用户名: 密码: 验证码:
再悬浮条件下河口沉积物内源磷迁移—转化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是联系陆地河流与海洋两大生态系统的过渡地带,河口区营养元素的生物地球化学行为对其向海洋的输出有显著的影响。磷是水体中浮游植物生长的限制性营养元素之一,內源磷的释放是导致水体富营养化的重要因素。由于水深较浅,河口区的沉积物往往在风浪和潮汐等外力引起的底部剪切力作用下经历着周期性的再悬浮。沉积物再悬浮过程往往伴随着内源磷向上覆水体的放释,是內源磷迁移-转化的重要途径。作为一条典型的城市纳污河流,李村河口沉积物污染比较严重。再悬浮条件下,沉积物中赋存的磷的迁移和转化对河口区乃至胶州湾的生物生产过程有重要的影响。本文通过现场观测、采样和分析,掌握了李村河口沉积物及其上覆水体中磷及其它主要生源要素的时空分布规律;通过模拟沉积物的再悬浮过程,研究了沉积物对侵蚀切应力的响应特征,探讨了再悬浮对上覆水体磷负荷和沉积物磷形态的影响机制;通过培养试验,研究了再悬浮条件下沉积物中有机磷的矿化机制,并在此基础上考察了沉积物性质和环境因素对矿化速率的影响;通过研究悬浮沉积物的光化学降解过程,探讨了再悬浮条件下內源有机磷的光降解特性,并进一步分析了不同因素对降解过程的影响。通过研究取得了以下新的认识和结论:
     1.监测研究区水-沉积物的理化性质和动态变化特征。
     (1)在不同季节中,上覆水体溶解性总磷(DTP)、溶解性无机磷(DIP)、NH+4-N和NO-2-N的含量均呈现出涨潮时降低,落潮时升高的趋势;而盐度、pH、溶解氧和氧化还原电位等指标的变化规律则与之相反,即涨潮高,落潮低。上覆水的物理化学性质受潮汐影响显著。
     (2)河口沉积物含水率、烧失量和营养盐含量在不同季节差别不大。沉积物含水率和无机磷含量随深度的增加总体上呈现逐渐减小的趋势,而NH+4-N和NO-3-N的含量随深度的变化范围较大,无明显的变化规律。间隙水中DTP和DIP的浓度均呈现出随深度的增大先增加后减小的分布规律。间隙水中的溶解性总氮和NO-x-N浓度在夏季随着深度的增加总体上是降低的,而其在春季的垂向分布规律不明显。此外,研究区内沉积物所受到的扰动切应力主要来源于潮汐流。
     2.模拟了李村河口潮间带沉积物的再悬浮过程,确定了沉积物发生再悬浮的临界切应力。不同季节中,细颗粒沉积物发生再悬浮的临界切应力介于0.117-0.156N/m2之间,而潮汐流产生的切应力可达到0.410N/m2,表明潮汐流的扰动可以使细颗粒沉积物发生再悬浮。研究区内具有再悬浮潜力的沉积物的厚度小于1mm,并且该厚度存在显著的季节性差异。此外,河口区的水动力扰动强度不足以使区内粗颗粒的砂质沉积物发生显著的再悬浮。
     3.分析了再悬浮对水体磷负荷和沉积物磷形态的影响机制。在冬季,沉积物再悬浮促进了上覆水体中DIP的去除;在春季、夏季和秋季,沉积物再悬浮有利于內源DIP向上覆水释放。一年四季中,沉积物再悬浮均可导致內源溶解性有机磷(DOP)的释放,其释放量随沉积物侵蚀深度的增大而增大。再悬浮过程中,內源DOP与內源DIP的释放量相当,但两者均比颗粒磷的释放量低一个数量级,表明该过程中内源磷主要以颗粒态释放。在冬季,再悬浮导致沉积物中弱吸附态磷含量升高,而在夏季则导致其降低。沉积物中弱吸附态磷含量的变化主要源于悬浮沉积物颗粒对DIP的吸附和解吸。除弱吸附态磷外,铁结合态磷、自生磷、碎屑磷和有机磷的含量与再悬浮之前相比均未出现明显差别,表明再悬浮并未对沉积物中磷形态的变化和相互转化产生显著地促进作用。
     4.探讨了水环境条件对沉积物中磷矿化的影响。水动力扰动能够促进內源磷的矿化。相对于间歇性扰动,持续扰动更有利于磷的矿化。随着沉积物有机质含量的增加,其矿化过程中的磷释放量增大;微生物活动和外加碳源均可显著促进沉积物中有机磷的矿化;盐度的降低对于矿化过程具有抑制作用。水动力扰动条件下,沉积物中有机磷的矿化速率随着时间的延长呈现出逐渐减小的趋势。
     5.研究了再悬浮条件下沉积物中有机磷的光化学降解特性及其影响因素。结果表明,沉积物中有机质的光化学降解作用可增加水体中DIP、DOP的含量。其中,DIP的生成可能直接来源于沉积物中的颗粒态有机磷的降解,也可能来源于光解作用所生成的DOP的进一步降解。光降解过程中,沉积物有机质中DIP、DOP的释放量随沉积物有机磷含量的增大而增大、随沉积物粒径的减小而增大。当悬浮沉积物的浓度较低时,磷的光解释放量随悬浮物浓度的增加而增加。然而,当悬浮物浓度达到一定值时,增大悬浮物浓度对光降解释磷的促进作用不再显著,无法生成更多的磷。沉积物中有机磷的光化学降解具有显著的光谱敏感性。光降解过程中,DIP的生成量主要来源于紫外波段的照射。紫外波段和可见光波段的照射对应的DOC和DOP生成量各占两者总生成量的50%左右。
Estuaries are transition zones that link up terrestrial rivers and marineecosystems. The biogeochemical behavior of the nutrient elements in estuary zoneshas significant impact on their output to the ocean. Phosphorus is one of the nutrientsthat limiting the growth of phytoplankton in the water, and the release of internalphosphorus is an important factor leading to eutrophication. Due to the low depth ofwater, the sediments in estuary zones periodically undergo resuspension under theaction of bottom shear stress caused by waves and tides. The resuspension of estuarysediments is usually accompanied by the release of internal phosphorus to theoverlying water, which is an important way of migration and transformation ofinternal phosphorus. The sediments in the estuary of Licun River, a typicalpollutant-receiving municipal river in Qingdao, are heavily polluted. The migrationand transportation of the internal phosphorus during sediment resuspension events hassignificant effect on the biological production process in the estuary zone and evenJiaozhou Bay. Based on field monitoring, sampling and analysis, the temporal andspatial distribution patterns of the phosphorus, as well as other main biogenicelements, in sediment and its overlying water are obtained. By simulating theresuspension process of the sediments, the respond characteristics of the sediments toerosion shear stress are studied and the influencing mechanism of resuspension on thephosphorus load of the overlying water and sediment P fractions is discussed. Themineralization mechanism of sediment organic phosphorus is investigated bylaboratory culture experiment and the subsequent study on the impact of sedimentproperties and environmental factors on mineralization rate is conducted. Thephotolysis characteristics of the sadiment organic phosphorus and the influence ofdifferent factors on the degradation process are explored by studying the photolysis process of suspended sediments. The main conclusions of the study are as follows:
     1. The physico-chemical properties of sediment and over overlying water in thestudy area are obtained through field observation and laboratory measurement. Duringall seasons, the concentration of dissolved total phosphorus (DTP), dissolvedinorganic phosphorus (DIP), NH+4-N and NO-2-N in the over overlying waterdecreases as the tide rises, and increases as the tide ebbs. While salinity, pH,dissolvedoxygen and redox potential of the over overlying water change in the opposite trend.The quality of the over overlying water is significantly affected by tide. The watercontent, loss on ignition and nutrient content of estuarine sediment do not exhibitsignificant seasonal variation. Sediment water content and inorganic phosphoruscontent decrease with depth,while the content of NH+4-N and NO-3-N in sedimentfluctuates strongly with depth. The concentration of DTP and DIP in porewaterincreases firstly and then decreases with depth. In summer, the concentrations of totaldissolved nitrogen and NO-x-N in porewater decrease with depth, while they fluctuatestrongly with depth in spring.
     2. The resuspension process of intertidal sediments is simulated and the shearstress of tide scouring on the sediment surface is calculated based on field monitoringdata. The critical shear stress for the resuspension of fine sediments ranges between0.117N/m2and0.156N/m2in different seasons. Yet the shear stress induce by tidalcurrent could reach0.4N/m2, indicating that fine sediments could be eroded under thedisturbance of tidal current. The thickness of the sediments with enough resuspensionpotential in the study area is less than1mm and fluctuated wildly with the seasons. Inaddition, the intensity of the hydrodynamic disturbance in the estuary area wasinsufficient for the resuspension of coarse sediments.
     3. The influencing mechanism of resuspension on phosphorus load of water bodyand sediment phosphorus speciation is analyzed. In winter, sediment resuspensionfacilitates scavenging of DIP from overlying water, while it benefits the release ofinternal DIP to overlying water in other seasons. During all seasons, resuspension ofsediment leads to release of internal dissolved organic phosphorus (DOP). Theamounts of DIP and DOP released via resuspension are comparable. However, they are all an order of magnitude lower than the release of particulate phosphorus. Beforeand after resuspension, no significant differences in the content of Fe-bound P,authigenic P, detrital P and organic P are observed, indicating resuspension do notpromote the transformation of sediment phosphorus speciations.
     4. The effects of environmental conditions on the mineralization process ofsediment organic phosphorus are investigated. Hydrodynamic disturbances canpromote the mineralization of intrenal phosphorus. Relative to intermittentdisturbance, continuous disturbance is more conducive to phosphorusmineralization.The release of phosphorus from sediment increases with the increaseof sediment organic matter content during the mineralization process.Bothmicrobialactivities and external carbon source can significantly promote the mineralization ofsediment organic phosphorus. Reduced salinity inhibited the mineralization process.Under hydrodynamic disturbances, the mineralization rate of sediment organicphosphorus decreases with time.
     5. The photolysis characteristics of the sediment organic phosphorus areinvestigated along with its influencing factors. The results show that the photolysisprocess of the organic matter in the sediments can increase the contents of DIP andDOP in the water. The increment of DIP might derive directly from the degradation ofthe particulate organic phosphorus in the sediment, or originate from the furtherdegradation of DOP, which is one of the photolysis products. The release amount ofDIP and DOP from sediment increases with the increase of sediment organicphosphorus content and the decrease of the sediment grain size. The photolysisrelease amount of phosphorus increases with the increase of suspended sedimentconcentration when its concentration was relatively low. However, the promotioneffect of increasing suspended sediment concentration on the photolysis release ofphosphorus is no more when the suspended sediments come to a certain concentration.The photolysis of the sediment organic phosphorus is highly spectrum-sensitive.During the process of photolysis, the generation of DIP is mainly due to theirradiation of ultraviolet. Ultraviolet and visible light both account for about50%ofthe total generation amount of DOC and DOP.
引文
[1] Withers P J A, Jarvie H P. Delivery and cycling of phosphorus in rivers: A review. Scienceof The Total Environment,2008,400(1-3):379~395
    [2] Li D, Huang Y, Fan C, et al. Contributions of phosphorus on sedimentary phosphorusbioavailability under sediment resuspension conditions. Chemical EngineeringJournal,2011,168:1049~1054
    [3] Lijklema L, Koelmans AA, Portielje R. Water quality impacts of sediment pollution and therole of early diagenesis. Water Science and Technology,1993.28(8-9):1~12
    [4] Ribeiro D C, Martins G, Nogueira R, et al. Phosphorus fractionation in volcanic lakesediments (Azores-Portugal).Chemosphere2008,70(7):1256~1263
    [5]黎颖治,夏北成.湖泊沉积物内部因素对沉积物-水界面磷交换的影响.土壤通报,2006,37(5):1017~1021
    [6] Schallenberg M, Burns C W. Effects of sediment resuspension on phytoplankton production:teasing apart the infuences of light, nutrients and algal entrainment. Freshwater Biology,2004,49(2):143~159
    [7]牛青山,亓靓.影响胶州湾海域海水水质的主要污染源分析-李村河及其主要支流流域水质现状评价.海岸工程,2006,25(3):50~59
    [8]刘福寿,王揆洋.胶州湾沿岸河流及其地质作用.海洋科学,1992,1:25~28
    [9]丁曰堂.李村河污水处理厂生物除磷脱氮工艺的运行.中国给水排水,2000,16(4):49~51
    [10]姜鲁青.感潮河段沉积物-水界面营养盐交换行为研究—以青岛李村河为例:[博士学位论文].青岛:中国海洋大学,2011
    [11] Nilsson P, Jansson M. Hydrodynamic control of nitrogen and phosphorus turnover in aneutrophicated estuary in the Baltic. Water research,2002,36(18):4616~4626
    [12] Green M O. Very small waves and associated sediment resuspension on an estuarineintertidal flat. Estuarine, Coastal and Shelf Science,2011,93(4):449~459
    [13] You B, Zhong J, Fan C, et al. Effects of hydrodynamics processes on phosphorus fluxesfrom sediment in large, shallow Taihu Lake. Journal of Environmental Sciences,2007,19(9):1055~1060
    [14] Kularatne S, Pattiaratchi C. Turbulent kinetic energy and sediment resuspension due towave groups. Continental Shelf Research,2008,28(6):726~736
    [15] Yuan Y, Wei H, Zhao L, et al. Observations of sediment resuspension and settling off themouth of Jiaozhou Bay, Yellow Sea. Continental Shelf Research,2008,28(19):2630~2643
    [16] Jago C F, Jones S E, Sykes P, et al. Temporal variation of suspended particulate matter andturbulence in a high energy, tide-stirred, coastal sea: Relative contributions of resuspensionand disaggregation. Continental Shelf Research,2006,26(17):2019~2028
    [17] Booth J G, Miller R L, McKee B A, et al. Wind-induced bottom sediment resuspension in amicrotidal coastal environment. Continental Shelf Research,2000,20(7):785~806
    [18] Maa J P Y, Sanford L, Halka J P. Sediment resuspension characteristics in Baltimore harbor,Maryland. Marine Geology,1998,146(1):137~145
    [19] Giffin D, Corbett D R. Evaluation of sediment dynamics in coastal systems via short-livedradioisotopes. Journal of Marine Systems,2003,42(3):83~96
    [20] Paphitis D, Collins M B. Sediment resuspension events within the (microtidal) coastalwaters of Thermaikos Gulf, northern Greece. Continental Shelf Research,2005,25(19):2350~2365
    [21] Dyer K R. Sedimentation processes in the Bristol Channel/Severn estuary. Marine PollutionBulletin,1984,15(2)
    [22] Duquesne S, Newton L C, Giusti L, et al. Evidence for declining levels of heavy-metals inthe Severn Estuary and Bristol Channel, UK and their spatial distribution in sediments.Environmental Pollution,2006,143(2):187~196
    [23] Martino M, Turner A, Nimmo M, et al. Resuspension, reactivity and recycling of tracemetals in the Mersey Estuary, UK. Marine Chemistry,2002,77(2):171~186
    [24] Jago C F, Jones S E, Latter R J, et al. Resuspension of benthic fluff by tidal currents in deepstratified waters, northern North Sea. Journal of Sea Research,2002,48(4):259~269
    [25] Pusceddu A, Grémare A, Escoubeyrou K, et al. Impact of natural (storm) and anthropogenic(trawling) sediment resuspension on particulate organic matter in coastal environments.Continental Shelf Research,2005,25(19–20):2506~2520
    [26] Chang G C, Dickey T D, Williams A J. Sediment resuspension over a continental shelfduring Hurricanes Edouard and Hortense. Journal of Geophysical Research: Oceans(1978–2012),2001,106(C5):9517~9531
    [27]杨群慧,周怀阳,季福武,等.海底生物扰动作用及其对沉积过程和记录的影响.地球科学进展,2008,23(9):932~941
    [28]张志南.水层-底栖耦合生态动力学研究的某些进展.青岛海洋大学学报,2000,30(1):115~122
    [29]商景阁,张路,张波,等.中国长足摇蚊(Tanypus chinensis)幼虫底栖扰动对沉积物溶解氧特征及反硝化的影响.湖泊科学,2010,22(5):708~713
    [30]韩洁,张志南,于子山.菲律宾蛤仔(Ruditapes philippinarum)对潮间带水层-沉积物界面颗粒通量影响的研究.青岛海洋大学学报,2001,31(5):723~729
    [31] Sun G, Fang Y, Wang A, et al. Bioturbation effects of benthic fish on the phosphorusdynamic in overlying water of paddy field. Agricultural Science&Technology-Hunan,2010,11(5):87~89,177
    [32]覃雪波,孙红文,吴济舟,等.大型底栖动物对河口沉积物的扰动作用.应用生态学报,2010,21(2):458~463
    [33]王丕波,宋金明,郭占勇,等.海洋表层沉积物再悬浮的诱因及其对生源要素循环的影响,海洋科学,2005,29(10):77~80
    [34]张志南,周宇,韩洁,等.应用生物扰动实验系统(Annular Flux System)研究双壳类生物沉降作用.青岛海洋大学学报,2000,30(2):270~276
    [35] Widdows J, Brinsley M D, Bowley N, et al. A Benthic Annular Flume for in situMeasurement of Suspension Feeding/Biodeposition Rates and Erosion Potential ofIntertidal Cohesive Sediments. Estuarine, Coastal and Shelf Science,1998,46(1):27~38
    [36] Yahel G, Yahel R, Katz T, et al. Fish activity: a major mechanism for sediment resuspensionand organic matter remineralization in coastal marine sediments. Marine Ecology ProgressSeries,2008,37(2):195~209
    [37] Widdows J, Blauw A, Heip CHR, et al. Role of physical and biological processes insediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. MarineEcology Progress Series,2004,27(4):41~56
    [38]俞慎,历红波.沉积物再悬浮-重金属释放机制研究进展.生态环境学报,2010,19(7):1724~1731
    [39] Schoellhamer D H. Anthropogenic sediment resuspension mechanisms in a shallowmicrotidal estuary. Estuarine, Coastal and Shelf Science,1996,43(5):533~548
    [40] Rapaglia J, Zaggia L, Ricklefs K, et al. Characteristics of ships' depression waves andassociated sediment resuspension in Venice Lagoon, Italy. Journal of Marine Systems,2011,85(1):45~56
    [41] Palanques A, Guillén J, Puig P. Impact of bottom trawling on water turbidity and muddysediment of an unfished continental shelf. Limnology and Oceanography,2001,46(5):1100~1110
    [42] Churchill J H. The effect of commercial trawling on sediment resuspension and transportover the Middle Atlantic Bight continental shelf. Continental Shelf Research,1989,9(9):841~865
    [43] Ferré B, Durrieu De Madron X, Estournel C, et al. Impact of natural (waves and currents)and anthropogenic (trawl) resuspension on the export of particulate matter to the openocean: Application to the Gulf of Lion (NW Mediterranean). Continental Shelf Research,2008,28(15):2071~2091
    [44]李一平,逄勇,刘兴平.太湖湖流对波浪的影响机制研究.水利学报,2007,增刊:303~308
    [45] Li M Z, Amos C L. Field observations of bedforms and sediment transport thresholds offine sand under combined waves and currents. Marine Geology,1999,158(1):147~160
    [46] Ciutat A, Widdows J, Readman J W. Infuence of cockle Cerastoderma edule bioturbationand tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons.Marine Ecology Progress Series,2006,328:51~64
    [47] Davis W R. The role of bioturbation in sediment resuspension and its interaction withphysical shearing. Journal of Experimental Marine Biology and Ecology,1993,171(2):187~200
    [48] Roberts D A. Causes and ecological effects of resuspended contaminated sediments (RCS)in marine environments. Environment international,2012,40:230~243
    [49] Tramontano J M, Bohlen W F. The nutrient and trace metal geochemistry of a dredgeplume. Estuarine, Coastal and Shelf Science,1984,18(4):385~401
    [50] Guo T, DeLaune R D, Patrick W H. The influence of sediment redox chemistry onchemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment.Environment International,1997,23(3):305~316
    [51] Levy D B, Barbarick K A, Siemer E G, et al. Distribution and partitioning of trace metals incontaminated soils near Leadville, Colorado. Journal of Environmental Quality,1992,21(2):185~195
    [52] Miao S, DeLaune R D, Jugsujinda A. Influence of sediment redox conditions onrelease/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plainfreshwater lake. Science of the Total Environment,2006,371(1):334~343
    [53] Peng J, Wang B, Song Y, et al. Adsorption and release of phosphorus in the surfacesediment of a wastewater stabilization pond. Ecological Engineering,2007,31(2):92~97
    [54]张路,朱广伟,罗潋葱,等.风浪作用下太湖梅梁湾水体磷负荷变化及与水体氧化还原特征关系.中国科学(D辑),2005,35(增刊Ⅱ):138~144
    [55] Caetano M, Falc o M, Vale C, et al. Tidal flushing of ammonium, iron and manganesefrom inter-tidal sediment pore waters. Marine Chemistry,1997,58(1):203~211
    [56] Simpson S L, Apte S C, Batley G E. Effect of short-term resuspension events on tracemetal speciation in polluted anoxic sediments. Environmental Science&Technology,1998,32(5):620~625
    [57] Caetano M, Madureira M J, Vale C. Metal remobilisation during resuspension of anoxiccontaminated sediment: short-term laboratory study. Water, Air, and Soil Pollution,2003,143(1-4):23~40
    [58] House W A, Jickells T D, Edwards A C, et al. Reactions of phosphorus with sediments infresh and marine waters. Soil Use and Management,1998,14(s4):139~146
    [59]李楠,单保庆,张洪,张景来.沉积物中有机磷在pH和温度影响下的矿化机制.环境科学,2011,32(4):1008~1014
    [60] St hlberg C, Bastviken D, Svensson B H, et al. Mineralisation of organic matter in coastalsediments at different frequency and duration of resuspension. Estuarine, Coastal and ShelfScience,2006,70(1):317~325
    [61]范成新,张路,秦伯强.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D辑),2003,33(8):760~768
    [62] Southwell M W, Kieber R J, Mead R N, et al. Effects of sunlight on the production ofdissolved organic and inorganic nutrients from resuspended sediments. Biogeochemistry,2010,98(1-3):115~126
    [63] Southwell M W, Mead R N, Luquire C M, et al. Influence of organic matter source anddiagenetic state on photochemical release of dissolved organic matter and nutrients fromresuspendable estuarine sediments. Marine Chemistry,2011,126(1):114~119
    [64] Riggsbee J A, Orr C H, Leech D M, et al. Suspended sediments in river ecosystems:photochemical sources of dissolved organic carbon, dissolved organic nitrogen, andadsorptive removal of dissolved iron. Journal of Geophysical Research: Biogeosciences(2005–2012),2008,113(G3)
    [65] Peterson E L. Benthic shear stress and sediment condition. Aquacultural Engineering,1999,21(2):85~111
    [66]申霞,洪大林,丁艳青,等.太湖疏浚前后波浪扰动下的底泥再悬浮特征.水科学进展,2011,22(4):580~585
    [67]朱广伟,高光,秦伯强,等.浅水湖泊沉积物中磷的地球化学特征.水科学进展,2003,14(6):714~719
    [68] Li M Z, Amos C L. SEDTRANS96: the upgraded and better calibrated sediment-transportmodel for continental shelves[J]. Computers&Geosciences,2001,27(6):619~645
    [69]张彬,李涛,刘会娟,等.模拟扰动条件下太湖水体悬浮物的结构特性.环境科学,2007,28(1):70~74
    [70] Moreau A L, Locat J, Hill P, et al. Resuspension potential of surficial sediments inSaguenay Fjord (Québec, Canada). Marine Geology,2006,225(1-4):85~101
    [71]高永霞,孙小静,张战平,等.风浪扰动引起湖泊磷形态变化的模拟试验研究.水科学进展,2007,18(5):668~673
    [72] Kieber R J, Whitehead R F, Skrabal S A. Photochemical production of dissolved organiccarbon from resuspended sediments. Limnology and Oceanography,2006,51(5):2187~2195
    [73]王鹏,王胜艳,郝少盼,等.模拟扰动条件下太湖沉积物的再悬浮特征.水科学进展,2010,21(3):399~404
    [74]朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征.水科学进展,2004,15(6):775~780
    [75]许志波,卢信,胡维平,等.风浪作用下入湖河口内源释放特征.水科学进展,2011,22(4):574~579
    [76]丁艳青,朱广伟,秦伯强,等.波浪扰动对太湖底泥磷释放影响模拟.水科学进展,2011,22(2):273~278
    [77]王忖,王超.含挺水植物和沉水植物水流紊动特性.水科学进展,2010,21(6):816~822
    [78] Horppila J, Nurminen L. Effects of submerged macrophytes on sediment resuspension andinternal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research,2003,37(18):4468~4474
    [79] Horppila J, Nurminen L. The effect of an emergent macrophyte (Typha angustifolia) onsediment resuspension in a shallow north temperate lake. Freshwater Biology,2001,46(11):1447~1455
    [80]黎颖治,夏北成.影响湖泊沉积物-水界面磷交换的重要环境因子分析.土壤通报,2007,38(1):162~166
    [81]尤本胜,王同成,范成新,等.太湖草型湖区沉积物再悬浮对水体营养盐的影响.环境科学,2008,29(1):26~31
    [82] Zhang L, Gu X, Fan C, et al. Impact of different benthic animals on phosphorus dynamicsacross the sediment-water interface. Journal of Environmental Sciences,2010,22(11):1674~1682
    [83] Davenport E S, Shull D H, Devol A H. Roles of sorption and tube-dwelling benthos in thecycling of phosphorus in Bering Sea sediments. Deep Sea Research Part II: Topical Studiesin Oceanography,2012,65:163~172
    [84] Caraco N, Cole J, Likens G E. A comparison of phosphorus immobilization in sediments offreshwater and coastal marine systems. Biogeochemistry,1990,9(3):277~290
    [85]牛青山,亓靓.青岛李村河及其主要支流流域水质现状评价.山东省环境科学学会2005年优秀论文集,2005
    [86]董慧.河口区沉积物-水界面营养盐交换通量研究:[硕士学位论文].青岛:中国海洋大学,2012
    [87]孙义峰,曲伟.青岛市李村河流域环境污染综合治理现状分析及对策.科技传播,2011,11:92~93
    [88]国家海洋局第一海洋研究所港湾室.胶州湾自然环境.北京:海洋出版社,1984
    [89]宋金明,马红波,李学刚,袁华茂,李宁.渤海南部海域沉积物中吸附态无机氮的地球化学特征.海洋与湖沼,2004,35(2):315~322
    [90] Aspila K I, Agemian H, Chau A S Y. A semi-automatic method for the determination ofinorganic, organic and total phosphate in sediments. Analyst,1976,101:187~197
    [91] Manheim F T, Linda D, Belastock R A.26. Porosity, density, grain density, and relatedphysical properties of sediments from the Red Sea drill cores.1974
    [92]张健.河口区悬浮物-水界面营养盐交换行为与动态变化特征:[硕士学位论文].青岛:中国海洋大学,2012
    [93] Tolhurst T J, Riethmüller R, Paterson D M. In situ versus laboratory analysis of sedimentstability from intertidal mudflats. Continental Shelf Research,2000,20(10–11):1317~1334
    [94] Ruttenberg K C. Development of a sequential extraction method for different forms ofphosphorus in marine sediments. Limnology and Oceanography,1992,37(7):1460~1482
    [95]曹文卿.东、黄海沉积物中磷的形态研究:[硕士学位论文].青岛:中国海洋大学,2006
    [96] RUTTENBERG K C. Diagenesis and burial of phosphorus in marine sediments:Implications for the marine phosphorus budget. Ph.D. thesis, Yale University, USA,1990
    [97]于雯泉.胶州湾李村河口区沉积物有机碳、酸可挥发硫化物及重金属的环境响应:[博士学位论文].青岛:中国科学院海洋研究所,2006
    [98] Kalnejais L H, Martin W R, Signell R P, et al. Role of Sediment Resuspension in theRemobilization of Particulate-Phase Metals from Coastal Sediments. EnvironmentalScience&Technology,2007,41(7):2282~2288
    [99] Ravens T. Sediment Resuspension in Boston Harbor, Ph.D. Thesis, Massachusetts Instituteof Technology,1997
    [100] Soulsby, R. Whitehouse R. Threshold of sediment motion in coastal environments.InPacific Coasts and Ports’97. Proceedings, Vol.1. University of Canterbury, New Zealand,1997
    [101]刘鹏霞.三峡水库蓄水至135米后库区和长江干流各形态磷的分布特征研究:[硕士学位论文].青岛:中国海洋大学,2007
    [102] Kalnejais L H, Martin W R, Bothner M H. The release of dissolved nutrients and metalsfrom coastal sediments due to resuspension. Marine Chemistry,2010,121(1-4):224~235
    [103] Whitehouse R. Dynamics of estuarine muds: A manual for practical applications.London:Institution of Civil Engineers Publication,2000
    [104] Khare N, Hesterberg D, Beauchemin S, et al. Xanes determination of adsorbed phosphatedistributionbetween ferrihydrite and boehmite in mixtures. Soil Science Society of AmericaJournal,2004,68:460~469
    [105] Chitraker R, Tezuka S, Sonoda A, et al. Phosphate adsorption on synthetic goethite andakaganeite. Journal of Colloid and Interface Science,2006,298:602~608
    [106]刘飞.胶州湾李村河口沉积物中重金属的赋存及其环境意义:[硕士学位论文].青岛:中国科学院海洋研究所,2005
    [107] Colman A S, Holland H D. The global diagenetic flux of phosphorus from marinesediments to the oceans: redox sensitivity and the control of atmospheric oxygen levels. InMarine Authigenesis: From Global to Microbial, SEPM Special Publication No.66,53~75
    [108] Slomp C P, van der Gaast S J, van Raaphorst W. Phosphorus binding by poorly crystallineiron oxides in north sea sediments. Marine Chemistry,1996,52(1):55~73
    [109] Slomp C P, Epping E H G, Helder W, et al. A key role for iron-bound phosphorus inauthigenic apatite formation in North Atlantic continental platform sediments. Journal ofMarine Research,1996,54:1179~1205
    [110] Aller R C. Mobile deltaic and continental shelf muds as fluidized bed reactors. MarineChemistry,1998,61:143~155
    [111] Aller R C. Conceptual models of early diagenetic processes: the muddy seafloor as anunsteady, batch reactor. Journal of Marine Research,2004,62:815~835
    [112] Ruttenberg K C, Sulak D J. Sorption and desorption of dissolved organic phosphorus ontoiron (oxyhydr) oxides in seawater. Geochimica et Cosmochimica Acta,2011,75(15):4095~4112
    [113] McGlathery K J, Marino R, Howarth R W. Variable rates of phosphate uptake by shallowmarine carbonate sediments: mechanisms and ecological significance. Biogeochemistry,1994,25:127~146
    [114] Lee R Y, Porubsky W P, Feller I C, et al. Porewater biogeochemistry and soil metabolismin dwarf red mangrove habitats (Twin Cays, Belize).Biogeochemistry,2008,87:181~198
    [115] Monbet P, McKelvie I D, Worsfold P J. Dissolved organic phosphorus speciation in thewaters of the Tamar estuary (SW England). Geochimica et Cosmochimica Acta,2009,73:1027~1038
    [116] Briggs R A, Ruttenberg K C, Glazer B T, et al. Relative bioavailability of dissolved organicphosphorus (DOP) versus phosphate (PO3-4) in Fe-rich coastal sediments. Abstract forASLO meeting, Nice, France, Jan.2009, special session O53: Sediment biogeochemistry:advances in measurement and modeling.
    [117] Nausch M, Nausch G. Bioavailability of dissolved organic phosphorus in the Baltic Sea.Marine Ecology Progress Series,2006,321:9~17
    [118] Cooper J E, Early J, Holding A J. Mineralization of dissolved organic phosphorus from ashallow eutrophic lake. Hydrobiologia,1991,209(2):89~94
    [119]李大鹏,黄勇,李伟光.再悬浮条件下底泥中磷赋存形态的转化研究.环境科学,2008,29(5):1289~1294
    [120] Morgan B, Rate A W, Burton E D. Water chemistry and nutrient release during theresuspension of FeS-rich sediments in a eutrophic estuarine system. Science of the TotalEnvironment,2012,43(2):47~56
    [121] Andrieux-Loyer F, Aminot A. A two-year survey of phosphorus speciation in the sedimentsof the Bay of Seine (France). Continental Shelf Research,1997,17,1229~1245
    [122] Rozan T F, Taillefert M, Trouwborst R E, et al. Iron-sulfur-phosphorus cycling in thesediments of a shallow coastal bay: implication for sediment nutrient release and benthicmacroalgal blooms. Limnology and Oceanography,2002,47:1346~1354
    [123] álvarez-Rogel J, Jiménez-Cárceles F J, Egea-Nicolás C. Phosphorus retention in a coastalsalt marsh in SE Spain. Science of the Total Environment,2007,378:71~74
    [124] Jensen H S, Thamdrup B. Iron-bound phosphorus in marine sediments as measured bybicarbonate-dithionite extraction. Hydrobiologia,1993,253:47~59
    [125] Coelho J P, Flindt M R, Jensen H S, et al. Phosphorus speciation and availability inintertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes.Estuarine, Coastal and Shelf Science,2004,61:583~590
    [126] Bridgham S D, Updegraff K, Pastor J. Carbon, nitrogen, and phosphorus mineralization innorthern wetlands. Ecology,1998,79(5):1545~1561
    [127] Orem W H, Hatcher P G, Spiker E C, et al. Dissolved organic matter in anoxic pore watersfrom Mangrove Lake, Bermuda. Geochimica et Cosmochimica Acta,1986,50:609~618
    [128] Jardine P M, Weber N L, McCarthy J F. Mechanisms of dissolved organic carbonadsorption on soil. Soil Science Society of America Journal,1989,53:1378~85
    [129] Koelmans A A, Prevo L. Production of dissolved organic carbon in aquatic sedimentsuspensions. Water Research,2003,37(9):2217~2222
    [130] Maher W A, DeVries M. The release of phosphorus from oxygenated estuarine sediments.Chemical Geology,1994,112(1–2):91~104
    [131] Forsgren G, Jansson M, Nilsson P. Aggregation and sedimentation of iron, phosphorus andorganic carbon in experimental mixtures offreshwater and estuarine water. EstuarineCoastal and Shelf Science,1996,43:259~268
    [132] Zhang J Z, Huang X L. Effect of Temperature and Salinity on Phosphate Sorption onMarine Sediments. Environmental Science&Technology,2011,45(16):6831~6837
    [133] Simon N S. Nitrogen cycling between sediment and the shallow-water column in thetransition zone of the Potomac River and Estuary. II. The role of wind-driven resuspensionand adsorbed ammonium. Estuarine Coastal and Shelf Science,1989,28:531~547
    [134] Ogilvie B G, Mitchell S F. Does sediment resuspension have persistent effects onphytoplankton? Experimental studies in three shallow lakes. Freshwater Biology,1998,40:51~63
    [135] Morin J, Morse J W. Ammonium release from resuspended sediments in the Laguna Madreestuary. Marine Chemistry,1999,65:97~110
    [136] Jackson M L R, Barak P. Soil chemical analysis-advanced course. Madison: Paralell Press,2005
    [137] V h talo A V, Zepp R G. Photochemical mineralization of dissolved organic nitrogen toammonium in the Baltic Sea. Environmental Science&Technology,2005,39(18):6985~6992
    [138] Mayer L M, Schick L L, Skorko K, et al. Photodissolution of particulate organic matterfrom sediments. Limnology and Oceanography,2006,51(2):1064~1071
    [139] Supit I, Van Kappel R R. A simple method to estimate global radiation.Solar Energy,1998,63:147~160
    [140] Clifton J, McDonald P, Plater A, et al. An investigation into the efficiency of particle sizeseparation using Stokes' Law. Earth Surface Processes and Landforms,1999,24:725~730
    [141] Mulle R N, Tisue G T. Preparative-Scale Size Fractionation of Soils and Sediments and AnApplication to Studies of Plutonium Geochemistry. Soil Science,1977,124(4):191~198
    [142] Follmer L R, Beavers A H. An elutriator method for particle-size analysis with quantitativesilt fractionation. Journal of Sedimentary Petrology,1973,43(2):544~549
    [143]何会军.河流与河口颗粒物中磷的生物地球化学特征研究:[博士学位论文].青岛:中国海洋大学,2009
    [144] Coppola L, Gustafsson, Andersson P, et al. Fractionation of surface sediment fines basedon a coupled sieve–SPLITT (split flow thin cell) method. Water Research,2005,39(10):1935~1945
    [145] Keil R G, Mayer L M, Quay P D, et al. Loss of organic matter from riverine particles indeltas. Geochimica et Cosmochimica Acta,1997,61(7):1507~1511

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700