用户名: 密码: 验证码:
大厂贫锡多金属硫化矿选矿关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对中国广西大厂矿区贫锡-铅锑锌多金属硫化矿的分离进行了详细的研究。在此基础上,进行了选矿流程结构的设计及多项工业试验和现场流程改造。通过理论研究,总结了提高现场指标的多项关键技术。
     对我国大厂特有的硫化矿物的浮选行为进行研究,查明了脆硫锑铅矿、铁闪锌矿、磁黄铁矿三种矿物浮选行为,比较丁基黄药、丁胺黑药、SN-9这三种捕收剂发现,丁胺黑药的捕收效果要好于另外两者;铁闪锌矿在pH值3-7的范围内具有很好的可浮性,当pH值大于8时,铁闪锌矿很难起浮;磁黄铁矿的天然可浮性较差,在pH在4.5-6的范围内磁黄铁矿有一定的可浮性,但当矿浆pH值大于8以后它将很难在没有活化剂的条件浮起。确定了硫化矿浮选体系中高选择性浮选分离过程的控制参数。
     开发了多项磨矿、浮选和重选新工艺和浮选新药剂,通过工艺优化和组合,针对大厂的低品位锡石-铅锑锌多金属硫化矿开发了整体选矿关键技术,该技术主要包括以下几个内容:
     1)采用重选跳汰、圆锥选矿机、螺旋溜槽等高效重选设备组成的多段组合抛废工艺,前重预先丢弃30~40%的废石,提高了主流程的入选品位,提高了选矿厂的处理能力,为提高选矿指标、降低选矿成本创造有利条件。
     2)选择性磨矿新技术,不同品位、不同可磨性的矿石分支分别进入不同的磨矿机进行磨矿,并采用不同的磨矿介质,减少了锡石在磨矿过程中的过粉碎,降低硫化矿混合浮选入选粒度,有效解决大厂贫锡多金属硫化矿矿石选别过程锡石与硫化矿的粒度矛盾。
     3)在硫化矿混浮脱硫中主要调节和控制包括矿浆pH值、捕收剂种类、用量及用法、浮选时间以及浮选流程结构等在内的浮选操作参数,采用多次开路粗选、分段加不同药剂逐级依次强化,泡沫集中精选等技术手段,加快了硫化矿浮选速度。实现硫化矿混浮粗选在高浓度矿浆中开路浮选,提高了脱硫效率,降低药剂消耗。
     4)根据脉石矿物性质特点,使用新型分散剂,配合生产上的新抑制剂,针对不同粒级锡石可浮特性差异,分步逐级强化,先加少量药剂浮易浮细粒锡石,再加大部分药剂浮难浮相对粗粒锡石,泡沫集中精选,开发全粒级不脱泥细泥锡
In this paper, the beneficiation of low-grade tin-lead-zinc complex sulfide ore of Dachang of China was studied. The floatation flow was designed, revised, and practical experiments were carried out. Based on the flotation theory of sulfide minerals, the mechanism of sulfide flotation and its practical application was studied.The relationship between pH value and concentration of collector (C) and floatability of three sulfide minerals, which include jamesonite, marmatite and pyrrhotite, were discussed. When butylxanthogenate, dithiophosphate and diethyldithiocarbamate were used as collectors, the result showed that the dithiophosphate has the best flotation effect. When the pulp pH value range is from 3.0 to 7.0, marmatite has well floatability. When the pulp pH value is above 8, marmatite cannot be floated easily. Pyrrhotite has poor floatability. When the pulp pH value range is from 4.5 to 6, pyrrhotite can be floated partly. But when the pulp pH value is above 8, pyrrhotite cannot be floated unless activators are used. The dominant parameters of sulfide mineral floatation system were ascertained.Some novel floatation reagents were selected and many new techniques about the process of grinding, flotation and gravity separation were invented. By the optimization of technique, the novel beneficiation of low-grade tin-lead-zinc complex sulfide ore was invented, which was discussed as following.1) By the gigging-taper-screw gravity separators combination, the multi-staged separation of valuable minerals from low-grade complex sulfide ore was formed. By this method, 30-40% gangue mineral was cast away, the grade of ore was increased, production improved and the cost was decreased.2) Use of composite gravity separators to process low-grade complex sulfide ore containning cassiterite to obtain ores of different grades as gravity separated feeds, and then use different grinding mediums and equipments to process different feeds of
    different grades.3) During the process of sulfide ore floatation without middlings, several important parameters including pulp pH value, collectors, flotation time and the flow structure were controlled and adjusted. Use the parallel rougher flotation, subsection adding the different reagents in turn and foam pulp flotation technology instrument can increase the rate of flotation. The efficiency of floatation of sulfide ore can be achieved in the plough floatation with high concentration of the mine pulp, In this way, the consumption of reagents can be reduced.4) Based on the characters of gangue minerals, new disperser and depressor were used. According to different floatability of different size particles, we can strengthen the flotation process. Firstly we can get fine cassiterite of well floatability using fewer reagents. Then more reagents were added to obtain cassiterite of poor floatability. Such was the technology of fine cassiterite floatation.5) By flocculating flotation of ultra fine and low-grade lead, zinc antimony ore, we can reclaim the lead and zinc mineral from the mub with particle-size fraction below 10 u m. Using this technique, the recovery of lead and antimony was enhanced 7%, and the recovery of zinc was enhanced 3%. Every year we can get more 600 tons of tin with grade over 50% by this way.6) Waste water was recycled in the flow. By adding flocculate reagents with high molecular weight in the major flow, the water was purified and recycled. The recycling rate was over 95%.By these research work — novel technology of beneficiation of low grade tin-lead-zinc complex sulfide ore of Dachang, we got excellent economic production indexes: The original grade of metals were: Pb+Sb0.45 %, Zn2.00 % and Sn0.56 %. Their recovery were 71.97 % ,53.41 % and 69.76 % respectively. The production cost was 65RMB per ton.
引文
1.韩发,大厂锡多金属矿床地质及成因,北京:地质出版社,1997
    2.大厂矿物局,大厂锡石-多金属硫化矿浮选分离的新工艺报告,1998年
    3.广州有色金属研究院,广西大厂91号富矿体选矿试验报告,广州有色金属研究院,1994
    4.石桂珍等,提高大厂矿务局车河选矿厂锌选别指标的研究报告,广州有色金属研究院,1992
    5.柳州华锡集团,中南大学,车河选厂跳汰人造床石试验研究报告,2003年
    6.柳州华锡集团,中南大学,二段磨螺旋返砂锡石回收试验及生产应用研究报告,2004年
    7.柳州华锡集团,中南大学,提高大厂锡细泥回收指标研究工业试验报告,2003年
    8.柳州华锡集团,中南大学,车河选厂微细粒铅锌浮选回收研究及工业试验报告,2004年
    9.柳州华锡集团,中南大学,选择性磨矿工业试验及生产应用研究报告,2004年
    10.柳州华锡集团,中南大学,选矿废水流程内循环综合回收技术的研究应用报告,2003年
    11.柳州华锡集团,中南大学,选矿废水流程内循环综合回收技术的研究应用报告,2003年
    12.柳州华锡集团,中南大学,降低硫化矿含锡提高选矿回收率工业试验及应用报告,2004年
    13.柳州华锡集团,中南大学,大厂贫锡多金属硫化矿选矿关键技术研究与应用研究报告,2004年
    14.王濮等,系统矿物学(上册),北京:地质出版社,1982
    15. T Lager, E Forssberg, Comparative study of the flotation properties of jamesonite and stibnite, Scandinavian Journal of Metallurgy, 1989, 18(3): 122—130
    16. T Lager, E Forssberg, Beneficiation characteristics of antimony minerals, Mineral Engineering, 1989, 2(3): 321—336
    17.邓海波,许时,脆硫锑铅矿的浮选机理和铁闪锌矿的分离,有色金属(选矿部分),1988(5):32-35
    18.刘如意等,锑铅锌多金属硫化矿综合利用工艺的研究与实践,有色金属(选矿部分),1994(4):34-36
    19. Qiu Guanzhou, Yu Runlan, Hu Yuehua, Qin Wenqing, Corrosive electrochemistry of jamesonite. Trans. Nonferrous Met. Soc. China, 2004, 14(6): 1169-1173
    20.余润兰、邱冠周、胡岳华、覃文庆,脆硫锑铅矿在乙硫氮-饱和Ca(OH)_2体系中的电化学,中国有色金属学报,2004,14(10):1763-1769
    21.王群,亚硫酸盐对铜离子活化的闪锌矿及铁闪锌矿抑制作用的研究,中南矿冶学院学报,1985(3):126—134
    22.苏思平,吴伯增,车河选矿工艺流程改造实践,有色金属(选矿部分),2001 (1):5-8
    23.覃文庆,(铁)闪锌矿铜离子活化的电化学研究,中南工业大学硕士学位论文,1999年
    24.王群,关于黄原酸盐—亚硫酸盐体系中闪锌矿及铁闪锌矿浮选行为的研究,中南工业大学硕士论文,1985
    25. B. Marouf, J Solecki, Copper ion activation of synthetic sphalcrite with various ion contents, International Journal of Mineral Processing, 1982(4): 38—52
    26. S R Popov etal. The cthylxanthatc adsorption on copper-activated sphalcdte under flotation-related and it ions in alkaline media, International Journal of Mineral Processing, 1990(3): 229—244
    27.覃文庆等,对黄药在磁黄铁矿电极表面的电化学形成及吸附研究,中国矿业,1999,8(1):73—76
    28.覃文庆等,黄药体系磁黄铁矿电极表面双黄药的稳定性及其浮选研究,中国矿业,1999,8(4):47—49
    29.陈金中,宣道中,铁闪锌矿与磁黄铁矿浮选分离新方法研究,有色金属,1994,46(1):34-39
    30. Pratt A. R., Muir I. J. and Nesbitt H. W., X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochimica et Cosmochimica Acta, pp. 827, 58(2), 1994
    31. Valli M, Persson I, A vibration and X-ray photoelectron spectroscopic study of the interaction between chalcopyrite, marcasite, pentlandite, pyrrhotite and troilite, and ethylxanthate and decylxanthate ions in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 83(3): 207-217
    32.冯其明,硫化矿浮选矿浆电化学理论及工艺研究,中南工业大学博士学位论文,1990年
    33.李长根,肖庆苏,大屯选厂硫化矿“捕收剂解吸—铜离子沉淀—磁黄铁矿选择性去活化”新工艺研究,有色金属,1995,47(2):48-53
    34.张芹,胡岳华,顾帼华,脆硫锑铅矿与磁黄铁矿在石灰介质中的浮选分离研究,矿冶工程,2004,24(2):30-32
    35.张芹,胡岳华,顾帼华,氰化脆硫锑铅矿和磁黄铁矿选择性分离,中南大学学报(自然科学版),2004,35(3):372-375
    36.杨菊,吴熙群,李成必,难选磁黄铁矿浮选工艺研究,有色金属(选矿部分)2002,4:11-13
    37.广州有色金属研究院,广西大厂91号富矿体选矿试验报告,广州有色金属研究院,1994
    38.黎性海,巴里硫化矿物浮选分离工艺研究,有色金属(选矿部分),1992(2):22-25
    39.中国有色金属工业总公司,有色金属工业“十五”科技发展计划,2000.
    40.大厂矿物局,巴里选矿厂锡石-多金属硫化矿浮选分离的新工艺报告,1998年
    41.广西大厂矿务局,大厂100号特富矿+400m矿体选矿优化流程研究报告,1996
    42.刘亮,伍平,银铅锑和锌的无氰浮选分离工艺研究,有色金属(选矿部分),1994(3):45-48
    43.姚意莎,覃朝春,广西大厂锡石-多金属硫化物矿床100号矿体物质成分研 究,矿产与地质,2002,16(5)281-286
    44.吴若琼,加温通二氧化硫浮选锌精矿,有色金属(选矿部分),1991(1):43-46
    45.蓝方钊等,硫酸锌和氯化铵在铅锌分离中的应用,有色金属(选矿部分),1991(1):11-16.
    46.J Paulica etal,在铅锌优化浮选中使用FeSO_4/NaCN,国外金属矿选矿,1992(2):34-37
    47.张兴琼,提高大厂91号富矿铟锌精矿质量的研究及应用,矿冶,2000,9(4):1-4
    48.蔡丛光,提高铟锌精矿质量与回收率新工艺研究,矿冶,1999,8(1):25-28
    49.王淀佐,浮选理论的新进展,北京:科学出版社,1992年
    50.王淀佐,浮选工艺及浮选剂的发展和新概念,湖南冶金,1983(5):8-14
    51.李正勤,铅锌硫化矿无氰浮选分离实践,有色金属(选矿部分),1986(6):3-5
    52.王淀佐,林强,选矿、冶金药剂的分子设计,长沙:中南工业大学出版社,1998年
    53.哈兹米哈诺布尔,利用浮选新药剂YYYK制定多金属矿选矿无氰工艺,矿冶,1994(4):23-27
    54.浮选分离多金属硫化矿石用的抑制剂,美国专利,No.504961
    55.Bessonov S V,应用碳酸钙作调整剂混合浮选铜锌矿石,国外金属矿选矿,1994(7):22-25
    56.张芹、胡岳华,顾帼华、徐竞,磁黄铁矿与黄药相互作用电化学浮选红外光谱的研究,矿冶工程,2004,24(5):42-44
    57.D K Sengupta等,用阴离子和阳离子染料浮选硫化矿物,国外金属矿选矿,1989(8):33-35
    58.李波,234捕收剂浮选闪锌矿实践,有色金属(选矿部分),1985(6):58—60
    59.胡为柏,浮选,北京:冶金工业出版社,1989年
    60.王淀佐,矿物浮选与浮选剂,长沙:中南工业大学出版社,1986年
    61.王淀佐.浮选捕收剂发展的三个阶段及其特征规则.中国矿冶学院学取.1983年,增刊第1期
    62.孙水裕,电位控制下黄铜矿和黄铁矿的无捕收剂浮选分离,中南矿冶学院学报,1993,24(4):466—471
    63.R Woods,硫化矿浮选的电化学,国外金属矿,1993年,4:P.10-28
    64. R Mallikarjunan, S Venkatachalam, Proc. Int. Symp. Electrochemistry in Mineral and Metal Processing. In: Richardson P E. etal. (Eds.), Electro-chemistry Society, 1984, 233-256
    65. R Woods, P E Richardson, The Flotation of Sulphide Minerals-electrochemical Aspects. In: P. Somasundaran (ed.) Advance in Mineral Processing, SME. 1986, 154-170
    66. C Labonte, I Sandoval, Some Observation on Copper-Zinc Separation from Complex Ores. In: G. S. Dobby and S R. Rao (eds.), Processing of Complex Ores, Pergamon Press. New York. 1989, 193-202
    67.孙水裕,黄铜矿—方铅矿浮选分离的电化学,中南工业大学硕士字位论文,1987年
    68.胡庆春,方铅矿—毒砂浮选分离的电化学,中南工业大学硕士学位论文,1988年
    69. B Palsson, E Forssbery, Computer Assisted Calculation of Thermodynamic Equilibrium in Galena—Ethyl Xanthate System, Int. J. Min. Proess, 1988(23): 93-121
    70.俞瑞,电化学处理在选矿工艺中的应用,国外金属矿选矿,1996,10:P1-7
    71. S G Salamy etal. The application of electrochemical methods to flotation research, Recent developments in mineral dressing(Institution of Mining and Metallurgy) London. 1953: 503—509.
    72.孙水裕等,方铅矿自诱导浮选的电化学和量子化学研究,有色金属(季刊),1993,45(2):32—36
    73.孙水裕,王淀佐,李柏淡,黄铜矿自诱导浮选的研究,有色金属(季刊),992,44(2):17—29
    74.王淀佐,顾帼华,高碱乙硫氮体系方铅矿的电位调控浮选,中国有色金属学报,1998,8(2):322—326
    75.顾帼华,刘如意,电位调控浮选技术提高北山铅锌矿指标的研究,矿冶工程,1997,17(3):27—31
    76.Derek J and Ottley.锡、钨、铌和钽矿石重选中的技术、经济的和其它因素,国外金属矿选矿,1983(8):16-22
    77.中国锡选矿厂,云锡研究所技术情报室,1985
    78. Collins D N, Investigation of collector systems for the flotation of cassiterite, Trans. Instn. Min. Metall., 1967(76): 77-93
    79. Gutierez G and Prommier L W, Studies on cassiyerite flotation from Bolivia ores, A Second Technical Conference on Tin, 1969(3): 917-935
    80.荷倚夫,利用络合烷基羟肟酸的作用特性改进莱比稀有金属矿石的选矿工艺,国外金属矿选矿,1972(2):14-21
    81.罗家柯,异羟肟酸合成及其在浮选中的应用,国外金属矿选矿,1983(2):7-17
    82. Fuerstenau D W etal., Mineral flotation with hyclroxamate collectors, Reagents in the Mineral Industru, IMM, Edited by Jones M J and Oblatt R, 1984, 161-168
    83. Bogaanov O S etal., Hydroxamic acid as collector in the flotation of wolframite, cassiterite and pyrochlore, 10th Inter. Miner. Process. Congr., 1973(1): 7-21
    84.陈竟清等,锡石捕收剂-水杨羟肟酸,有色金属(选矿部分),1987(3):26-30
    85.刘捷芳,细粒锡石浮选的新药剂,浮选理论与实践学术会议论文集,1988,61-63
    86.张文彬,非硫化矿与复合矿的浮选,国外金属矿选矿,1992(8):24-30
    87. Zambrana G, Inter. Hydroxamic acid as collector in the flotation of cassiterite, J. Min. Proc., 1974(1): 335-345
    88.卢寿慈,翁达,界面分选理论与应用,北京:冶金工业出版社,1992
    89.大厂细泥锡石回收新技术研究工业试验报告,北京有色金属研究总院,2000年
    90.朱一民,高效低毒锡石浮选剂ZJ-3浮选锡石细泥试验研究,2001(2):38-41
    91.梁丙玉,巴里选厂细粒锡石回收的探讨,有色金属(选矿部分),1990(3):27-32
    92.巴里选矿厂锡石-多金属硫化矿浮选分离的新工艺报告,大厂矿物局,1998年
    93.戴少涛,微细粒锡石、石英、方解石的凝聚与分散以及选择性絮凝分离研究,中南工业大学硕士学位论文,1997
    94.余润兰、邱冠周、胡岳华、覃文庆,脆硫锑铅矿与捕收剂作用的界面电化学,中国有色金属学报,2004,14(1):127-131
    95.余润兰、胡岳华、邱冠周、覃文庆,用循环伏安法研究脆硫锑铅矿与捕收剂的作用机理,中南大学学报,2004,35(2):202-206
    96.张芹、胡岳华、顾帼华、徐竟,脆硫锑铅矿与磁黄铁矿在石灰介质中的浮选分离研究,矿冶工程,2004,24(2):30-32
    97.张芹、胡岳华、顾帼华、徐竞,铁闪锌矿的浮选行为及其表面吸附机理,中国有色金属学报,2004,14(4):676-679
    98. GU Guo-hua, WANG Hui, QIU Guan-zhou, HU Yue-hua, Collector matching in origin potential flotation, Trans. Nonferrous Met. Soc. China, 2004, 14 (3): 576-581
    99.余润兰、邱冠周、胡岳华、覃文庆,铁闪锌矿的腐蚀电化学研究,中国腐蚀与防护学报,2004,24(4):226-229
    100. YU Run-lan, QIU Guan-zhou, Corrosive electrochemistry of jamesonite by cyclic voltammetry, J. CENT. SOUTH UNIV. TECHNOL, 2004, 11(3): 286-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700