用户名: 密码: 验证码:
几种植物光合及有机酸特征及其在喀斯特逆境检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境胁迫下,植物通过自身调节适应环境,形成了多种适应性机制,如光合作用机制,无机营养利用机制,碳酸酐酶作用机制等等。其中植物根系分泌的有机酸组成和含量的变化也是植物应对环境胁迫的一种重要的适应性机制。根系分泌的有机酸主要来源于光合作用固定的碳,其通过一系列复杂的生物化学作用,直接影响根际区域养分的获取,重金属的解毒和微生物活性等根际活动,从而影响植物的生长发育状况。因此,根系分泌的有机酸在植物逆境生理中起着至关重要的作用。
     本文选择了喀斯特适生植物构树和诸葛菜作为研究对象,以非适生植物桑树和油菜作为对照,设置人工模拟喀斯特环境(高pH,高浓度重碳酸盐,低营养,干旱)的实验,研究了逆境条件下四种植物的光合响应特征,以及有机酸累积和根系有机酸的分泌特征,阐明了其响应机制以及根系分泌有机酸的来源;探讨了长期胁迫下四种植物的光合特征及根系有机酸的分泌特征,为选择环境适应性植物提供了证据,提出了一种应用根系有机酸的分泌特征表达植物抗逆性的方法。本研究对于了解逆境条件下根系分泌物、光呼吸活性与植物需水和需肥量之间的关系具有重要意义,为后续研究根系分泌物对逆境生理响应特点,发掘作物自身水肥调控的潜能提供了研究基础;以期真正实现节水灌溉以及精准施肥的目的,本研究在农业工程领域为节水灌溉和精准施肥中提供了初步的研究基础。
     本实验的研究结果如下:
     (1)研究了四种植物的光合响应特征。测定了不同锌(含锌(0.02mM),缺锌(0mM))与碳酸氢根离子(0mM和10mM碳酸氢根离子))交互处理下四种植物的生长参数、光合参数、叶绿素荧光参数和叶绿素含量,结果表明不同植物对锌与碳酸氢根离子处理下的光合响应模式不同。其中,构树的光合碳代谢及无机碳利用能力最强。构树对缺锌、高碳酸氢根离子以及两者交互逆境适应性最强;诸葛菜和桑树次之;油菜的PSⅡ光反应中心受到的破坏最大,其适应能力也最弱。
     (2)研究了四种植物有机酸的分配、转运和根系有机酸的分泌特征。在人工模拟缺锌和高浓度碳酸氢根离子逆境下,测定植物器官(根、茎、叶)以及根系分泌的有机酸含量,分析植物有机酸的分配、转运和分泌特征。结果表明,叶片是植物体有机酸的主要产生区域,根、茎、叶以及根系分泌的有机酸的来源不同。叶片中的有机酸主要来源于三羧酸循环和乙醛酸循环,而其他器官以及根系分泌的有机酸主要来源于三羧酸循环。在有机酸形成、分配、转运和分泌的过程中,草酸和柠檬酸受到的影响最大。
     (3)研究了四种植物光合参数和叶绿素荧光参数的动态变化特征。在人工模拟不同锌(含锌(0.02mM),缺锌(0mM))与碳酸氢根离子(0mM,1mM,5mM,10mM碳酸氢根离子))交互处理的逆境下,随着处理时间的变化,四种植物的光合作用、叶绿素荧光参数及叶绿素含量的变化趋势均不同。四种植物都能适应低浓度碳酸氢根离子(1,5mM)的环境。对缺锌和高碳酸氢根离子(10mM)环境的长期适应能力,构树和诸葛菜强于桑树和油菜。
     (4)研究了四种植物根系分泌有机酸的动态变化特征。在人工模拟不同锌(含锌(0.02mM),缺锌(0mM))与碳酸氢根离子(0mM,1mM,5mM,10mM碳酸氢根离子))交互处理的逆境下,随着处理时间的增加,根系分泌的草酸、柠檬酸、苹果酸、丁二酸和酒石酸的含量都增加。含锌的情况下,所有的碳酸氢根离子处理都促进了四种植物根系有机酸的分泌,同一时期下,5,10mM碳酸氢根离子处理的植物根系分泌的有机酸含量较高,尤其是草酸,柠檬酸和苹果酸;缺锌的情况下,随着处理时间的增加,碳酸氢根离子并未显著抑制四种植物根系有机酸的分泌。
     (5)研究了植物根系有机酸的磷提取成本特征,并提出了一种利用磷提取成本表达植物抗缺磷能力的方法。测定了缺磷逆境下四种植物根系分泌的草酸,柠檬酸和苹果酸含量。建立草酸、柠檬酸和苹果酸的标准溶液与根系土壤磷提取的模型,从而得到植物根系分泌的有机酸对根际土壤磷提取的能力。并结合根系分泌的草酸、柠檬酸和苹果酸的有机碳摩尔损失量,提出了根系分泌的有机酸对根际土壤磷提取成本(Pex-cost)的概念,并将该概念应用于表征植物抗缺磷逆境的能力,结果表明四种植物磷提取成本为诸葛菜≈构树<桑树<油菜,这说明诸葛菜和构树抗缺磷能力较强。
     (6)建立植物叶片的叶绿素荧光参数与根系分泌的有机酸之间的联系。在缺磷处理下,植物叶片的叶绿素荧光参数(Fo, Fv/Fm)与根系分泌苹果酸的含量具有线性关系,确定了利用根系分泌苹果酸表达植物抗逆性的方法;并将该方法应用于植物抗旱性的表达,结果表明构树和诸葛菜的抗旱性强于桑树和油菜。
     综上所述,我们主要探讨了模拟喀斯特逆境下,长期处理和短期处理对不同植物的光合响应特征及根系有机酸的分泌特征,分析了根系分泌有机酸的来源。并提出了利用根系分泌的有机酸特征表达植物抗缺磷逆境能力和抗干旱能力的方法,为抗逆性植物的选择提供了强有力的证据。
Under environmental stress, plants have many adaptation mechanisms by autogenously regulation such as photosynthetic response mechanism, mechanism of inorganic nutrition utilization, mechanism of carbon anhydrase function and others. While variation of the amount of root-exuded organic acids, derived from the photosynthetic fixed carbon, was an important adaptive mechanism of plant response to environmental stress. Through a series of complicated biochemical effect, organic acids of root exudations direct influenced many rhizosphere processes such as the nutrient acquisition in rhizosphere region, detoxification of heavy metal and microorganism, and then the plant growth and development were affected. Therefore, the root-exuded organic acids played a vital role in plant stress physiology.
     The study selected plant species adaptability to Karst----Broussonetia papyrifera (B. papyrifera) and Orychophragmus violaceus (O. violaceus) as the research objects, and the none Karst adapted plant species----Morus alba (M. alba) and Brassica napus (B. napus) as the control. By setting the artificial simulation of Karst environment (high pH, high bicarbonate concentration, low nutrition, drought), we explored the response mechanism of photosynthesis, and organic acids accumulation in plants and the root organic acids exudation, illuminated the source of organic acids in root exudations, discussed the characteristics of photosynthetic and root organic acids exudation under the long-term environmental stress, presented a method of expressing plant resistance to stress by root organic acid secretion characteristic. All of this results provided evidences for selecting plant adaptability to difference environment. This study had a great significance to understand adversity under the condition of root secretion, light respiration activity and plant water requirement and the relationship between the fertilizer requirements, provides a research basis for follow-up study of root secretion of adversity physiological response characteristics, potential of the excavation of the relationship between crop itself. In order to achieve the purpose of water-saving irrigation and precise fertilization, this research provides a preliminary research basis of precise fertilization and water-saving irrigation in the field of agricultural engineering.
     The experimental results are as following:
     (1) We studied the photosynthetic response mode of four plant species under interaction of Zn treatments (Zn-sufficient,0.02mM; Zn-deficient,0mM) and bicarbonate treatments (0mM and10mM bicarbonate). By measurement of the growth parameters, photosynthetic parameters, chlorophyll fluorescence parameters and chlorophyll content under Zn deficiency, or high bicarbonate concentration, or both. The results showed the photosynthetic response mode varied with species. Among the four plant species, B. papyrifera showed greatest adaptability to bicarbonate treatment, low Zn, or both, which resulted from the greatest of inorganic carbon assimilation and photosynthetic carbon metabolism in B. papyrifera; B. napus was sensitive to low Zn, bicarbonate treatment, or both, owing to the greatest damage in photosystem Ⅱ reactive center; the adaptability of O. violaceus and M. alba were between B. papyrifera and B. napus.
     (2) We studied the characteristics of allocation, transportation of organic acids in plant organs and root organic acids exudation. By artificial simulation of zinc treatments (Zn-sufficient,0.02mM; Zn-deficient,0mM) and bicarbonate stress (0mM and10mM bicarbonate), we investigated the amount of organic acids in plant organs (root, stem and leaf) and the amount of root-exuded organic acids, and reflected the characteristics of organic acids allocation, transportation and exudation. The results indicated that leave was the main region of organic acid production; the source of organic acids of root, stem, leave and root exudations was different, the source of organic acids of leave was main from Krebs cycle and glyoxylate cycle, the source of organic acids of root, stem and root exudations was main from Krebs cycle. Oxalic and citric acids are suffered the greatest influence in formation, allocation, translocation and exudation of organic acid.
     (3) We studied the dynamic variation characteristics of photosynthetic parameters, chlorophyll fluorescence parameters. Under the artificial simulation of interaction of zinc treatments (Zn-sufficient,0.02mM; Zn-deficient,0mM) and bicarbonate stress (0mM,1mM,5mM,10mM bicarbonate), the four plant species showed the difference variation of photosynthetic parameters, chlorophyll fluorescence parameters and chlorophyll content during the treatment time duration. The four plant species can adapt the environment of low bicarbonate concentration (1,5mM). Under the dual influence of Zn deficiency and excessive bicarbonate concentration (10mM), the adaptability of B. papyrifera and O. violaceus was greater than that of M. alba and B. napus under the long-term treatment.
     (4) We studied the dynamic variation characteristics of root-exuded organic acids. Under the artificial simulation of interaction of zinc treatments (Zn-sufficient,0.02mM; Zn-deficient,0mM) and bicarbonate stress (0mM,1mM,5mM,10mM bicarbonate), the amount of oxalic, citric, malic, succinic, and tartaric acids were depended on plant species and nutrition concentration during the treatment time duration. Under Zn-sufficient conditions, all three bicarbonate treatment stimulated root organic acids exudation in four plant species, the root-exuded organic acids was increased, particularly oxalic, citric, malic acids, under the5,10mM bicarbonate treatments at the same treatment time. Under Zn-deficient conditions, bicarbonate had no significant inhibition the exudation of root organic acids of four plant species during the treatment time duration.
     (5) We studied the characteristics of P-extraction cost by root-exuded organic acids in four plant species, and indicated a new method of expressing plant resistance to P deficiency stress by utilizing P-extraction cost. The amount of oxalic, citric and malic acids was measured in four plant species under P deficiency stress, and the models of the standard solution of oxalic, citric, and malic acids and the rhizosphere soil P extraction were established, and then the P-extraction of root-exuded organic acids was calculated. And we calculated the organic carbon loss of root-exuded oxalic, citric and malic acids. Therefore, we presented the concept of P-extraction cost by combining P extraction and organic carbon in root-exuded organic acids, and applied this expressed the plant resistance to P deficiency stress. The results showed the resistance to P deficiency stress of four plant species was the following series:O. violaceus≈B. papyrifera     (6) We established the relationship between the chlorophyll fluorescence parameters and root-exuded organic acids. Under phosphorus stress, the linear relationship was between the chlorophyll fluorescence parameters (Fo, Fv/Fm) and the amount of root-exude malic acid, and founded a low-cost method was used for assessing plant adaptability to a low-phosphorus environment when no chlorophyll fluorescence instrument was available. And the method directly applied in the expression of drought resistance, the results showed that the drought resistance of B. papyrifera and O. violaceus was greater than that of M. alba and B. napus.
     In summary, we discussed the photosynthetic response characteristics and root organic acids exudations characteristics of four plant species in the long-term and short-term treatment under the simulation of Karst environment; and analyzed the source of organic acids in root exudations, and presented the method of expressing plant resistance to P deficiency and drought stress by the characteristics of root organic acids exudations, which provided strong evidence for plants resistance to stress.
引文
[1]刘丛强等著.生物地球化学过程与地表物质循环—西南喀斯特土壤-植被系统生源要素循环[M].北京:科学出版社,2009.
    [2]吴沿友.喀斯特适生植物诸葛菜综合研究[M].贵阳:贵州科技出版社,1997.
    [3]Wu YY, Liu CQ, Li PP, et al. Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry(Broussonetia papyrifera (L.) Vent.) in comparison with mulberry (Morus alba L.)[J]. Photosynthetica,2009,47:155-160.
    [4]吴沿友,刘丛强,王世杰.诸葛菜的喀斯特适生性研究[M].贵阳:贵州科技出版社,2004.
    [5]邢德科.模拟喀斯特逆境下植物无机碳利用策略的研究[D].贵阳:中国科学院地球化学研究所博士学位论文,2012.
    [6]Xing D, Wu Y. Photosynthetic response of three climber plant species to osmotic stress induced by polyethylene glycol (PEG) 6000[J]. Acta Physiologiae Plantarum,2012,34(5): 1659-1668.
    [7]吴沿友,邢德科,朱咏莉,等.营养液pH对3种藤本植物生长和叶绿素荧光的影响[J].西北植物学报,2009,29(2):338-343.
    [8]吴沿友,梁铮,邢德科.模拟干旱胁迫下构树和桑树的生理特征比较[J].广西植物,2011,31(1):92-96.
    [9]Wu YY, Xing DK. Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae[J]. Photosynthetica,2012,50(4):587-594.
    [10]Lopez-Bucio J, Nieto-Jacobo MF, Ramirez-Rodriguez V, et al. Organic acid metabolism in plants:from adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Science,2000,160:1-13.
    [11]Jones DL. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil,1998,205: 25-44.
    [12]赵宽,吴沿友.根系分泌的有机酸及其对喀斯特植物、土壤碳汇的影响[J].中国岩溶,2012,30(4):104-109.
    [13]Narula N, Kothe E, Behl RK. Role of root exudates in plant-microbe interactions[J]. Journal of Applied Botany and Food Quality,2012,82(2):122-130.
    [14]Ryan PR, Delhaize E, Jones DL. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52: 527-560.
    [15]朱国鹏,沈宏.根系分泌物研究方法(综述)[J].亚热带植物科学,2002,31:15-21.
    [16]Dinkci N, Akalin AS, Gonc S, et al. Isocratic reverse-phase HPLC for determination of organic acids in Kargi Tulum cheese[J]. Chromatographia,2007,66(S1):45-49.
    [17]Ehling S, Cole S. Analysis of organic acids in fruit juices by liquid chromatography-mass spectrometry:an enhanced tool for authenticity testing[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2229-2234.
    [18]杨红,黄焕忠,周立祥,等.植物根系分泌物中有机酸的分析方法[J].分析测试学报,2001,20(4):19-21.
    [19]Jaitz L, Mueller B, Koellensperger G, et al. LC-MS analysis of low molecular weight organic acids derived from root exudation[J]. Analytical and Bioanalytical Chemistry,2011,400(8): 2587-2596.
    [20]Parker DR, Chaney RL, Norvell WA. In Loeppert RH, Schwab AP, Goldberg S (eds.) Chemical Equilibria Models:Applications to plant research. In chemical equilibria and reaction models, special publication 42. Soil Science Society of America, Madison, Wisconsin, pp.163-200, 1995.
    [21]陆文龙,张福锁,曹一平,等.低分子量有机酸对石灰性土壤磷吸附动力学影响[J].士壤学报,1999,36(2):89-197.
    [22]介晓磊,李有田,庞荣丽,等.低分子量有机酸对石灰性士壤磷素形态转化及有效性的影响[J].士壤通报,2005,36(6):856-860.
    [23]Martell AE, Smith RM.1976-1989. Critical Stability Constants,6 vol. Plenum Press, New York.
    [24]El-Halmouch Y, Benharrat H, Thalouarn P. Effect of root exudates from different tomato genotypes on broomrape (O.aegyptiaca) seed germination and tubercle development[J]. Crop Protection,2006,25:501-507.
    [25]Rasouli-Sadaghiani MH, Sadeghzadeh B, Sepehr E, et al. Root exudation and zinc uptake by barley genotypes differing in Zn efficiency[J]. Journal of Plant Nutrition,2011,34(8):1120-1132.
    [26]Tyler G, Strom L. Differing organic acid exudation pattern explains calcifuge and acidifuge behavior of plants[J]. Annals of Botany,1995,75:75-78.
    [27]Johansson EM, Fransson PMA, Finlay RD, et al. Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress[J]. Plant and Soil,2008,313: 39-54.
    [28]Carvalhais LC, Dennis PG, Fedoseyenko D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency [J]. Journal of Plant Nutrition and Soil Science,2011,174(1):3-11.
    [29]Neumann G, Massonneau A, Martinoia E, et al. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin[J]. Planta,1999,208:373-382.
    [30]Lin HT, Wang MC, Seshalah K. Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost[J]. Chemosphere,2008,71:742-749.
    [31]Maqsood MA, Hussain S, Aziz T, et al. Wheat-exuded organic acids influence zinc release from calcareous soils[J]. Pedosphere,2011,21:657-665.
    [32]Ricard B, Couee I, Raymond P, et al. Plant-metabolism under hypoxia and anoxia[J]. Plant Physiology and Biochemistry,1994,32:1-10.
    [33]崔晓阳,宋金凤.凋落物源有机酸及其地下生态效应[M].北京:科学出版社,2008.
    [34]丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤,2005,37(3):243-250.
    [35]张锡洲,李廷轩,王永东.植物生长环境与根系分泌物的关系[J].土壤通报,2007,38(4):785-789.
    [36]Wang WB, Kim YH, Lee HS, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stress[J]. Plant Physiology and Biochemistry,2009,47(7): 570-577.
    [37]Anjum SA, Xie X, Wang LC, et al. Morphological, physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research,2011,6(9):2026-2032.
    [38]Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany, 2012,2012:1-26.
    [39]Reid CPP. Assimilation, distribution and root exudation of 14C by ponderosa pine seedlings under induced water stress[J]. Plant Physiology,1974,54:44-49.
    [40]Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environment Quality,2007,36:904-912.
    [41]Darrah PR. Rhizodeposition under ambient and elevated CO2 levels. Plant and Soil,1996,187: 265-275.
    [42]曲涛,南志标.作物和牧草对干旱胁迫的响应及机理研究进展[J].草业学报,2008,17(2):126-135.
    [43]付爱红,陈亚宁,李卫红,等.干旱,盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749.
    [44]Chaves, MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
    [45]Marschner H. Mineral Nutrition of Higher Plants[M]. London:Academic Press,1995.
    [46]Li H, Shen J, Zhang F, et al. Dynamics of phosphorus fractions in the rhizosphere of common bean(Phaseolus vulgaris L.) and durum wheat(Triticum turgidum durum L.) grown in monocropping and intercropping systems[J]. Plant and Soil,2008,312:139-150.
    [47]Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil,2002,245:35-47.
    [48]Walker TS, Bais HP, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology,2003,132:44-51.
    [49]Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist,2003,157(3):423-447.
    [50]Shahbaz AM, Oki Y, Adachi T, et al. Phosphorus starvation induced root-mediated pH changes in solublization and acquisition of sparingly soluble P sources and organic acids exudation by Brassica cultivars. Soil Science and Plant Nutrition,2006,52:623-633.
    [51]Gardner WK, Barber DA, Parberry DG. The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface in enhanced[J]. Plant and Soil,1983,70:107-124.
    [52]Lipton DS, Blanchar RW, Blevins DG. Citrate, malate, and succinate concentration in exudates from P-sufficient and P stressed Medicago sativa L. Seedlings[J]. Plant Physiology,1987,85: 315-317.
    [53]Broadley MR, Burns A, Burns IG. Relationships between phosphorus forms and plant growth[J]. Journal of Plant Nutrition,2002,25:1075-1088.
    [54]Jones DL, Darrah PR. Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere[J]. Plant and Soil,1994,166:247-257.
    [55]Treeby M, Marschner H, Romheld V. Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators[J]. Plant and Soil, 1989,114:217-226.
    [56]Yaryura P, Cordon G. Leon M, et al. Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.)[J]. Journal of Agronomy and Crop Science,2009,195(3):186-196.
    [57]Fleisher DH, Wang Q, Timlin DJ, et al. Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment[J]. Crop Science,2012,52(4):1803-1815.
    [58]Chaudhary MI, Adu-Gyamfi JJ, Saneoka H, et al. The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean[J]. Acta Physiologiae Plantarum,2008,30(4):537-544.
    [59]Wang Z, Li D, Li G, et al. Mechanism of photosynthetic response in Microcystis aeruginosa PCC7806 to low inorganic phosphorus[J]. Harmful Algae,2010,9(6):613-619.
    [60]Tissue DT, Lewis JD. Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric CO2 vary with phosphorus supply[J]. Tree Physiology,2010, 30(11):1361-1372.
    [61]Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant and Soil,2009,321:5-33.
    [62]Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition [J]. New Phytologist,2004,163:459-480.
    [63]Kraffczyk I, Trolldenier G, Beringer H. Soluble root exudates of maize:Influence of potassium supply and rhizosphere microorganisms[J]. Soil Biology & Biochemistry,1984,16:315-322.
    [64]Barker AV, Pilbeam DJ. Handbook of Plant Nutrition[M]. Taylor and Francis Group,2006, 411-422.
    [65]Ohki K. Effect of zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton[J]. Physiologia Plantarum,1976,38:300-304.
    [66]Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses[J]. Nature Chemistry Biology,2011,7:504-511.
    [67]Gianquinto G, Abu-Rayyan A, di Tola L, et al. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments[J]. Plant and Soil, 2000,220:219-228.
    [68]Rehman HU, Aziz T, Farooq M, et al. Zinc nutrition in rice production systems:a review[J]. Plant and Soil,2012,361:203-226.
    [69]Broadley MR, White PJ, Hammond JP, et al. Tansley review:Zinc in plants[J]. New Phytologist, 2007,173(4):677-702.
    [70]Mukhopadhyay M, Das A, Subba P, et al. Structural, physiological, and biochemical profiling of tea plants under zinc stress[J]. Biologia Plantarum,2013,57(3):474-480.
    [71]Roer W, Keller H. Exudation of organic acids by spinach and the mobilization of Cu, Zn and Cd in soil[J]. Plant Nutrition-Food Security and Sustainability of Agro-Ecosystems,2001: 556-557.
    [72]刘娣,刘爱红,王金花,等.缺锌苹果树有机酸与锌吸收分配的关系[J].中国农业科学,2010,16:3381-3391.
    [73]Yang X, R□mheld V, Marschner H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars(Oryza sativa L.)[J]. Plant and Soil,1994,164:1-7.
    [74]苏维词,朱文孝.贵州喀斯特山区生态环境脆弱性分析[J].山地学报,2000,18(5):429-434.
    [75]吴沿友,邢德科,刘莹.植物利用碳酸氢根离子的特征分析[J].地球与环境,2011,39(2):273-277.
    [76]徐晓燕,杨肖娥,杨玉爱.重碳酸氢根对水稻根区重要有机酸分布的影响与水稻品种耐缺Zn关系的研究[J].作物学报,2001,27(3):387-391.
    [77]Alhendawi RA, Romheld V, Kirkby EA, et al. Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize[J]. Journal of Plant Nutrition,1997,20:1731-1753.
    [78]Lee JA, Woolhouse HW. A comparative study of bicarbonate inhibition of root growth in calcicole and calcifuge grasses[J]. New Phytologist,1969,68:1-11.
    [79]McCray JM, Matocha JE. Effects of soil water levels on solution bicarbonate, chlorosis and growth of sorghum[J]. Journal of Plant Nutrition,1992,15:1877-1890.
    [80]Hoffland E, Wei CZ, Wissuwa M. Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency[J]. Plant and Soil,2006,283:155-162.
    [81]Hajiboland R, Yang XE, RSmheld V, et al. Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes[J]. Environmental and Experimental Botany,2005,54:163-173.
    [82]Macedo AF, Leal-Costa MV, Tavares ES, et al. The effect of light quality on leaf production and development of in vitro cultured plants of Alternanthera brasiliana Kuntze[J]. Environmental and Experimental Botany,2011,70(1):43-50.
    [83]Mielke MS, Schaffer B. Effects of soil flooding and changes in light intensity on photosynthesis of Eugenia uniflora L. seedlings[J]. Acta Physiologiae Plantarum,2011,33(5): 1661-1668.
    [84]Sun W, Ubierna N, MA JY, et al. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus:changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism[J]. Plant, Cell and Environment,2012,35(5):982-993.
    [85]Albert KR, Ro-Poulsen H, Mikkelsen TN, et al. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem[J]. Journal of Experimental Botany,2011,62(12):4253-4266.
    [86]Flexas J, Niinemets U, Galle A, et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency [J]. Photosynthesis Research,2013,117(1-3):45-59.
    [87]Xue W, Li XY, Lin LS, et al. Effects of elevated temperature on photosynthesis in desert plant Alhagi sparsifolia S[J]. Photosynthetica,2011,49(3):435-447.
    [88]Baligar VC, Bunce JA, Elson MK, et al. Irradiance, external carbon dioxide concentration and temperature influence photosynthesis in tropical cover crop legumes[J]. Tropical Grasslands, 2010,44:24-32.
    [89]Cabello-Pasini A, Macias-Carranza V, Abdala R, et al. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta)[J]. Journal of Applied Phycology,2011,23:363-369.
    [90]Searles PS, Bloom AJ. Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen[J]. Plant Cell and Environment,2003,26,1247-1255.
    [91]Wang P, Shen H, Xie P. Can hydrodynamics change phosphorus strategies of diatoms?-nutrient levels and diatom blooms in lotic and lentic ecosystems[J]. Microbial Ecology,2012,63: 369-382.
    [92]Shi GR, Cai QS. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biologia Plantarum,2009,53,391-394.
    [93]Qu C, Liu C, Gong X, et al. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress[J]. Environmental and Experimental Botany,2012,75:134-141.
    [94]Morales F, Belkhodja R, Abadia A, et al. Photosystem Ⅱ efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.)[J]. Photosynthesis Research,2000,63:9-21.
    [95]Lombardi AT, Maldonado MT. The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynthesis Research,2011,108:77-87.
    [96]Fu Y, Yu G, Wang Y, et al. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia[J]. Science in China Series D:Earth Sciences, 2006,49(2):196-206.
    [97]Pinheiro C, Antonio C, Ortufio MF, et al. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance:metabolic reorganization prior to early stress responses[J]. Journal of Experimental Botany,2011, 62(14):4965-4974.
    [98]Vaz M, Cochard H, Gazarini L, et al. Erratum to:Cork oak (Quercus suber L.) seedlings acclimate to elevat ed CO2 and water stress:photosynthesis, growth, wood anatomy and hydraulic conductivity[J]. Trees Structure and Function,2012,26(4):1159-1160.
    [99]Van Goethem D, Potters G, De Smedt S, et al. Seasonal, diurnal and vertical variation in photosynthetic parameters in Phyllostachys humilis bamboo plants[J]. Photosynthesis Research,2014, doi:10.1007/s 11120-014-9992-9.
    [100]王瑞,刘国顺,倪国仕,等.种植密度对烤烟不同部位叶片光合特性及其同化物积累的影响[J].作物学报,2009,35(12):2288-2295.
    [101]Wang MC, Wang JX, Shi QH, et al. Photosynthesis and water use efficiency of Platycladus Orientalis and Robinia Pseudoacacia saplings under steady soil water stress during different stages of their annual growth period[J]. Journal of Integrative Plant Biology,2007,49(10): 1470-1477.
    [102]马富裕,李蒙春,杨建荣,等.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1472.
    [103]Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis:the basis[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313-349.
    [104]Van Kooten, Snel JFH. The use of chlorophyll nomenclature in plant stress physiology[J]. Photosynthesis Research,1990,25:147-150.
    [105]Meroni M, Rossini M, Guanter L, et al. Remote sensing of solar-induced chlorophyll fluorescence:review of methods and applications[J]. Remote Sensing of Environment,2009, 113:2037-2051.
    [106]Holzwarth AR, Lenk D, Jahns P. On the analysis of non-photochemical chlorophyll fluorescence quenching curves:I. Theoretical considerations[J]. Biochimica et Biophysica Acta-Bioenergetics,2013,1827(6):786-792.
    [107]Blache U, Jakob T, Su W, et al. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae[J]. Plant Physiology and Biochemistry, 2011,49(8):801-808.
    [108]Fu WG, Li PP, Wu YY. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce[J]. Scientia Horticulturae,2012,135:45-51.
    [109]Li XT, Cao P, Wang XG, et al. Comparison of gas exchange and chlorophyll fluorescence of low-potassium-tolerant and-sensitive soybean [Glycine max (L.) Merr.] cultivars under low-potassium condition[J]. Photosynthetica,2011,49(4):633-636.
    [110]Yan K, Chen P, Shao H, et al. Effects of short-term high temperature on photosynthesis and photosystem Ⅱ performance in sorghum [J]. Journal of Agronomy and Crop Science,2011, 197(5):400-408.
    [111]Faraloni C, Cutino I, Petruccelli R, et al. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress[J]. Environmental and Experimental Botany,2011,73:49-56.
    [112]Kitao M, Tobita H, Utsugi H, et al. Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements[J]. Tree Physiology,2012,32(8): 998-1007.
    [113]Shafi M, Bakht J, Razuddin, et al. Genotypic difference in the inhibition of photosynthesis and chlorophyll fluorescence by salinity and cadmium stresses in wheat[J]. Journal of Plant Nutrition,2011,34(3):315-323.
    [114]潘瑞炽.植物生理学[M].北京:高等教育出版社,2008,第六版.
    [115]郭卫东,桑丹,郑建树,等.缺氮对佛手气体交换,叶绿素荧光及叶绿体超微结构的影响[J].浙江大学学报(农业与生命科学版),2009,35(3):307-314.
    [116]于海秋,彭新湘,严小龙,等.缺磷对大豆叶片显微结构及光合作用的影响[J].吉林农业大学学报,2006,28(2):127-132.
    [117]郭延平,陈屏昭,张良诚,等.缺磷胁迫加重柑橘叶片光合作用的光抑制及叶黄素循环的作用[J].植物营养与肥料学报,2003,9(3):359-363.
    [118]吴树彪,陈慧选.缺铁对苹果叶片解剖结构的影响[J].园艺学报,1997,24(2):115-119.
    [119]薛进军,刘贵巧,刘子英,等.铁肥虹吸输液方法对矫正苹果缺铁失绿症的影响[J].果树学报,2013,30(3):412-415.
    [120]焦蓉,刘好宝,刘贯山,等.论脯氨酸累积与植物抗渗透胁迫[J].中国农学通报,2011,27(7):216-221.
    [121]蒋靓,庄杰云,樊叶杨,等.与水稻耐逆性相关的叶片丙二醛含量的QTL分析[J].中国水稻科学,2007,21(4):436-438.
    [122]王凤德,衣艳君,王海庆,等.豌豆过氧化氢酶在烟草叶绿体中的过量表达提高了植物的抗逆性[J].生态学报,2011,31(4):1058-1063.
    [123]郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3): 470-474.
    [124]Bae YS, Oh H, Rhee SG, et al. Regulation of reactive oxygen species generation in cell signaling[J]. Molecules and Cells,2011,32:491-509.
    [125]Cakmak I. Tansley review No.111. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
    [126]McConnell IL, Eaton-Rye JJ, van Rensen JJ. Regulation of photosystem II electron transport by bicarbonate[M].-In Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds.):Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation, pp.475-500. Springer, Dordrecht,2012.
    [127]van Rensen JJS. Role of bicarbonate at the acceptor side of photosystem II[J]. Photosynthesis Research,2002,73:185-192.
    [128]Romera FJ, Alcantara E, de la Guardia MD. Effect of bicarbonate, phosphate and high pH on the reducing capacity of Fe-deficient sunflower and cucumber plants[J]. Journal of Plant Nutrition,1992,15:1519-1530.
    [129]Bertoni GM, Pissaloux A, Morard P, et al. Bicarbonate-pH relationship with iron chlorosis in white lupine[J]. Journal of Plant Nutrition,1992,15:1509-1518.
    [130]Mohsenian Y, Roosta HR, Karimi HR, et al. Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants[J]. Photosynthetica,2012,50:411-421.
    [131]Madsen TV, Maberly SC. Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate[J]. Freshwater Biology,1991,26:175-187.
    [132]Misra A, Srivastava AK, Srivastava NK, et al. Zn-acquisition and its role in growth, photosynthesis, photosynthetic pigments, and biochemical changes in essential monoterpene oil (s) of Pelargonium graveolens[J]. Photosynthetica,2005,43:153-155.
    [133]Roosta HR, Karimi HR. Effects of alkali-stress on ungrafted and grafted cucumber plants: using two types of local squash as rootstock[J]. Journal of Plant Nutrition,2012,35: 1843-1852.
    [134]Wang H, Jin JY. Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency[J]. Photosynthetica,2005,43: 591-596.
    [135]Chen W, Yang X, He Z, et al. Differential changes in photosynthetic capacity,77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress[J]. Physiolgia Plantarum, 2008,132:89-101.
    [136]Hajiboland R, Yang XE, Romheld V. Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye[J]. Plant and Soil,2003,250: 349-357.
    [137]Wissuwa M, Ismail AM, Yanagihara S. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance[J]. Plant Physiology,2006,142:731-741.
    [138]Broadley MR, Rose T, Frei M, et al. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity[J]. New Phytologist,2010,186:400-414.
    [139]Yang XE, Romheld V, Marschner H. Micronutrient up-take by hybrid and conventional rice cultivars from different types of soils[J]. Journal of Plant Nutrition,1994,17:319-332.
    [140]Wydrzynski T. A new site of bicarbonate effect in photosystem II of photosynthesis: Evidence from chlorophyll fluorescence transients in spinach chloroplasts[J]. Biochimica et Biophysica Acta-Bioenergetics,1975,387:403-408.
    [141]Hopkinson BM, Dupont CL, Allen AE, et al. Efficiency of the C02-concentrating mechanism of diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108:3830-3837.
    [142]Kumar N, Kumar S. Differential activation of ribulose-1,5-bisphosphate carboxylase/ oxygenase in non-radiolabelled versus radiolabelled sodium bicarbonate[J]. Current Science, 2001,80:333-334.
    [143]Wu Y, Li P, Zhao Y, et al. Study on photosynthetic characteristics of Orychophragmus violaceus related to shade-tolerance[J]. Science Horticulturae,2007,113:173-176.
    [144]Hu H, Sparks D. Zinc deficiency inhibits chlorophyll synthesis and gas exchange in "Stuart" Pecan[J]. HortScience,1991,26:267-268.
    [145]Wang HC, Ma FF, Cheng LL. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple(Malus domestica Borkh) with excessive accumulation of carbohydrates[J]. Planta,2010,232:511-522.
    [146]Zbinovsky V, Burris RH. Metabolism of infiltrated organic acids by tobacco leaves[J]. Plant Physiology,1952,27:240-250.
    [147]Stutz RE, Burris RH. Photosynthesis and metabolism of organic acids in higher plants[J]. Plant Physiology,1951,26(2):226-243.
    [148]Araujo WL, Nunes-Nesi A, Nikoloski Z, et al. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues[J]. Plant, Cell and Environment,2012,35(1):1-21.
    [149]Sweetlove LJ, Beard KF, Nunes-Nesi A, et al. Not just a circle:flux modes in the plant TCA cycle[J]. Trends in Plant Science,2010,15(8):462-470.
    [150]Zeng F, Chen S, Miao Y, et al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress[J]. Environmental Pollution,2008,155(2):284-289.
    [151]范洪黎,王旭,周卫.不同镉积累型苋菜(Amaranthus mangostanus L.)根际低分子量有机酸与镉吸收的关系[J].中国农业科学,2007,40(12):2727-2733.
    [152]Rose MT, Rose TJ, Pariasca-Tanaka J, et al. Revisiting the role of organic acids in the bicarbonate tolerance of zinc-efficient rice genotypes[J]. Functional Plant Biology,2011,38: 493-504.
    [153]Qin R, Hirano Y, Brunner I. Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn[J]. Tree Physiology,2007,27:313-320.
    [154]Rose MT, Rose TJ, Pariasca-Tanaka J, et al. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess[J]. Planta, 2012,236(4):959-973.
    [155]Oliveira AP, Pereira JA, Andrade PB, et al. Organic acids composition of Cydonia oblonga Miller leaf[J]. Food Chemistry,2008,111:393-399.
    [156]Nisperos-Carriedo MO, Buslig BS, Shaw PE. Simultaneous detection of dehydroascorbic, ascorbic and some organic acids in fruits and vegetables by HPLC[J]. Journal of Agricultural and Food Chemistry,1992,40:1127-1130.
    [157]Wang P, Zhou R, Cheng JJ, et al. LC determination of trace short-chain organic acids in wheat root exudates under aluminum stress[J]. Chromatographia,2007,66:867-872.
    [158]王君,王东升.大豆、小麦根系分泌物中低分子量有机酸分析方法[J].辽宁工程技术大学学报(自然科学版),2009,9(28):241-243.
    [159]王平,周荣.高效液相色谱法测定植物根系分泌物中的有机酸[J].色谱,2006,24(3):239-242.
    [160]郭瑛,肖朝萍,王红,等.高效液相色谱法测定乌梅有机酸[J].分析化学,2004,3(12):1624-1626.
    [161]王英,凯撒·苏来曼,李进.不同苗龄伊贝母根系分泌物GC-MS分析[J].西北植物学报,2009,29(2):384-389.
    [162]Wu YY, Wu XM, Li PP, et al. Comparison of photosynthetic activity of Orychophragmus violaceus and oil-seed rape[J]. Photosynthetica,2005,43(2):299-302.
    [163]He CQ, Tan GE, Liang X, et al. Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus[J]. Applied Soil Ecology,2010,44(1):1-5.
    [164]Pfannschmidt T, Nilsson A, Allen JF. Photosynthetic control of chloroplast gene expression[J]. Nature,1999,397:625-628.
    [165]许大全.光合作用研究进展:从分子机理到绿色革命(英文)[J].植物生理学报,2001,27(2):97-108.
    [166]Bais HP, Weir TL, Perry LG, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology,2006,57:233-266.
    [167]Rees TAP. Plant Physiology, Biochemistry and Molecular Biology[M]. In Dennis DT, Turpin DH (eds.) In Carbon Metabolism in Mitochondria. Longman, London, New York, pp 106-143, 1990.
    [168]Nguyen C. Rhizodeposition of organic C by plants:mechanisms and controls[J]. Agronomie, 2003,23:375-396.
    [169]Baetz U, Martinoia E. Root exudates:the hidden part of plant defense[J]. Trends in Plant Science,2013, http://dx.doi.org/10.1016/i.tplants.2013.11.006.
    [170]Liu CC, Liu YG, Guo K, et al. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering[J]. Physiolgia Plantarum,2010,139:39-54.
    [171]Liu CC, Liu YG, Guo K, et al. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China[J]. Environmental and Experimental Botany,2011,71:174-183.
    [172]魏媛,喻理飞,张金池.喀斯特地区不同干扰条件下构树萌枝种群生物量构成研究[J].南京林业大学学报(自然科学版),2007,31(1):115-119.
    [173]徐春丽,肖家欣,齐笑笑,等.锌胁迫对两种柑橘幼苗光合特性日变化及其相关性的影响[J].生物学杂志,2010,6:42-45.
    [174]Vaillant N, Monnet F, Hitmi A, et al. Comparative study of responses in four Datura species to a zinc stress[J]. Chemosphere,2005,59(7):1005-1013.
    [175]崔强,王庆成,刘强,等NaHCO3胁迫对不同胁迫时期金银忍冬苗木光合特性和荧光参数的影响[J].东北林业大学学报,2010,38(6):31-34.
    [176]Chen YX, Wang YP, Lin Q, et al. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J]. Environment International,2005,31:861-866.
    [177]Wu YY, Li PP, Wang BL, et al. Study on absorption of nitrogen, phosphorus in bodies of water by Orychophragmus violaceus grown in floating beds[J]. Waste Management and the Environment,2004,2:581-585.
    [178]Kuzyakov Y, Domansk G. Carbon input by plants into the soil-review[J]. Journal of Plant Nutrition and Soil Science,2000,163:421-431.
    [179]Gerke J, Beipner L, Romer W. The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters[J]. Journal of Plant Nutrition and Soil Science,2000,163:207-212.
    [180]Gerke J, Romer W, Beipner L. The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. Ⅱ. The important of soil and plant parameters for uptake of mobilized P[J]. Journal of Plant Nutrition and Soil Science,2000, 163:213-219.
    [181]Strom L, Owen AG, Douglas LG, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biology & Biochemistry,2005,37: 2046-2054.
    [182]Cawthray GR. An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates[J]. Journal of Chromatography A, 2003,1011:233-240.
    [183]赵宽.不同磷、干旱水平对植物根系有机酸分泌的影响[D].镇江:江苏大学硕士学位论文,2011.
    [184]Gollany HT, Bloom PR, Schumacher TE. Rhizosphere soil-water collection by immiscible displacement-centrifugation technique[J]. Plant and Soil,1997,188:59-64.
    [185]鲍士旦主编.土壤农化分析[M].北京:中国农业出版社,2000.
    [186]胡忠良,潘根兴,李恋卿,等.贵州喀斯特山区不同植被下土壤C,N,P含量和空间异质性[J].生态学报,2009,29(8):4187-4195.
    [187]涂成龙,何腾兵,林昌虎,等.贵州西部喀斯特石漠化地区草地土壤有机质和氮素变异特征初步研究[J].水土保持学报,2006,20(2):50-53.
    [188]龚松贵,王兴祥,张桃林,等.低分子量有机酸对红壤无机磷活化的作用[J].土壤学报,2010,4:692-697.
    [189]Jones DL, Dennis PG, Owen AG. Organic acid behavior in soils-misconceptions and knowledge gaps[J]. Plant and Soil,2003,248:31-41.
    [190]刘丽.低分子量有机酸对土壤磷活化影响的研究[J].植物营养与肥料学报,2009,15(3):593-600.
    [191]Xu RK, Zhu YG, Chittleborough D. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids. Journal of Environmental Science-China, 2004,16:5-8.
    [192]吴沿友,蒋九余,帅世文,等.诸葛菜的喀斯特适生性的无机营养机制探讨[J].中国油料作物学报,1997,19(1):47-49.
    [193]Strom L. Root exudation of organic acids:importance to nutrient availability and the calcifuge and calcicole behaviour of plants[J]. Oikos,1997,80:459-466.
    [194]Vranova V, Rejsek K, Skene KR, et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose:a review[J]. Journal of Plant Nutrition and Soil Science,2013,176:175-199.
    [195]Strobel BW. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma,2001,99:169-198.
    [196]Atkinson MJ, Smith SV. C:N:P ratios of benthic marine plants [carbon:nitrogen: phosphorus] [J]. Limnology & Oceanography,1983,28:568-574.
    [197]Farrar JF, Jones DL. The control of carbon acquisition by roots[J]. New Phytologist,2000, 147:43-53.
    [198]Farrar J, Hawes M, Jones DL, et al. How roots control the flux of carbon to the rhizosphere [J]. Ecology,2003,84,827-837.
    [199]Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought-from genes to the whole plant[J]. Functional Plant Biology,2003,30(3):239-264.
    [200]Barchet GLH, Dauwe R, Guy RD, et al. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling[J]. Tree Physiology,2013, doi:10.1093/treephys/tpt 080.
    [201]张立军,樊金娟,阮燕晔,等.聚乙二醇在植物渗透胁迫生理研究中的应用[J].植物生理学通讯,2004,40(3):361-364.
    [202]魏霞,李守中,郑怀舟,等.叶片气体交换和叶绿素荧光在植物逆境生理研究中的应用[J].福建师范大学学报(自然科学版),2007,23(4):124-128.
    [203]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [204]温国胜,田海涛,张明如,等.叶绿素荧光分析技术在林术培育中的应用[J].应用生态学报,2006,17(10):1973-1977.
    [205]张正斌.植物对环境胁迫整体抗逆性研究若干问题[J].西北农业学报,2000,9(3):112-116.
    [206]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465.
    [207]Wu YY, Niu HY, Wang K, et al. Biosensor based on malic dehydrogenase immobilized in a CdS-graphene/chitosan nanocomposite for root-exuded malic acid determination[J]. Sensor Letters,2012,11(2):436-441.
    [208]Egle K, Romer W, Keller H. Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply[J]. Agronomie,2003,23:511-518.
    [209]Neumann G, Romheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants[J]. Plant and Soil,1999,211:121-130.
    [210]Corrales I, Amenos M, Poschenrieder C, et al. Phosphorus efficiency and root exudates in two contrasting tropical maize varieties[J]. Journal of Plant Nutrition,2007,30:887-900.
    [211]郭延平,陈屏昭,张良诚,等.不同供磷水平对温州蜜柑叶片光合作用的影响[J].植物营养与肥料学报,2002,8(2):186-191.
    [212]李绍长,胡昌浩,龚江,等.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响[J].作物学报,2004,30(4):365-370.
    [213]Sayed OH. Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynthetica, 2003,41:321-330.
    [214]Bolhar-Nordenkampf HR, Long SP, Baker NR, et al. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field:a review of current instrumentation[J]. Functional Ecology,1989,3:497-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700