用户名: 密码: 验证码:
HOXA10基因及MPA在卵巢上皮性癌发生中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢上皮性癌是最常见的女性生殖系统肿瘤之一,死亡率居妇科恶性肿瘤之首,亦是导致女性死亡的第五位病因。卵巢癌的病理类型复杂,且具有易于转移和广泛播散的生物学行为,预后极差。卵巢上皮性癌包括卵巢浆液性癌、子宫内膜样癌及粘液性癌三种主要亚型,其发生机制至今尚不清楚,已越来越受到研究人员的重视。同源盒基因(homeobox gene, HOX)是指一类含有一段180 bp高度保守同源盒序列的基因。哺乳类动物的HOX基因分两大类:一类成簇地排列在不同染色体上,按照胚胎发育期的前-后轴方式(A-P)表达,称Ⅰ类HOX基因;另一类散在分布于不同染色体上,称为非Ⅰ类HOX基因。近年来许多研究表明,同源盒基因的异常表达与白血病、乳腺癌、结肠癌、前列腺癌、肾癌(包括Wilms瘤)等癌症的发生密切相关。我的既往研究结果表明(Cheng W, et al. Nature Medicine, 2005): HOXA9、HOXA10、HOXA11的异常表达与卵巢癌的三种主要亚型(卵巢浆液性癌、子宫内膜样癌及粘液性癌)的发生相关。其中HOXA10特异性地与卵巢子宫内膜样癌的发生相关。
     DNA甲基化改变在各种肿瘤包括卵巢癌的发生过程中起重要作用。DNA甲基化所致基因失表达及去甲基化所致的基因表达增强是表观遗传学上研究最深入的机制,现已确切证明基因启动子异常甲基化与肿瘤的发生关系密切,基因启动子区CpG岛甲基化可影响转录因子与其识别序列结合,直接抑制基因表达。Yoshida等指出HOXA10在子宫内膜癌中表达下调与肿瘤恶性程度紧密相关,并与HOXA10启动子区甲基化有关。因此我们设想: HOXA10在卵巢癌中的高度表达,可能与HOXA10基因的异常甲基化有关。本研究观察了HOXA10基因启动子区低甲基化改变与卵巢上皮性癌发生的相关性,为临床预防和诊断卵巢癌提供一个新思路。
     同时,近年来有文献报道,孕激素可抑制卵巢癌细胞增殖,促进细胞凋亡。孕激素类药物之一醋酸甲羟孕酮(Medroxyprogesterone Acetate, MPA),可作为绝经期妇女激素替代疗法中孕激素的组分,也可用作避孕药物,或用来治疗子宫内膜异位症、痛经和闭经。PI3K/Akt通路作为细胞生存信号通路重要的调控位点,在细胞生存和凋亡调控过程中发挥重要作用。孕激素很可能通过磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)信号通路发挥其诱导凋亡的作用。卵巢癌发病机制可能与PI3K/Akt表达或功能异常存在关联,大部分卵巢癌中都出现Akt过表达现象。PI3K/Akt信号转导通路是Bcl-2介导的细胞凋亡通路的上游调控程序之一, PI3K/Akt通路活化状态直接影响细胞的增殖和凋亡。
     大样本的流行病学研究和长期的临床实践均表明,孕激素可以拮抗雌激素的作用,保护卵巢,预防卵巢癌的发生。但是否可将孕激素作为辅助药物运用于卵巢癌的临床治疗目前还没有达成共识。本项研究尝试探索醋酸甲羟孕酮体外诱导卵巢癌细胞凋亡可能存在的机制,为孕激素治疗卵巢癌提供新的理论依据。
     第一部分HOXA10基因启动子区低甲基化改变与卵巢上皮性癌发生的相关性及其作用机制
     目的:
     1.通过观察HOXA10基因在卵巢上皮性癌中的高表达,探讨其在卵巢上皮性癌发生中的作用。
     2.进一步探索HOXA10基因启动子区低甲基化改变导致的HOXA10基因高表达在卵巢上皮性癌发生中的作用机制,并分析HOXA10基因低甲基化与卵巢上皮性癌临床病理因素的关系。
     3.研究甲基化转移酶抑制剂5-杂氮-2’脱氧胞苷(5-Aza-dC)对卵巢上皮性癌细胞株SKOV-3和HEY的作用,为5-Aza-dC治疗卵巢上皮性癌提供实验依据。
     方法:
     1.抽提卵巢上皮性癌和正常卵巢组织中的RNA及蛋白。用RT-PCR法检测HOXA10基因mRNA表达量变化;用免疫印迹法(Western Blot)检测各组织中HOXA10蛋白表达水平。
     2.抽提卵巢上皮性癌和正常卵巢组织中的DNA。采用甲基化特异性聚合酶链反应(Methylation specific polyerase chain reaction, MSP)分析HOXA10启动子区低甲基化状态。
     3.卵巢上皮性癌细胞株:SKOV-3和HEY分别接种于含10%胎牛血清的RPMI-1640培养液中常规培养24h后,换无血清培养基继续培养24h,分别加入0.5、5、50μmol/L 5-杂氮-2’脱氧胞苷(5-Aza-dC),药物作用24h、48h、72h后,四甲基偶氮唑盐(MTT)比色法检测细胞生长增殖。同时分别提取细胞株RNA,用Real-Time PCR法检测HOXA10基因mRNA表达量变化。
     结果:
     1.RT-PCR实验结果显示: HOXA10基因mRNA在几乎所有的卵巢上皮性癌中阳性表达,但在正常卵巢组织中表达减少甚至缺失; WB实验结果显示: HOXA10蛋白在卵巢上皮性癌中高表达,而在正常卵巢组织中表达降低。
     2.用MSP法检测29例卵巢上皮性癌组织样本中,有17例组织中HOXA10启动子区发生低甲基化;而在16例正常卵巢组织中,仅4例组织中HOXA10启动子区发生低甲基化,差异有统计学意义(p<0.05)。HOXA10基因甲基化与卵巢上皮性癌的病理类型、临床分级无关,但与临床期别有关。结合第一部分实验,我们分析得出以下结果: (1)在正常卵巢组织中HOXA10基因启动子区处于正常的甲基化状态,而在大部分卵巢上皮性癌组织中HOXA10基因启动子区发生低甲基化。(2)HOXA10基因在卵巢上皮性癌中阳性表达,而在正常卵巢组织中表达降低甚至缺失。(3)对比HOXA10启动子区发生甲基化和低甲基化的卵巢组织(包括正常卵巢组织和卵巢上皮性癌组织)时发现: HOXA10基因mRNA及蛋白在发生甲基化的组织中表达降低,而在发生低甲基化的组织中表达升高。
     3.在卵巢上皮性癌细胞株SKOV-3中, HOXA10基因启动子区表现为甲基化状态,运用去甲基化试剂5-杂氮-2’脱氧胞苷(5-Aza-dC)处理细胞株后,卵巢癌细胞株SKOV-3中HOXA10基因的表达升高; MTT法检测发现经5-Aza-dC处理后SKOV-3细胞增殖速度增加。
     结论:
     1.特异性甲基转移酶DNMTs抑制剂—5-Aza-dC通过改变卵巢上皮性癌细胞中HOXA10启动子区甲基化状态,从而影响细胞的增殖状态。
     2.在卵巢上皮性癌中, HOXA10基因启动子区低甲基化改变导致了HOXA10基因在转录和翻译水平的表达升高,从而参与了卵巢上皮性癌的发生。
     第二部分MPA体外诱导卵巢上皮性癌SKOV-3细胞株凋亡的研究
     目的:
     1.观察MPA在体外对卵巢上皮性癌细胞株SKOV-3增殖的抑制作用。
     2.探索MPA诱导SKOV-3细胞凋亡的机制。
     3.进一步探究孕激素细胞膜受体在诱导卵巢上皮性癌细胞凋亡中的作用。
     方法:
     1.卵巢上皮性癌SKOV-3细胞株接种于盛有含10%胎牛血清的RPMI-1640培养液的96孔板中常规培养至贴壁后,换无血清培养基继续培养24h,分别加入0.1、1、10、100μmol/L的MPA,药物作用12h、24h、48h后,四甲基偶氮唑盐(MTT)比色法检测细胞生长增殖。
     2.卵巢上皮性癌SKOV-3细胞株接种于盛有含10%胎牛血清的RPMI-1640培养液的96孔板中常规培养至贴壁后,换无血清培养基继续培养24h,分别加入1、5、12.5、25μmol/L的LY294002(PI3K抑制剂)孵育1h后,再分别加入0.1、
     1、10、100μmol/L的MPA,药物作用12h、24h、48h后,四甲基偶氮唑盐(MTT)色法检测细胞生长增殖。
     3.收集不同浓度MPA作用24h后的SKOV-3细胞,裂解细胞提取总蛋白, Western Blot法检测各组织中Akt、p-Akt及Bcl-2蛋白表达水平。
     4. SKOV-3细胞经不同浓度MPA分别作用24、48h, Annexin V/PI双染法流式细胞仪检测细胞凋亡。
     结果:
     1.MPA以时间-剂量依赖方式抑制SKOV-3细胞的体外增殖,药物作用时间越长、药物浓度越大,对细胞的毒性作用越明显(P<0.05)。
     2.MPA抑制SKOV-3细胞的体外增殖作用可被LY294002所阻断。
     3.随着MPA使用剂量的增大, SKOV-3细胞内p-Akt和Bcl-2蛋白表达水平逐步下降(P<0.05)。与对照组相比,醋酸甲羟孕酮浓度为0.1μmol/L时p-Akt表达量下降约28%, Bcl-2表达量下降约10%;当醋酸甲羟孕酮浓度上升至100μmol/L时, p-Akt表达量下降约35%, Bcl-2表达量下降约27%。不同药物浓度组间Akt表达水平无明显变化(P>0.05)。
     4.MPA以时间-剂量依赖方式诱导SKOV-3细胞凋亡,对比不同时间的统计数据可发现, MPA作用时间为24h时早期凋亡率较晚期凋亡率上升明显(P< 0.05);当药物作用延长至48h后,晚期凋亡在凋亡总体中所占比重上升,早期凋亡上升趋势不明显。
     结论:
     1. MPA以时间-剂量依赖方式抑制SKOV-3细胞的体外增殖。
     2. MPA可抑制PI3K/Akt信号转导通路的激活,降低细胞内游离的Bcl-2的水平,体外诱导SKOV-3细胞发生凋亡。
     3. MPA浓度为1μmol/L~10μmol/L,药物作用时间为24h时,细胞对药物最为敏感,抑制细胞增殖促进细胞凋亡的作用最强;再加大药物浓度或延长药物作用时间不能明显提高细胞的凋亡率。
Epithelial ovarian cancer (EOC) is the most common tumor of genital system, and also the fifth leading cause of cancer death in women as well as the first lethal gynecological malignancy. Ovarian cancer has a high incidence of metastasis that generally remains localized within the peritoneal cavity. EOC is not a single disease entity, but instead comprises a heterogeneous group of tumors. These tumors are classified according to their patterns of histological differentiation. The most common histological subtype are-serous、mucinous、and endometrioid tumors. The mechanism of regulation of subtype is unknown, which attract much attention from researchers. During the past hundred years, changes in body structure and development, such as the replacement of antennae with legs, were observed in Drosophila melanogaster mutants. Hox genes would be confirmed and highly conserved homologues identified in most animals. In vertebrates, the Hox genes are located contiguously in clusters, with the number of clusters varying according to anatomic complexity. HOX compromises a series of advanced conserved genes. Hox genes are integral to normal temporospatial limb and organ development along the anterior-posterior (A-P) axis. First, the position of a Hox gene 3’to 5’within a Hox cluster corresponds to its expression in the animal along the A-P axis. One group of Hox gene expression according to the arrangement of A-P named I-group Hox; and another group is scattered on different chromosomes named II- group. Numerous examples of aberrant HOX gene expression have been found in different cancers. The oncogenesis is related to leukocythemia、breast cancer、colorectal carcinoma、prostatic carcinoma、and renal carcinoma (including Wilms tumor). According to our previous study, expression of HOXA9、HOXA10 and HOXA11 were not detected in normal human ovarian surface epithelium. However, coliner expression patterns of these HOX genes that normally occur in Mullerian-duct-derived epithelial were found to be recapitulated in serous、endometrioid and mucinous EOCs according to the pattern of Mullerian-like differentiation of these tumors. Importantly, HOXA10 is related to the ovarian endometrioid cancer specifically.
     Aberrations of DNA methylation are now believed to be an important epigenetic alteration occurring early in many cancers including ovarian ones. In general, DNA methylation is one of the best-understood epigenetic changes in human cancers and may play important roles in carcinogenesis. Carcinogenesis is associated with changes in the epigenetic phenomenon, including two distinct and seemingly opposing trends: global decrease in cytosine methylation (hypomethylation) and methylation of cytocine in CpG islands (hypermethylation). Yoshida et al have brought forward that HOXA10 is down-expressed in endometrial carcinoma, which is related to low grade tumor, and also with the methylation of HOXA10. In that way, we hypothesized that the high expression of HOXA10 in ovarian cancer is related to the methylation condition of HOXA10 CpG islands. This study is aiming to finding the underling relationship between the HOXA10 CpG islands methylation and the oncogenesis of ovarian cancer, further seek out the new idea for the prevention and curing the ovarian cancers.
     Prevention and treatment is the severe problems in the iateria of ovarian cancer. Ovaries are located deep in the pelvic, and because of the special anatomical location, the early detection and diagnosis of ovarian cancer become very difficult. Meanwhile laking of high sensitivity diagnostic indicators caused that only when the ovarian cancer is in a advanced stages, the exact diagnosis can be done. And it often leads to poor prognosis of patients. On the current international principles of treatment of advanced ovarian cancer is a comprehensive treatment including a cytoreductive surgery and paclitaxel and a platinum-based chemotherapy. Due to a high rate of recurrence and high resistance rates in recurrent tumors, five-year survival rate of ovarian carcinoma still in a low level.
     MPA is one kind of progestin drugs, the most common uses of MPA are as the progestin component of menopausal hormone replacement therapy and also as an oral or depot-injected contraceptive. Medroxyprogesterone is also used as a treatment for endometriosis, dysmenorrhea, and amenorrhea. Because MAP has anti-estrogen function and has capability to promote the proliferative endometrium transform to secretary endometrium, it has been widely used as an adjuvant treatment of estrogen and progesterone receptor-positive endometrial cancer. In recent years, some studies suggested that progesterone can inhibit ovarian cancer cell proliferation and induce cancer cell apoptosis. But the specific mechanism remains unknown.
     Some researchers pointed that MPA might induce apoptosis via PI3K/Akt pathway. Being a important regulatory sites in cell survival pathway, PI3K/Akt pathway play a vital role in cell’s proliferation and apoptosis. Numerous reports suggest a role of PI3K signaling in invasion and metastasis in various kinds of carcinomas. Akt has been also shown to be amplified or over-expressed in ovarian cancer, implying that it also plays a role in ovarian oncogenesis. Survival factors induce Bcl-2 pathway activation via several protein kinase signaling pathways including activation of phosphatidylinositol 3-kinase (PI3K)-Akt, which directly determined the cell proliferation or apoptosis.
     Epidemiological studies and long-term clinical practice show that progesterone may antagonize the effect of estrogen to protect the ovary, preventing the occurrence of ovarian cancer. Currently, there is no consensus about whether progesterone can be applied as adjuvant treatment of ovarian cancer. The present study attempts to reveal the mechanisms of medroxyprogesterone acetate induced apoptosis in ovarian cancer cells, and provide a new theoretical basis for the treatment of ovarian cancer.
     Part I The effects of hypomethylation of HOXA10 CpG promoter in ovarian cancer
     Objective The purpose of this study was to find the highly expression of HOXA10 in ovarian carcinoma and to determine the relationship between hypomethylation of HOXA10 gene promoter and highly expression in malignant ovarian tissues, which could induce the ovarian carcinogenesis, and finally to confirm the function of 5-Aza-dC on epithelial ovarian cell lines to provide the evidence of the treatment of 5-Aza-dC in clinic.
     Methods We performed the methylation status of 29 samples from ovarian carcinomas and 16 from normal tissues by methylation-specific polymerase chain reaction (MSP). Then, we evaluated the expression of mRNA and protein of HOXA10 in all samples to work out the relationship between the methylation status of HOXA10 and its expression in transcriptional and translational levels. We then confirmed our present study using SKOV-3 and HEY ovarian cancer cell lines treated with the demethylation agent 5-aza-2-deoxycytidine (5-Aza-dC) to detect whether the expression of HOXA10 in the two cell lines was altered. And the cell proliferation was determined by using methyl thiazolyl tetrazolium (MTT) colorimetric assay.
     Results 1. HOXA10 is highly expressing in ovarian cancer tissues. HOXA10 expression was examined by RT–PCR in 29 malignant ovarian tissues and 16 normal ovarian tissues. Western Blot analysis of the tissues confirmed that HOXA10 protein was present in malignant ovarian tissues. The real-time PCR assay further confirmed the quantitative relationship between the hypomethyaltion status and HOXA10 expression.
     2. HOXA10 is hypomethylated in epithelial ovarian carcinomas. We determined the methylation status of the region in normal and malignant ovarian tissues using MSP, which showed that the promoter of HOXA10 gene in 17 out of 29 (58.62%) malignant cancers and in 4 out of 16 (25%) normal tissues was hypomethylated, and the result shows significant difference (p < 0.05). Combining the research data above, we arrived at three conclusions: (1) HOXA10 promoter is normally methylated in most normal ovarian samples, whereas hypomethylated in abundant epithelial ovarian cancers. (2) HOXA10 is highly expressed in epithelial ovarian cancers; nevertheless, the expression level is low in normal tissues. (3) Comparing the methylated and hypomethylated status of HOXA10 gene in different tissues (including normal and malignant ones), the HOXA10 expression is lower in former status and higher in latter status.
     3. Rescue of HOXA10 expression by 5-Aza-CdR treatment. The results showed that after the treatment of the SKOV-3 cell line with 5-Aza-dC, demethylation of HOXA10 and concomitant increasing HOXA10 expression occurred.
     Conclusion:1. In epithelial ovarian carcinoma, the HOXA10 gene promoter hypomethylation condition could bring about the highly expression of HOXA10 both in the transcript and translate levels, which could induce the ovarian carcinogenesis.
     2. By 5-Aza-dC treatment, the HOXA10 gene promoter could be demethylated, then concomitant increasing HOXA10 expression occurred, further stimulate the ovarian cell lines to proliferate and differentiate.
     Part II Medroxyprogesterone Acetate Induce Human Ovarian Cancer Cell Line SKOV-3 Apoptosis in Vitro
     Objective 1. The purpose of this study was to observation of MPA depressed SKOV-3 cells proliferation in vitro.
     2. Explore the mechanism of MPA induced SKOV-3 cells apoptosis in vitro.
     3. Reveal the functions of progesterone membrane receptors in human ovarian cancer cells apoptosis.
     Methods 1. Epithelial ovarian cancer SKOV-3 cells at exponential phase were subcultured at 7×103 cells/well into 96-well microplates and cultured overnight. Cells were treated with serial concentrations (0.1, 1,10,100μmol/l) of MAP for 12, 24 or 48h. And the cytotoxicity was determined by using methyl thiazolyl tetrazolium (MTT) colorimetric assay
     2. SKOV-3 cells were treated with serial concentrations (1, 5, 12.5, 25μmol/L)LY294002 for 1h before treated with different concentrations of MAP. And the cytotoxicity was determined by using methyl thiazolyl tetrazolium (MTT) colorimetric assay.
     3. SKOV-3 cells treat with serial concentrations MAP for 24h, lysed cells and collection of protein, Akt, pAkt, pBad and Bcl-2 protein expression was detected by Western blotting.
     4. SKOV-3 cells were treated with different concentrations of MPA role of 24, 48 h; Annexin V / PI double staining flow cytometry to detect cell apoptosis.
     Result 1. Medroxyprogesterone acetate inhibited the growth of SKOV-3cell line effectively, in a time-and-dose dependent way (P<0.01).
     2. MPA inhibition of SKOV-3 cell proliferation effect could be blocked by LY294002
     3. The expression of p-Akt and Bcl-2 protein in the SKOV-3 cells were decreased in all medroxyprogestogen groups and significant decreased in high dose medroxyprogestogen group (P<0.05). The expression of p-Akt protein was decreased to 72% in the low dose group and 65% in high dose group. The levels of Bcl-2 protein were descended to 90% in low dose group and 73% in high dose group. The expression of Akt protein was no significant difference in both medroxyprogestogen group and control group.
     4. MPA induced SKOV-3 cell apoptosis in a time-dose dependent manner. Comparison of different time statistics can be found, early apoptosis rate significantly rised(P< 0.05), when the time was 24h; extension of time to 48h, late apoptosis rate increased, and early apoptosis rate increased slowly.
     Conclusion 1. MPA induced SKOV-3 cell apoptosis in a time-dose dependent manner.
     2. MPA can inhibit the PI3K/Akt signal pathway, reducing the level of Bad phosphorylation, induced SKOV-3 cells apoptosis in vitro.
     3. The cells most sensitive to the drug, when the drug effects time was 24h and MPA concentration from 1μmol L to 10μmol / L, increase the drug concentration or drug effect can not be extended significantly improve the cell apoptosis.
引文
1. Jemal A, Siegel R, Ward E. Cancer statistics, 2009. CA Cancer J Clin 2009; 59:225–249
    2. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 2005; 5:355-366
    3. McGinnis W, Levine MS, Hafen E, et al. A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 1984; 308:4282433
    4. Lewis EB. The bithorax complex: the first fifty years. Int J Dev Biol 1998; 42:403-415
    5. Apiou F, Flagiello D, Cillo C, et al. Fine mapping of human HOX gene clusters. Cytogenet Cell Genet 1996; 73:114-115
    6. Lawrence HJ, Rozenfeld S, Cruz C, et al. Frequent co-expression of HOXA9 and MEIS1 homeobox gene in human myeloid leukemia. Leukemia 1999; 13:1993-1999
    7. Kawagoc H, Humphries RK, Blair A, et al. Expression of HOX genes, HOX-cofactors, and MLL in phenotypically and functionally defined sub-population of leukemic and normal human hematopoietic cells. Leukemia 1999; 13:687-698
    8. Thorsteinsdottir U, Mamo A. Overexpression of the myeloid leukemia associated HOXA9 gene in bone marrowcells induces stem cell expansion. Blood 2002; 99: 121-129
    9. Drabkin HA, Parsy C, Ferguson K, et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 2002; 16:186-195
    10.Pineault N, Abramovich C, Ohta H, et al. Differential and common leukemogenicpotentials of multiple NUP98-HOX fusion proteins alone or with MEIS1. Mol Cell Biol 2004; 24: 1907-1917
    11. Raman V, Martensen SA, Reisman D, et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405:974-978
    12. Makiyama K, Hamada J, Takada M, et al. Aberrant expression of HOX genes in human invasive breast carcinoma. Oncol Rep 2005;13:673-679
    13. Daftare GS, Troy PJ, Bagot CN, et al. Direct regulation ofβ3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol 2002; 16:571-579
    14. Kelly M, Daftary G, Taylor H. An autoregulatory element maintains HOXA10 expression in endometrial epithelial cells. American Journal of Obstetrics and Gynecology 2006; 194:1100-1109
    15.Carrio M, Arderiu G, Myers C, et al. Hommeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Res 2005; 65:7177-7185
    16. Lane DB, Rutherford TJ, Taylor HS. HOXA10 expression in endometrial adenocarcinoma. Tumour Biol 2004; 25:264-269
    17. Yoshida H, Broaddus R, ChengW, et al. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelialmesenchymal transition. Cancer Res 2006; 66:889-897
    18. Cheng W, Liu J, Yoshida H, et al. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nature Med 2005; 11:531-537
    19. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer2004; 4:143-153
    20. Balch C, Huang TH, Brown R, Nephew KP. The epigenitics of ovarian cancerdrug resistance and resensitization. Am J Obstet Gynecol 2004; 191:1552-1572
    21. Novik KL, Nimmrich I, Genc B, et al. Epigenomics: genome-wide study of methylation phenomena. Curr Issues Mol Biol 2002; 4:111-128
    22. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999; 21:163-167
    23. Choi MS, Shim YH, Hwa JY, et al. Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol 2003; 34:11-17
    24. Abate-Shen C. Deregulated Homeobox gene expression in cancer: cause or consequence? Nature Rev 2002; 2:777-785
    25. Peluso JJ. Non-genomic actions of progesterone in the normal and neoplastic mammalian ovary. Semin Reprod Med 2007; 25:198-207
    26.Zhu Y, Hanna RN, Schaaf MJ, et al. Candidates for membrane progestin receptors--past approaches and future challenges. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:381-389
    27. Rodriguez G. New insights regarding pharmacologic approaches for ovarian cancer prevention. Hematol Oncol Clin North Am 2003; 17:1007-1020
    28. Barnes MN, Grizzle WE, Grubbs CJ, et al. Paradigms for primary prevention of ovarian carcinoma. CA Cancer J Clin 2002; 52:216-225
    29. Zhou B, Sun Q, Cong R, et al. Hormone replacement therapy and ovarian cancer risk: a meta-analysis. Gynecol Oncol 2008; 108:641-651
    30. Wernli KJ, Newcomb PA, Hampton JM, et al. Hormone therapy and ovarian cancer: incidence and survival. Cancer Causes Control 2008; 19:605-613
    31. Bu SZ, Yin DL, Ren XH, et al. Progesterone induces apoptosis and up-regulation of p53 expression in human ovarian carcinoma cell lines. Cancer 1997; 79:1944-1950
    32. Hu Z, Deng X. The effect of progesterone on proliferation and apoptosis inovarian cancer cell. Zhonghua Fu Chan Ke Za Zhi 2000;35:423-426
    33.Syed V, Ho SM. Progesterone-induced apoptosis in immortalized normal and malignant human ovarian surface epithelial cells involves enhanced expression of FasL.Oncogene 2003; 22:6883-6890
    34. Syed V, Mukherjee K, Lyons-Weiler J, et al. Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene 2005; 24:1774-1787
    35.华克勤,尧良清,曹琦,等.雌、孕激素通过激活磷酸化信号传导通路调控卵巢上皮性癌细胞nm23-H1蛋白的表达.中华妇产科杂志2006;41:756-761
    36. Hua K, Feng W, Cao Q, et al. Estrogen and progestin regulate metastasis through the PI3K/AKT pathway in human ovarian cancer. Int J Oncol 2008; 33:959-967
    37. Kumar SR, Masood R, Spannuth WA, et al. The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer provides survival signals and predicts poor outcome. Br J Cancer 2007; 96:1083-1091
    38. Lindgren P, Backstrom T, Mahlck CG, et al. Steroid receptors and hormones in relation to cell proliferation and apoptosis in poorly differentiated epithelial ovarian tumors. Int J Oncol 2001; 19:31-38
    39. Novichkov EV, Votintsev AA. Ovarian cancer prognosis and expression of receptors to sex hormones and proliferative activity of tumor cells. Arkh Patol 2006; 68:10-13
    40. Pearce CL, Wu AH, Gayther SA,et al. Progesterone receptor variation and risk of ovarian cancer is limited to the invasive endometrioid subtype: results from the Ovarian Cancer Association Consortium pooled analysis. Br J Cancer 2008; 98:282-288
    41. Leite DB, Junqueira MG, de Carvalho CV, Massad-Costa AM,et al. Progesterone receptor (PROGINS) polymorphism and the risk of ovarian cancer. Steroids. 2008;73:676-680
    42. Murdoch WJ, Van Kirk EA, Isaak DD,et al. Progesterone facilitates cisplatin toxicity in epithelial ovarian cancer cells and xenografts. Gynecol Oncol 2008;110:251-255
    43. Signorelli M, Caspani G, Bonazzi C,et al. Fertility-sparing treatment in young women with endometrial cancer or atypical complex hyperplasia: a prospective single-institution experience of 21 cases. BJOG. 2009; 116:114-118
    44. Benson GV, Lim H, Paria BC, et al. Mechanism of reduce fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 1996; 122:2687-2697
    45. Ko SY, Lengyel E, Naora H. The Müllerian HOXA10 gene promotes growth of ovarian surface epithelial cells by stimulating epithelial-stromal interactions. Mol Cell Endocrinol 2010; 317:112-119
    46. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature1983; 301:89-92
    47. Shi H, Wang MX, Caldwell CW. CpG islands: their potential as biomarker for cancer. Expert Rev Mol Diagn 2007; 7:519-531
    48. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann NY Acad Sci 2007; 1100:60-74
    49. Ehrlich M, Woods CB, Yu MC, et al. Quantitative analysis of associations between DNA hypermethylations, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 2006; 25:2636-2645
    50. Pattamadilok J, Huapai N, Rattanatanyong P, et al. LINE-1 hypomethylation level as potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer 2008; 18:711-717
    51. Lapeyre JW, Walker MS, Becker FF. DNA methylation and methylase level innormal and malignant mouse hepatic tissues. Carcinogenesis 1981; 2:873-878
    52. Smith SS, Yu JC, Chen CW. Different levels of DNA modification at 5’CCGG in murine erythroleukemia cells and the tissues of normal mouse spleen. Nucleic Acids Res 1982; 10:4305-4320
    53. Harrison JJ, Anisowicz A, Gadi IK, et al. Azacytidine-induced tumorigenesis of CHEF/18 cells: correlated DNA methylation and chromosome changes. Proc natl Acad Sci USA 1983; 80:6606-6610
    54. Goelz SE, Vogestein B. Hypomethylation of DNA from benign and malignant human colon neoplasia. Science 1985; 228:187-190
    55. Ahuja N, Li Q, Mohan AL. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 1998; 58:5489-5494
    56. Borrello MG, Protti MA. DNA methylation affecting the transforming activity of the human Ha-ras oncogene. Cancer Res 1987; 47:75-79
    57. Sharrard RM, Royds JA, Rogers S. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer 1992; 65:667-672
    58. Szyf M. DNA methylation machinery as a target for anticancer therapy. Pharmacol Ther 1996; 70:1-17
    59. Sardi I, Dal Canto M, Bartoletti R. Molecular genetic alterations of c-myc oncogene in superficial and locally adbanced bladder cancer. Eur Urol 1998; 3:424-430
    60. GloverAB, Leyland, JonesB. Bioehemistry of azacytidine: a review. Cancer Treat Rep 1981; 71:959-964
    61. HellerP, Desimone J. 5-Aazaeytidine and fetal hemoglobin. Am J Hematol 1984; 17:439-447
    62. Haaf T, Werner P, Schmid M. 5-Azadexycytidine distinguishes between active and inactive X chromosome condensation. Cytogenet Cell Genet 1993;63:160-168
    63. Gadi IK, Harrison JJ, Sager R. Genetic analysis of tumorigenesis XVI chromosome changes in azacytidine-and insulin-induced tumorigenesis. Smatic Cell molec Genet 1984; 10:521-529
    64. Hsiao WL, Gattoni-Celli S, Weinstein IB. Effects of 5-azacytidine on the progressive nature of cell transformation. Mol cell Biol 1985; 5:1800-1803
    65. Carr BI, Reilly JG, Smith SS, et al. The tumorigenicity of 5-azacytidine in the male Fischer rat.Carcinogenesis 1984; 5:1583-1590
    66. Frost P,Kerbel RS,Hunt B,et al. Selection of metastatic variants with identifiable karyotypic changes from a nonmetastatic murine tumor after treatment with 2’-deoxy-5-azacytidine or hydroxyurea: implications for the mechanism of tumor progression. Cancer Res 1987; 47:2690-2695
    67. Babiss LE, Zimmer SG, Fisher PB. Reversibility of progession of the transformed phenotype in Ad-5 transformed rat embryo cell. Science 1985; 228:1099-1110
    68. DasPM, Singal R. DNA methylation and caner. J Clin Oncol 2004; 22:4632-4642
    69.Szyf M, Pakneshan P, Rabbani SA. DNA demethylation and cancer: therapeutic implications. Cancer Lett 2004; 211:133-143
    70. Swanton C, Nicke B, Downward J. RNA interference, DNA methylation, and gene silencing: a bright future for cancer therapy? Lancet Oncol 2004; 5:653-654
    71. Davies BR, O’Donnell M, Durkan GC, et al. Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer. J Pathol 2002; 196:292-299
    72. Cho YG, Nam SW, Kim TY, et al. Overexpression of S100A4 is closely related to the aggressiveness of gastric cance. APMIS 2003; 111:539-545
    73. Sato N, Maitra A, Fukushima N, et al. Frequent hypomehylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 2003;63:4158-4166
    74. Parkneshan P, Szyf M, Farias-Eisner R, et al. Reveral of the hypomethylation status of urokinase promoter blocks breast cancer growth and metastasis. J Biol Chem 2004; 279:31735-31744
    75. Ho C-M, Chien T-Y, Shih B-Y et al. Evaluation of complete surgical with pelvic and parat-aortic lymphadenectomy and paclitaxel plus carboplatin chemotherapy for improvement of survival in stage I ovarian clear cell carcinoma. Gynecol Oncol 2003; 88:394-399
    76. Jensen JT, Speroff L. Health benefits of oral contraceptives. Obstet Gynecol Clin North Am 2002; 27:705-721
    77. Vessey MP , Painter R. Endometrial and ovarian cancer and oral contraceptives-findings in a large cohort study. Br J Cancer 1995; 71:1340-1342
    78. Schildkraut JM, Calingaert B, Marchbanks PA, et al. Impact of progestin and estrogen potency in oral contraceptives on ovarian cancer risk. J Natl Cancer Inst 2002; 94: 32-38
    79. McDonnel AC, Murdoch WJ. High-dose progesterone inhibition of urokinase secretion and invasive activity by SKOV-3 ovarian carcinoma cell: evidence for a receptor independent nongenomic effect on the plasma membrane. J Steroid Biochem Mol Biol 2001; 781:85-91
    80. Alessandro R, Kohn EC. Signal transduction targets in invasion. Clin Exp 2002; 19: 265-273
    81. Sachdev P, Jiang YX, Li W, et al. Differential requirement for rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation.J Biol Chem 2001; 276:26461-26471
    82. Nguyen KT, Wang WJ, Chan JL et al. Differential requirements of the MAP kinase and PI3 kinase signaling pathways in src? versus insulin and IGF-1receptors-induced growth and transformation of rat intestinal epithelial cells. Oncogene 2000; 19:5385-5397
    83. Sachdev P, Zeng L, Wang LH. Distinct role of phosphatidylinositol 3-kinase and rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes. J Biol Chem 2002; 277:17638-17648
    84. Nguyen KT, Zong CS, Uttamsingh S, et al. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in ros-induced cell transformation. J Biol Chem 2002; 277:11107-11115
    85. Arboleda MJ, Lyons JF, Kabbinavar FF, et al. Overexpression of AKT2/protein kinase bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003; 63:196-206
    86. Brandi R Whitley, Beaulieu Lea M, Jenni CarterC et al. Phosphatidylinositol 3-kinase/Akt regulates the balance between plasminogen activator inhibitor-1 and urokinase to promote migration of SKOV-3 ovarian cancer cells. Gynecol Oncol 2007; 104:470-479
    87. Peso L, Gonzale-Garcia, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278:687-689
    88. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26:1324-1337
    89. Datta SR, Ranger AM, Lin MZ, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev cell 2002; 3:631-643
    90. Berqmann A. Survival signaling goes BAD. Dev Cell 2002; 3: 607-608
    91.Peso L, Gonzale-Garcia, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278:687-689
    92. Datta SR., Dudek H, Greenberg ME, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:231-241
    93. Mishell J. Noncontraceptive health benefits of oral steroidal contraceptives.Am J Obstet Gynecol 1982; 142:809-816
    94. Chao KC, Wang PH, Yen MS, et al. Role of estrogen and progesterone in the survival of ovarian tumors--a study of the human ovarian adenocarcinoma cell line OC-117-VGH. J Chin Med Assoc 2005; 68:360-367
    95. Peluso JJ, Fernandez G, Pappalardo A, White BA. Membrane-initiated events account for progesterone’s ability to regulate intracellular free calcium levels and inhibit rat granulosa cell mitosis. Biol Reprod 2002; 67:379-385
    96. P. Thomas, Y. Pang, Y. Zhu, C. Detweiler, et al. Multiple rapid progestin actions and progestin membrane receptor subtypes in fish. Steroids 2004; 69:569-573
    97. Peluso JJ, Non-genomic actions of progesterone in the normal and neoplastic mammalian ovary. Semin Reprod Med.2007; 25:198-207
    98. Karteris E, Zervou S, Pang Y, et al. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol 2006;20:1519-1534
    99.Romero-Sánchez M, Peiper SC, Evans B, et al. Expression profile of heptahelial putative membrane progesterone receptors in epithelial ovarian tumors. Hum Pathol 2008; 39:1026-1033
    100. Hua K, Feng W, Cao Q, et al. Estrogen and progestin regulate metastasis through the PI3K/AKT pathway in human ovarian cancer. Int J Oncol 2008; 33:959-967
    101. Arafa ES, Zhu Q, Barakat BM, et al. Tangeretin Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Downregulation of Phosphoinositide 3-Kinase/Akt Signaling Pathway. Cancer Res 2009; 69:1-8
    102. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009; 9: 501-507
    1. Yamanaka Y, Mizuno T, Sasai Y, et al. A noval homeobox gene, dharma, can inducethe organizer in a non-cell-autonomous manner. Gene Dev 1998; 12:2345-2353
    2. McGinnis W, Levine M , Hafen E, et al. A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 1984; 308:428-433
    3. Apiou F, Flagiello D, Cillo C, et al. Fine mapping of human HOXgene clusters. Cytogenet Cell Genet 1996; 73:112-115
    4. Samuel S, Naora H. Homeobox gene expression in cancer: Insights from developmental regulation and deregulation. Eur J Cancer 2005; 41:2428-2437
    5. Fire A, Xu S, Montgomery M, et al. Nature 1998; 391: 806-811
    6. Chen Y, Petersen S, Pacyna-Gengelbach M, et a1. Identification of a novel homeobox -cont aining gene, LAGY, which is downregulated in lung cancer..Oncology 2003; 64: 450–458
    7. Chen Y, Pacyna M, Niesporek S, et a1.Homeobox gene HOP has a potential tumor suppressive activity in human lung cancer. Thorac Oncol 2007; 2:484-492
    8. Chen Y, Pacyna M, Niesporek S, et a1. 5-Bromodeoxyuridine induced differentiation of a human small cell lung cancer cell line is associated with alteration of gene expression. Biochem Biophys Res Commun 2007; 353:559-564
    9. Lord R, Brabender J, Wickramasinghe K, et a1.Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett’s esophagus and Barrett’s-associated adenocarcinoma. Surgery 2005;138: 924-931
    10.Akahashi O, Hamada J, Abe M , et a1.Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol Rep 2007; 17:753-760
    11. Bai Y, Yamamoto H, Akiyama Y, et a1.Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett 2002; 176:47–55
    12. Bai Y, Akiyama Y, Nagasaki H, et a1. Distinct expression of CDX2 and GATA4/5, development-related genes, in human gastric cancer cell lines. Mol Carcinog 2000;28:184–188
    13. Lorentz O, Cadoret A, Duluc I, et a1. Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene 1999; 18:87-92
    14. Choi B Cho Y, Song J, et a1. Altered expression of CDX2 in colorectal cancer. APMIS 2006; 114:50-54
    15. Snbtil C, Guerin E, Schneider A, et al. Frequent rearrangements and amplification of the CDX2 homeobox gene in human sporadic colorectal cancers with chromosomal instability.Cancer Lett 2007;247:197-203
    16. Gross I, Benameur T, Calon A, et a1. The intestine-specific homeobox gene Cdx2 decreases mobility and antagonizes dissemination of colon cancer cells. Oncogene 2008; 27:107-115
    17. Xiang Z, Yang Z, Deng X, et al. Expression of HOXA9 mRNAand its clinical signif icance in primary hepatocarcinoma. China Journal of Modern Medicine 2004; 14:1-2
    18. Tagge E, Hanson P, Re G, et a1. Paired box gene expression in Wilms' tumor.J Pediatr surq 1994; 29:134-141
    19. Tamimi Y, Dietrich K, Stone K, et a1. Paired box genes, PAX-2 and PAX-8, are not frequently mutated in Wilms t umor. Mutat Res 2006; 601:46-50
    20. He W, Sciavolino P, Wing J, et a1. A novel human prostatespecific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 1997; 43:69–77
    21. Possner M, Heuser M, Kaulfuss S, et a1. Functional analysis of NKX3.1 in LNCaP prostate cancer cells by RNA interference. Int J Oncol 2008; 32:877-884
    22. Gao A, Lou W, Isaacs J. Enhanced GBx2 expression stimulates growth of human prostate cancel ceils via transcriptional up-regulation of the interleukin 6 gene. C1in Cancer Res 2000; 6:493-497
    23. Pineault N, Helgason C, Lawrence H, et a1. Differential expression of Hox, Meisl and Phxl genes in primitive cells throughout murine hematopoielic ontogeny. Exp Hematol 2002; 30:49-57
    24. Lappin R, Griuer G, Thompson A, et a1. HOX GENES: Seductive Science, Mysterious Mechanisms. Ulster Med J 2006; 75:23-31
    25. Morris V, Brammall J, Byme M, et al. Hox-type and non-Hox homeobox gene sequences in genomic DNA of the sea urchin Holopneustes Purpurescens. Gene 1997; 201:107
    26. Ernst P, Mabon M, Davidson A, et a1. An mll-dependent hox program drives hematopoiefie progenitor expansion. Cttrr Biol 2004; 14:2063
    27. Thompson A, Quinn M, Grimwade D, et a1. Global down-regulation of HOXgene expression in PML-RARα+ acute promyelocytic leukemia identified by small-array real-time PCR.. Blood 2003; 101:1558-1565
    28. Lawrence H, Rozenfeld S, Cruz C, et a1. Frequent co-expression of HOXA9 and MEIS1 homebox gene in human myeloid leukemia. Leukemia 1999; 13:1993-1999
    29. Cairo K, Sykes D, Pasillas M, et a1. NUP98-HOXA9 immortalizes myeloid progenito enforces expression of HOXA 9, HOXA7, and MEIS1 alters cytokine-specific response in a manner similar to that induced by retroal cp-expression of H0XA9 and MEIS1. Oncogene 2002; 21:4247-4256
    30. Vijapurkar U, Fischbach N, Shen W, et al. Protein Kinase C-Mediated Phosphorylation of the Leukemia-Associated HOXA9 Protein Impairs Its DNA Binding Ability and Induces Myeloid Diferentiation .Molecular and Cellular Biology 2004;24:3827-3837
    31. Thorsteinsdottir U, Mamo A. Overexpression of the myeloid leukemia associated HOXA 9 gene in bone marrowceIls induces stem ceIl expansion. Blood 2002; 99:121-129
    32. Hiroyuki K, Gerard C. Conditional MN1-TEL knocks in m icedevelop acute myeloid leukemia in conjunction with Overexpression of HOXA 9. Blood 2005; 106:4269-4277
    33. Bjornsson J, Andersson E, Lundstrom P, et a1. Proliferation of primitive myeloid progenitors call is reversibly induced by HoxA10. Blood 2001; 98:3301-3308
    34. Buske C, Feuring-Buske M, Antonchuk J, et a1. Overexpression of HOXA1 0 perturbs human lymphom yelo -poiesis in vitro and in vivo. Blood 2001; 97:2286-2292
    35. Ayton P, Cleary M. Transform ation of myeloid progenitors by MLL oncoproteins is dependent on HOXA7 and HOXA 9. GENES & DEVELOPMENT 2003;17:2298-2307
    36. Huang H, Rastegar M, Dodnerc C, et a1. MEISC termini harbor transcript tional activation domains that respond to cell signaling. J Biol Chem 2005:280:10119-10127
    37. Kroon E, Krosl J, Thorsteinsdottir U, et a1. HOXA9 transforms primary bone m arrow cells through specific collaboration with MEIS1a but not Pbx1b. EMB; 1998,:3714-3725
    38. Raman V, Martensen S, Reisman D, et a1. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405:974-978
    39. Ford H, Kabingu E, Bump E, et a1. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci USA 1998;95:12608-12613
    40. Raman V, Martensen S, Reisman D, et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405:974-978
    41. Makiyama K, Hamada J, Takada M, et al. Aberrant expression of HOX genes in human invasive breast carcinoma. Oncol Rep 2005; 13:673-679
    42. Zhang X, Zhu T, Chen Y, et al. Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 2003; 278:7580-7590
    43. Ford H, Kabingu E, Bump E, et al. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci 1998;95:12608-12613
    44. Care A, Silvani A, Meccia E, et al. Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF ex-pression, increases cell proliferation and reduces growth factor dependence. Oncogene 1998; 16:3285-3289
    45. Fu S, Schwartz A, Stevenson H, et al. Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer. Breast Cancer Res2003; 5:82-87
    46. Cantile M, Pettinato G, Procino A, et al. In vivo expression of the whole HOX gene network in human breast cancer. Eur J Cancer 2003; 39:257-264
    47. Bodey B, Bodey B, Siegel S, et al. Immunocytoehemica detection of the homeobox B3, B4, and C6 gene products in breast carcinomas. Anticancer Res 2000; 20:3281-3286
    48. Cheng W, Liu J, Yoshida H, et a1.Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract.Nat Med 2005;11: 531-537
    49. Naora H, Montz F, Chai C, et a1. Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci U S A 2001;98:15209-15214
    50. Wu X, Chen H, Parker B, et a1. HOXB7, a Homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Res 2006; 66:9527-9534
    51. Naora H, Yang Y, Montz F, et a1. A serologically identified tumor antigen encoded by a homeobox gene growth of ovarian epithetial cells. Proc Natl Acad Sci USA 2001; 98:4060-4065
    52. CarrioM, Arderiu G, Myers C, et a1. Hommeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Res 2005; 65:7177-7185
    53. Sellar G, Li L, Watt K, et a1. BARX2 induces cadherin 6 expression and is a functional suppressor of ovarian cancer progression. Cancer Res 2001; 16: 6977–6981
    54. Sellar G, Watt K, Li L, et a1. The homeobox gene BARX2 can modulate cisplatinsensitivity in human epithelial ovarian cancer. Int J Oncol 2002; 21:929–933
    55. Naora H, Montz F, Chai C, et al. Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci USA 2001; 98:15209-15214
    56. Naora H, Yang Y, Montz F, et al. A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells. Proc Natl Acad Sci USA 2001; 27:4060-4065
    57. Andikyan V, Taylor H. WT1 represses HOX gene expression in the regulation of gynecologic tumor histologic type. J Cell Mol Med 2008; 11:1496-1502
    58. Shim C, Zhang W, Rhee C, et a1. Prolifiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res 1998; 4:3045-3050
    59. Zhai Y, Kuick R, Nan B, et al. Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 2007; 67:10163-10172
    60. Hung Y, Ueda M, Terai Y, et al. Homeobox gene expression and mutation in cervical carcinoma cells. Cancer Sci 2003;94:437-441
    61. Lopez R, Garrido E, Pina P, et al. HOXB homeobox gene expression in cervical carcinoma. Int J Gynecol Cancer 2006; 16:329–335
    62. Daftare G, Troy P, Bagot C, et al. Direct regulation ofβ3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol 2002; 16:571–579
    63. Michael K, Daftary G, Taylor H. An autoregulatory element maintains HOXA10 expression in endometrial epithelial cells. Am J Obstet Gynecol 2006; 194:1100–1109
    64. Carrio M, Arderiu G, Myers C, et al. Hommeobox D10 induces phenotypicreversion of breast tumor cells in a three-dimensional culture model. Cancer Res 2005; 65:7177-7185
    65. Lane D, Rutherford T, Taylor H. HOXA10 expression in endometrial adenocarcinoma. Tumour Biol 2004; 25:264-269
    66. Yoshida H, Broaddus R, Cheng W, et al. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelialmesenchymal transition. Cancer Res 2006; 66:889-897
    67. Zhao Y, Yamashita T, Ishikawa M. Regulation of tumor invasion by HOXB13 gene overexpressed in human endometrial cancer.Oncol Rep 2005;13:721-726
    68. Grier D, Thompson A, Kwasniewska A, et al. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205:154-171
    69. Sellar G, Watt K, Li L, et al. The homeobox gene BARX2 can modulate cisplatin sensitivity in human epithelial ovarian cancer. Int J Oncol 2002; 21: 929-933
    70. Sellar G, Li L, Watt K, et al. BARX2 induces cadherin 6 expression and is a functional suppressor of ovarian cancer progression. Cancer Res 2001; 61: 6977–6981
    71. Tornillo L, Moch H, Diener P, et al. CDX-2 immunostaining in primary and secondary ovarian carcinomas. J Clin Pathol 2004; 57:641-643
    72. Kraus P, Lufkin T. Dlx homeobox gene control of mammalian limb and craniofacial development. Am J Med Genet A 2006; 140:1366-1374
    73. Hara F, Samuel S, Liu J, et al. A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2. Am J Pathol 2007; 170:1594-1606
    74. Man Y, Fu S, Schwartz A, et al. Expression of BP1, a novel homeobox gene, correlates with breast cancer progression and invasion. Breast Cancer Res Treat 2005; 90:241-247
    75. Hara F, Samuel S, Liu J, et al. A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2. Am J Pathol 2007; 170:1594-1606
    76. Bowen N, Logani S, Dickerson E, et al. Emerging roles for PAX8 in ovarian cancer and endosalpingeal development. Gynecol Oncol 2007;104:331-337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700