束后残留下来的钻熔体,而D目一D结合界面上的钻是以包裹体或
    钻一碳的共晶化合物的形式存在。
     (5)金刚石粉末只在压力作用下,加压前后,金刚石粉末粒度
    基本不变化,超高压下金刚石颗粒破碎并不是造成界面处晶粒细小的
    主要原因。
     5、任何技术的最终目的是为了产品的实际应用。为此,本文将
    所合成的PDC做成钻头,在钻探的实际应用中对其性能进行了评估,
    取得了较好的试验效果。
     论文创新点在于:
     (1)设计了合成。34mm的金刚石聚晶复合体所需的中40nUn的叶
    腊石反应腔体,为合成大直径PDC材料提供了必要条件;
     (2) wcco基底与金刚石层没有明显的结合界面,界面结合主
    要以WC一Co一D结合;
     (3)原位烧结样品晶界中的we、eoZe、Co3C和粉一Co3w3C含量较
    金刚石与钻粉的混合烧结样品高;随着烧结温度的升高,钻一碳的共
    晶化合物CoxC含量逐渐降低;
     (4) wC一 Co基体在超高温高压烧结后的脆性相叮一Co凡C明显减
    少;WC一Co基体在超高温高压烧结后出现了碳的石墨峰;
    
     (5)聚晶金刚石复合体的热应力、耐热性主要取决于结合剂种
    类及结合剂与金刚石形成的晶界物相。
     (6)WC一C。与金刚石界面的结合强度不仅与界面上钻含量有关,
    而且与界面上的钻的组织结构、合成PDC的金刚石原料颗粒粒度、界
    面形状结构有关;
     (7)金刚石粉末加压前后粒度基本不变化,加压后,金刚石出
    现脆性断裂,颗粒破碎基本上是穿晶式的;并提出了造成界面处晶粒
    细小的原因。
T
    As a type of special composite, Polycrystalline Diamond Compacts(PDC) has been increasingly applied in machining hard and abrasive materials, because of its superior physical properties. However, diamond is a non-metal materials, it is different from metals or alloys in intensity, hardness, elastic modulus and structure. Especially the interfacial energy is high between diamond and metals or alloys, resulting in the difficulty of most of metals or alloys to effectively wet. Due to feeblish interfacial bonding, Polycrystalline Diamond Compacts often ruptured and broke off during its application, thus increase drilling cost and reducing its range of application. Therefore, to study interface bonding between diamond and metals or alloy and its compounding mechanism are of great importance.
    In light of the present state and existing problems of PDC study at home and abroad, on the basis of tutor's right guidance and the predecessor's studying, The author conducts an investigation into the research topic in this paper by relying on Hunan province natural science fund item-A study on interface and it's compounding mechanism of Polycrystalline Diamond Compacts(serial number:OOJJY2044). The following research work has been completed by SEM analysis, EDS analysis, XRD analysis, TEM analysis, TG-DTA analysis. It shows that:
    1.Φ20mm PDC have been synthesized at ultra-high temperature and ultra-high pressure, And the reaction vessels of 4Φ 40mm for synthesizingΦ 34mm PDC is designed.
    2. Based on the analysis of the past sintering theories, the paper has summarized and analyzed the reciprocity of diamond-cobalt in the process of ultra-high pressure and ultra-high temperature sintering, and advanced systemic theory on diamond fluid activated strengthen sintering under ultra-high pressure and temperature, namely, the plastic flowing, the Recrystallization and regrowth of diamond, the medi-bonding.
    3. Cobalt acts as the binder. The paper has studied s interfacial microstructure, interfacial reaction, the diffusing rule and action mechanism of cobalt and the interface influence on performances of PDC.
    
    
    
    It shows that:
    (1) The bonding interface between WC-Co matrix and diamond layer was not clear, and occurs in the form of WC-Co-D bonding, that is to say, there is a thin cobalt-enriched area. The cobalt content in the interface is higher by the process of mixture sintering of diamond and cobalt than by the process of Sweep Through Catalyzed Recrystallization sintering(STCR).
    (2) Cobalt distributes equably between diamond grains by sintering of Sweep Through Catalyzed Recrystallization, the intergranular has formed firm bonding of D-D; but the intergranular has formed firm bonding of D-Co-D by mixture sintering of diamond and cobalt, and cobalt is basically distributed as laminated gangue along grain boundary.
    (3) The contents of WC, Co2C, Co3C, 77-Co3W3C in grain boundary are higher by sintering of Sweep Through Catalyzed Recrystallization than by mixture sintering of diamond and cobalt, with sintering temperature increasing, the eutectic mixture of cobalt and graphite CoxC is reduced gradually.
    (4) The grain boundary is simply the surface at which the regrowth fronts expanding from the original grains met during manufacture of the compact. The grain boundary is quite irregular, and there is no simple orientation relationship, exists in a high-angle grain boundary. The small-angle grain boundary can be observed in a high-angle grain boundary, and it is made up of dislocations. There are a lot of crystal defects in grain boundary, this defects are dislocations and twins. At the same time, there is a trivial cobalt inclusions and graphite inclusions.
    (5) The heat stress and the heat resistance of PDC depend on the binder and the structure of reactants which were formed by reaction of the binders to diamond in grain boundary.
    4. This paper deals with two types of compounding between WC-Co and PCD, and compounding between diamond and diamond. It shows that:
    (1) The bonding strength betwe
引文
[1] 王国荣,武卫莉,谷万里.复合材料概论.哈尔滨,哈尔滨工业大学出版社,2000,7.1-8
    [2] Minyoung Lee, et al. Polycrystalline diamond and cemented carbide substrate and synthesizing process therefore, USP 4219,339
    [3] Minyoung Lee, et al. Polycrystalline diamond body/silicon nitride substrate composite, USP 4234,661
    [4] Morelock. Composite of polycrystalline diamond and/or cubic boron nitride body/ silicon carbide substrate, USP 4242,106
    [5] 袁公昱.人造金刚石合成与金刚石工具制造.长沙,中南工业大学出版社,1992,89
    [6] Kenneth. A. Darrow. Method for production of Diamond compact Abrasive, USP 3306,720
    [7] William. I. Wilson. Diamond and Cubic Boron Nitride Abrasive compacts and conglomerates, USP 4219,339
    [8] 邓福铭.PDC超硬复合材料高压合成规律及其机理的研究[博士学位论文].长沙:中南工业大学,1998.10-18.
    [9] 李植华,郭永存,卢飞雄.金刚石制造.机械工业出版社.北京,1983,337-346
    [10] Dyer, Henry. B, Phaal, Cornelius. Thermally stable diamond abrasive compact body, USP4940, 180
    [11] Bovenkerk, Harold P. Method of making diamond compacts for rock drilling, USP4259, 090
    [12] Dennis, Mahlon D. Cutting element having composite formed of cemented carbide substrate and diamond layer and method of making same USP4784, 023
    [13] 1980
    [14] 福长修.新素材开发,1985(6):30-33
    [15] P.N. Tomlison, R.J. Wedlake. Gegenwartiger entwicklungsstand bei verbundstoffen aus diamant und kubischem bornitrid. Industric Diamonten Rundschau, 1983 (4):234-241
    
    
    [16] 焦魁一.国外金刚石聚结体的研制技术.磨料磨具磨削,1987(4):42-46
    [17] 于鸿昌,李尚诘.烧结型多晶金刚石中晶界物相的类型与数量对其某些物性的影响.高压物理学报,1989(3):221-224
    [18] David. R. Hall. Polycrystalline diamond and/or cubic boron nitride body/silicon carbide substrate, USP 4604,106
    [19] Shuji Yazu et al, USP 4610,669
    [20] 亓曾笃,周学军,曹振骏.多晶金刚石复合材料的某些质量问题.高压物理学报,1991,5(3):215-219.
    [21] M. Akaishi, H. Handa. et al. Sintering behavior of the diamond-cobalt system at high temperature and pressure J. Mater. Sci. 1982(17):193-198
    [22] 张兴栋,彭应聪,邱淑秦等.多晶金刚石烧结中晶粒表面石墨化的实验研究.高压物理学报,1989,3(2):125-131.
    [23] H.P. Bovenkerk. Temperature resistant abrasive compact and method for making the same, USP 4288,248
    [24] Horton. Infiltrated thermally stable polycrystalline diamond, USP 4664,705
    [25] Frank J. Csillag, H.P. Bovenkerk. Directional catalyst alloy sweep through process for preparing diamond compacts, USP 4907,377
    [26] Ringwood. Production of diamond compacts consisting essentially diamond crystals bonded silicon carbide, USP 5010,043
    [27] Hideaki Itoh, Tsuneaki Matsudaira. Effects of added c-BN seed crystals on the reaction sintering of c-BN accompanied by a conversion from h-BN to c-BN. J.Mater. Sci. 1990, 25:203-206
    [28] Wentorf Jr, Bovenkerk. USP 3148,161.
    [29] 沈主同,孙国显,池用谦等.高压下金刚石烧结体系中的界面结合问题和新型多晶金刚石的研究.高压物理学报,1988(2);104-111.
    [30] Wentorf.Diamond tools for machine, USP 3745,623
    [31] Sridhar, Ramamritham, Shellshear. Nickel and cobalt irregularly shaped granulates,USP 4168,967
    [32] Amer. Cream. Soc. Bull 1973,52
    [33] Minyoung Lee, et al, EP 2414,033
    [34] H. P. Bovenkerk. Diamond and cubic boron nitride abrasive compacts
    
    using size selective abrasive particles layers, USP 4311,490
    [35] Poul. D. Gigl. Sweep through process for making polycrystalline diamond compacts, USP 4518,659
    [36] Akio, Yazu, Shuji.Diamond Sintered body and the method for producing the same, usP 4303,442
    [37] Akio, Yazu, Shuji. Method of producing a sintered diamond compact, USP4231,762
    [38] 洪时明.金刚石烧结体中的异常晶粒成长过程.人工晶体学报,1991,20(3-4):395.
    [39] Hyun S. Cho. Method for making polycrystalline sandwich compacts,USP 5009,673
    [40] David. R. Hall. Polycrystalline diamond and/or cubic boron nitride body/silicon carbide substrate, USP 4604,106
    [41] 邓福铭,陈小华,陈启武.PDC材料在超高压烧结中聚晶金刚石晶粒异 常生长及及其抑制机制的研究.金刚石与磨料磨具工程,2001(2):5-9
    [42] Robert. H, Frushour. Composite polycrystalline diamond compact with improved impact resistance,USP 5011, 515
    [43] Arthur A. Reduced resisdual tensile stress superabrasive cuttres for earth boring and drill bits so equipped, USP 6196,341
    [44] Yoshida. A polycrystal diamond tool, EP 1053984 A2
    [45] Ishizuka. Diamond Aggregate Abrasive Materials for resinbonded application, USP 4246, 005
    [46] 陈启武.人造金刚石超高压设备大型化的几个问题.矿冶工程,1996,16(3):60—63
    [47] 陈启武,邓福铭,熊湘君.超高压技术的研究.矿冶工程.2001,21(1):62-65
    [48] 邓福铭,陈启武,黄培云.D-D结合型金刚石聚晶晶界结构及其生长模式.矿冶工程,1999(1):63-66
    [49] 孙凤莲,于彦东,孙平忠等.金刚石与Co-Si合金的固相连接.焊接学报,1997(3):177-181
    [50] 陶景光,廖兆曙,盛先平等.金刚石复合界面扩散系数电子探针研究.分析测试学报,1997(3):6-9
    [51] 宋月清,孙毓超,殷声等.钴基金刚石工具胎体材料中碳化物形成元素的作用.人工晶体学报,1993(1):74-78
    
    
    [52] 孙毓超.稀土元素铈(Ce)在金刚石工具胎体合金中的行为.工业金刚石.1999(3):1-4
    [53] 王岚,高学绪.金刚石-钛界面的扩散.硅酸盐学报,1998(2):270-274
    [54] 朱永法,王莉,姚文清等.金刚石颗粒表面Cr金属化及薄膜间界面扩散反应的研究.高等学校化学学报,2000(8):1269-1272
    [55] 李岳.金刚石界面金属碳化物过渡层形成机理的研究.探矿工程,2001(1):49-52
    [56] 郑斌,朱永法,王文清等.金刚石薄膜的表面金属化及与Ti薄膜的界面扩散反应的AES的研究.材料工程,1998(8):16-19
    [57] 郝兆印,高春晓,罗薇.高温高压金刚石单晶生长界面的研究.高压物理学报,1997(3):169-174
    [58] 王明智,王艳辉,藏建兵.Ti中介的聚晶金刚石复合片界面结构与性能的研究.人工晶体学报,1996,25(3):236-239
    [59] 臧建兵,王艳辉,王明智.Ti镀层-金刚石界面结合强度与界面产物显微结构的关系.人工晶体学报,1996(4)330-334
    [60] 李植华,郭永存,卢飞雄.金刚石制造.机械工业出版社.北京,1983,353-357
    [61] Dennis; Mahlon D. Cutting blank with diamond strips in grooves,USP 4592, 433
    [62] 陈启武主编.人造金刚石合成实用技术(内部培训教材),湖南省超硬材料协会,1994
    [63] 陈启武.Y-500型金刚石合成设备及合成工艺鉴定报告.2000.6
    [64] 李植华,郭永存,卢飞雄.金刚石制造.机械工业出版社.北京,1983,101
    [65] 杨威,赵大钢,汪玉树.金刚石复合片主要缺陷及产生原因的讨论.金刚石与磨料磨具工程,2001,3(123):24-25
    [66] 孙振武.压力.温度以及时间对金刚石烧结体性能的影响.高压物理学报,1999,13(4):279-281.
    [67] 刘书锋.聚晶金刚石复合体的均匀烧结。探矿工程.1998,4:47-48
    [68] 果世驹.粉末烧结理论.北京,冶金工业出版社.1998,1-3
    [69] 王光祖,院兴国.超硬材料.郑州,河南科学技术出版社.1996,42
    [70] 袁公昱.人造金刚石合成与金刚石工具制造.长沙,中南工业大学出版社,1992,85
    [71] 黄培云著.粉末冶金原理.北京:冶金工业出版社,1982,308-309
    
    
    [72] 果世驹.粉末烧结理论.北京,冶金工业出版社.1998,302
    [73] Delai. Diamond compact abrasive.USP 3141,746
    [74] H.T. Hall. Sintering diamond: a synthetic carbonado, Science. 1970,169:868-869
    [75] H.K. Katzman, W.F. Libby. Sintered diamond compacts with a cobalt binder. Science. 1971,172:1132-1134:
    [76] 刘光照,冯楚德,薛志麟.人造金刚石的溶液生长机制.硅酸盐学报.1984,12(1):91-95
    [77] 沈主同.人造金刚石过程中的熔媒效应.人工晶体.1986,15(4):228
    [78] K.A. Darrow. Method for the production of diamond compact abrasives, USP 3306,702;
    [79] W.I. Wilison. Diamond and cubic.boron nitrideabrasive compacts and conglomerates. USP 4219,336;
    [80] H. K. Katzman, W. F. Libby. Sintered diamond compacts with a cobalt binder. Science. 1971, 172:1132-1134
    [81] 奈基奇,科列斯尼钦科.熔融金属与金刚石(石墨)表面的相互作用.人工晶体.1978,11(1):71-79
    [82] B.C.Allen,W.D.Kingery.Trans.AIME.1959,30:215
    [83] 孙毓超.刘一波.王秦生.金刚石工具与金属学基础.北京:中国建筑工业出版社,1999
    [85] 林铭西.金属触媒的催化效应及其在合成金刚石中的应用.人工晶体 1984,3:142-145
    [86] 于鸿昌,王光祖.石墨-金刚石平衡曲线.磨料磨具磨削.1984,1:30-40
    [87] 焦魁一.熔融金属与金刚石和石墨表面的相互作用.人工晶体 1979,1:14-36
    [88] 果世驹.粉末烧结理论.北京,冶金工业出版社.1998,12
    [89] 陶景光,廖兆曙,盛先平等.金刚石复合界面扩散系数的电子探针研究.分析测试学报.1997,16(3)6~9
    [90] H.M. Strong, R.E. Hanneman. J. Chem. Phys. 1976,46 (9):3668-3676
    [92] M. Inagaki, Y.Miva-Tanso. Tokio. 1976, 85: 67-70
    [93] P. W. Bridgeman. Proc. Amer. Acal. Art and Science. 1972, 62(7):187-206
    [94] Greet A.L, Spaepen. F.S.Synthetic Modulated Structures edited
    
    by L.L Chang and B.C Giessen. Academic Press. New York. (1985),419.
    [95] 乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学.北京,冶金工业出版社.1999,139-140
    [96] 金刚石结晶理论的胶体观点.磨料磨具磨削1984,1:7—11
    [97] 王四清.金刚石高压合成中的控制形核研究.[博士学位论文].长沙:中南工业大学,1997
    [98] Deformation Processes during high-pressure sintering of the diamond powders produced by catalytic synthesis. Y. F. BRITUN, G. S. OLEYNIK, Joural of Materials Science 27(1992) 4472-4476
    [99] 赵云良,赵爽之.金刚石烧结机理的探讨.二十世纪中国超硬材料《会议论文集》.2001,10-24
    [100] 朱步瑶,赵振国.界面化学基础.北京,化学工业出版社.1996,1
    [101] 王国荣,武卫莉,谷万里.复合材料概论.哈尔滨,哈尔滨工业大学出版社.2000,7.61
    [102] 沈主同,孙国显,池用谦等.高压下金刚石烧结体系中的界面结合问题和新型多晶金刚石的研究.高压物理学报,1988(2):104-111.
    [103] 叶恒强等.材料界面结构与特性.北京,科学出版社,1999,11-12
    [104] 李晨辉,吕海波,刘雄飞.镀钛金刚石与结合剂间的结合状态.稀有金属材料与工程,1999,28,(6):401-405
    [105] 匡同春,刘正义,代明江等.金刚石膜与硬质合金刀片间的界面Co相的研究.金属学报,1999,35,(6):643-647
    [106] 宋月清,康志君,高云.金刚石与金属(或合金)的结合界面分析.人工晶体学报,1999,28,(4):404-408
    [107] 陈石林,陈启武,彭振斌.聚晶金刚石复合体复合机理的研究.金刚石与磨料磨具工程.2004,2:35-37
    [108] 孙毓超.金刚石表面金属化的热力学机制研究.高压物理学报,1992,6(1):37-47
    [109] 彭应聪,张兴栋,李伯勋等.添加剂对人造多晶金刚石抗石墨化性能的影响.人工晶体学报,1991,20(1):89-94
    [110] 王光祖,院兴国.超硬材料.郑州,河南科学技术出版社.1996,23
    [111] S. Naka, A. Tsuzuki et al. Diamond formation and behavior of carbides in several 3d-transition metal-graphite system, J. Mater. Sci. 1984,19:259-262
    [112] 方啸虎.超硬材料科学与技术.北京,中国建材工业出版社,1988,
    
    247-256
    [113] 段隆臣.中国地质大学(武汉)博士学位论文,1997,4
    [114] 扬凯华等.新型金刚石工具研究.中国地质大学出版社,2001,6
    [115] 第11届国际普兰西难溶金属和硬质合金会议译文集,中南工业大学出版社,1987,12.342-347
    [116] Wentorf R H. Modem Very High Techniques. London, 1962, 1-24
    [117] 李清斌译.合金中的扩散相变与合金热力学.沈阳,辽宁科技出版社,1984,54-63
    [118] 赖和怡.粉末冶金原理和应用.北京,冶金工业出版社,1989,11,182-186
    [119] 孙毓超,刘一波,王秦生.金刚石工具与金属学基础.北京,中国建材工业出版社,156-158
    [120] J.C. Walmsley, A.R. Lang. Characteristics of diamond regrowth in a synthetic diamond compact. J. Mater. Sci. 1988,23:1829-1834
    [121] J.W. Harris, J.J.Gurney. The Properties of Diamond. J. E. Field.1979,555
    [122] J. C. Walmsley, A.R. Lang. Transmission electron microscopic observations of deformation and microtwinning in a synthetic diamond compact. J.Mater. Sci. 1983,2:785-788
    [123] Umanskii V P, Zinkova E R, Sabaldyr V Y. Study of Deposition Processes and Strength of Contact between a Niobium Coating and Diamond Surface. Sverkhtverdiye Materialy, 1995;17(6):10(in Russian)
    [124] Betteridge W. Cobalt and Its Alloys. Chichester: EllisHorwood Limited, 1982; 42
    [125] 虞觉奇,易文质.二元合金状态图集.上海:上海科学技术出版社,1987:314
    [126] Takasgui T, Izumi O. High Temperature Strength and Ductility of Polycrystalline Co_3Ti. Acta Metall, 1985; 33(1): 39
    [127] Rausch J J, Mcandern J B, Simcoe C R. High Temperature Materials Ⅱ.New York; Gordon and Breach, 1963:405
    [128] Dewar B, Nicholas M, Scott P M. The Solid Phase Bonding of Copper, Nickel and Some of Their Alloys to Diamond. J Mater Sci, 1976; 11(3):1083
    [129] 何岚鹰,苏文辉,张淑琴.人造金刚石耐热性评定.人工晶体,
    
    1987,16 (4): 318-322
    [130] M.J波普,M.C尤德著.王世华,杨红征译.差热分析—DTA技术及其应用指导.北京师范大学出版社,1982,7
    [131] 崔成翔等.金属基复合材料界面特征与力学性能.宇航材料工艺,1997,(1):1-3
    [132] 林增栋等.金刚石表面金属化机制的研究.粉末冶金,1990.(12):14
    [133] Hanu Pratap Singh. Study of polycrystalline sintered compacts of diamond. J Mater Sci. 1987(22):2407-2410
    [134] A. Molinari, F. Marchetti, A. Tiziani. Study of the Diamond-Matrix interface in Hot-pressed Cobalt-based Tools. Materials Science and Engineering.1990, 130:257-262
    [135] S. Naka, A. Tsuzuki, S. Hirano. Diamond formation and behavior of carbides in several 3d-transition metal-graphite systems. J Mater Sci. 1984(19) 259-262
    [136] Y.S. Liao, S.Y. Luo. Effects of matrix characteristics on diamond composites. J Mater Sci. 1993, (28):1245-1251
    [137] Evans, S.T. Davey, S.H. Roberson Photoluminescence studies of sintered diamond compacts. J Mater Sci. 1984, (19):2405-2414
    [138] 陈石林.陈启武等.聚晶金刚石复合体界面组织及界面反应的研究.矿冶工程,2003,23(6):82-85
    [139] SM.Hong. Behavior of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate. J. Mater. Sci. 1988,23:3821-38262
    [140] M. Akaishi, T. Ohsawa, S. Yamaoka. Synthesis of fine-grained Polycrystalline Diamond Compact and its Microstructure.J.Am. Ceram. Soc. 1991,74 (1):5-10
    [141] 苟清泉著.人造金刚石合成机理研究.成都,成都科技出版社,1986
    [142] V.F. BRITUN, G.S. OLEYNIK, N.P. SEMENENKO. Deformation processes during high-pressure sintering of the diamond powders produced by catalystic synthesis. J Mater Sci, 1992, 27:4472-4476
    [143] M. Akaishi, S. Yamaoka, J. Tanaka. Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness. J. Am. Cream. Soc. 1987,70(10):237-239
    [144] 陈启武.李飞跃.陈石林.20世纪的超硬材料.湖南省超硬材料论文
    
    集,2003,1-8
    [145] 缪青维.钻进条件下复合片的自锐问题.磨料磨具磨削,1992,67:24-28
    [146] 李国安,宋全胜.聚晶金刚石复合片(PDC)钻头的失效分析.华中科技大学学报(自然科学版),2002,30(1):62-65
    [147] 冯玉国.金刚石钻头综合评价方法综述.钻探工艺,1995,2:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700