用户名: 密码: 验证码:
大豆疫霉G蛋白和钙信号途径的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆疫霉(Phytophthora sojae)侵染大豆引起的疫霉根腐病是大豆生产上的主要病害之一。大豆疫霉在田间的传播主要通过形成孢子囊,释放游动孢子,在水膜存在的条件下,通过识别植株分泌的异黄酮等化学信号分子,定向游动,寻找寄主植物,最终成功侵染感病植物。所以了解大豆疫霉菌无性发育过程中孢子囊和游动孢子的形成和游动孢子的趋化性机制,可以为寻找新的杀菌剂作用靶标,防止病害的发生和扩展提供理论依据。
     大豆疫霉G蛋白效应因子和钙离子结合蛋白预测与分析。大豆疫霉孢子囊的形成和游动孢子的行为受到各种外界条件影响和胞内信号传递的控制。卵菌中陆续报道了G蛋白和钙信号途径的基因在孢子囊形成和游动孢子行为方面的作用,为大豆疫霉孢子囊的形成和游动孢子趋化性机制的研究提供了有利的借鉴作用。本文对大豆疫霉的基因组数据库进行了搜索,寻找到包括腺苷酸环化酶、G蛋白信号调解因子和磷脂酶D在内的G蛋白效应因子以及包括钙调素和钙离子调控的蛋白激酶在内的钙离子结合蛋白,并分析了其结构特点和基因组分布。发现了以腺苷酸环化酶为代表的G蛋白效应分子的特征。候选基因的EST分析结果表明,G蛋白和钙信号途径在大豆疫霉的侵染过程中可能起着更加重要的作用。
     大豆疫霉G蛋白和钙信号途径的转录分析。为了研究G蛋白和钙信号途径在大豆疫霉发育和致病过程中的作用,并对前一章所进行的推测进行验证,本文挑选了20个可能与G蛋白和钙信号途径相关的基因,利用半定量RT-PCR对候选基因进行了营养胁迫、氧化压力、孢子囊产生和游动孢子等不同生长阶段以及侵染早期的转录分析,以揭示G蛋白和钙信号途径的表达规律。结果表明,包括G蛋白a和B亚基在内的10个基因在大豆疫霉孢子囊形成阶段的转录水平较营养生长阶段明显升高;13个基因在游动孢子中的转录水平较营养菌丝和孢子囊中有明显降低,其中10个基因编码的蛋白参与钙信号途径;在大豆疫霉侵染大豆早期,编码G蛋白a和B亚基的基因PsGPA1和PsGPBl表现出明显的上调表达。G蛋白a亚基是所有候选基因中唯一既在游动孢子中诱导表达,又在侵染阶段诱导表达的基因。深入分析PsGPA1和PsGPB1在大豆疫霉无性发育阶段的表达情况发现,在大豆疫霉的游动孢子游动阶段,G蛋白a亚基有可能抑制了胞内钙信号的激活。
     G蛋白a亚基对于大豆疫霉游动孢子趋化性的作用研究。大豆疫霉的游动孢子对异黄酮类物质的趋化性是其识别和侵染寄主的前提。然而,这种趋化性的分子机制目前尚不清楚。G蛋白a亚基既能够在大豆疫霉的游动孢子中诱导表达,又能够在侵染早期诱导表达。为了研究其是否与游动孢子对异黄酮物质的趋化性机制相关,本研究利用基因沉默技术,获得了G蛋白a亚基的基因沉默突变体。突变体的表型分析结果表明,Ga的沉默不会影响茵丝的营养生长和孢子囊的产生,但却严重影响了游动孢子对不同浓度异黄酮类物质的趋化性。游动孢子趋化性的丧失和休止速度的加快降低了突变体在大豆根部的附着能力;休止胞萌发能力也随之改变,导致突变体游动孢子即使与大豆根部接触也很难成功侵染。此外,Ga沉默突变体游动孢子中钙调素基因表达量明显升高,说明Ga亚基有可能是钙信号途径的负调控因子。
     Ga结合蛋白的筛选与受Ga调控的信号途径分析。大豆疫霉的G蛋白a亚基不仅影响着孢子囊的割裂和游动孢子的释放,而且控制着游动孢子的游动能力和休止胞的萌发能力。Ga亚基是通过调节哪些基因的表达、影响哪些信号通路、怎样传递信号来控制这些性状,尚未研究清楚。本文构建了大豆疫霉的cDNA文库,并以大豆疫霉Ga亚基为诱饵蛋白,利用酵母双杂交的方法,筛选到包括磷酸核酮糖差向异构酶和逆转录酶等7个可能与Ga相互作用的蛋白,说明G蛋白信号途径参与了大豆疫霉的糖代谢。同时,本文通过cDNA Macroarray的方法,比较分析了大豆疫霉野生型和Ga突变体游动孢子中的基因表达变化,得到了9个在Ga突变体游动孢子中转录水平发生变化的基因。这9个基因中有3个G蛋白信号调控因子(RGS)、一个Ca2+ATP酶和一个依赖于Ca2+/钙调素的蛋白激酶的转录水平发生下降;钙调素、两个Ca2+/钙调素的蛋白激酶和一个转录因子类似物的转录水平明显升高。这说明RGS和Ga在信号传递过程中可能是两个相互依赖、相互影响的因子。而Ga对钙信号途径并非单纯地起抑制作用。
Soybean root rot disease caused by oomycete pathogen Phytophthora sojae is one of main diseases which caused annual loss in agricultural production. In the field, sporangia formed on the tips of flooded mycelia, and cleavage to release mobile zoospores, which swim toward new host, through chemotaxis to the isoflavones secreted from soybean root. Consequently, to study the mechanism of sporangia formation and zoospore chemotaxis is crucial to disease control.
     Bioinformatics analysis of G protein and calcium signal transduction pathways in Phytophthora sojae. G protein and calcium are the most ubiquitous cellular components in eukaryotic cells that execute many important roles in signaling. Genes encoding G protein binding effectors and calcium binding proteins required for signal transduction and metabolism have been characterized in many organisms, but only a few have been described for oomycetes. In this study, the genome sequences of Phytophthora sojae were explored to construct a genome wide inventory of genes involved in G protein and calcium signaling pathways, including those encoding adenylyl cyclase (AC), regulator of G protein signal (RGS), phospholipase D (PLD), calmodulin (CAM) and calcium dependent protein kinase (CMK). The most obvious missing link is a gene encoding G protein y subunit. In all eukaryotic genomes sequenced to date, Gy genes are annotated based on certain conserved features; however, these genes seem to be absent in Phytophthora spp. Analysis of the structural and regulatory domains and domain organization of the predicted isoforms of G protein, AC, RGS, PLD, CAM and CMK revealed many novel features compared with characterized representatives in other eukaryotes. Examples are transmembrane AC proteins with a N-terminal signal peptide. Compared with other sequenced eukaryotes, the genus Phytophthora clearly has several exceptional features in its ATP catalyze enzyme.
     Transcriptional analysis of G protein and calcium signal pathways in Phytophthora sojae. Characterization of genes involved in development, stress response and pathogenesis is an important step in identifying methods to study Phytophthora sojae. In this study, the relative expression levels of 20 genes involved in G protein and calcium signals were studied using semi-quantitive RT-PCR. From the results of transcriptional analysis,10 genes including G protein a and B subunits were expressed upregulated in sporulating hyphae than that in nutrient hyphae.13 genes including 10 involved in calcium signal were expressed downregulated in zoospore than that in nutrient hyphae or sporulating hyphae. A Ga, a Gβ, a phospholipase, a calcium binding protein, a calcium binding protein kinase and a putative transcriptional factor were expressed upregulated in early infection stage of P. sojae. A Gβ,3 calcium binding protein kinase and 2 phospholipase D were differentially upregulated in early infection stage of P. sojae. Our results indicates that G protein and calcium signals are not only involved in P. sojae sporulating, but also important for early infection. G protein may temporarily suppress calcium signal activation in P. sojae zoospore.
     Characterization of G protein alpha subunit. For the soybean pathogen Phytophthora sojae chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are unknown. To investigate the molecular mechanism of chemotaxis to isoflavone, expression of PsGPAl was silenced by introducing antisense constructs into P. sojae. PsGPAl silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germinating were also alternated, causing that the PsGPAl silenced mutants were disabled in infecting soybean. Upregulation of a calmodulin gene in zoospores of PsGPAl-silenced mutants pointed to suppressor activity of Ga targeted at steps in the calcium signaling pathway, indicating that Ga subunit may be a negative regulator of calcium signal pathways.
     Screening for Ga binding proteins and analysis of Ga regulated signal transduction pathways. G protein a subunit of Phytophthora sojae influences not only sporangia cleavage and zoospore release, but also zoospore motility and cyst germination. The mechanisms that how Ga binds with effectors and regulates downstream signal pathways are unknown. In this study, we constructed a P. sojae cDNA library and used yeast two hybrid method to screen for Ga binding proteins, and got 7 putative Ga binding proteins including ribulose-phosphate 3-epimerase and putative reverse transcriptase. Meanwhile, we compared gene expression profiles of P. sojae zoospores between wild type P6497 and Ga mutants A2 and A27 by cDNA Macroarray. From the results of comparison,6 genes including 3 regulator of G protein (RGS),1 Ca2+/calmodulin protein kinase and 1 Ca2+ ATPase were expressed down-regulated by Ga silencing, however,1 calmodulin,2 Ca2+/calmodulin protein kinase and 1 homolog of transcriptional factor were expressed up-regulated by Ga silencing. These results indicate that RGS activity may be dependent on the activity of Ga in P. sojae. And the relationship between G protein and calcium signal is very complex.
引文
[1]Adjobo-Hermans, M.J., Goedhart, J., and Gadella, T.W., Jr. (2006) Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation.J Cell Sci 119:5087-5097.
    [2]Ah-Fong, A.M., Bormann-Chung, CA., and Judelson, H.S. (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45:1197-1205.
    [3]Ah Fong, A.M., and Judelson, H.S. (2003) Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50:487-494.
    [4]Anderson, D.J., and Botella, J.R. (2007) Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein beta-subunit AGB1. Plant Cell Rep 26:1469-1480.
    [5]Avrova, A.O., Boevink, P.C., Young, V, Grenville-Briggs, L.J., van West, P., Birch, P.R., and Whisson, S.C. (2008) A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cell Microbiol.
    [6]Baasiri, R.A., Lu, X., Rowley, P.S., Turner, GE., and Borkovich, K.A. (1997) Overlapping functions for two G protein alpha subunits in Neurospora crassa. Genetics 147:137-145.
    [7]Bakthavatsalam, D., Brazill, D., Gomer, R.H., Eichinger, L., Rivero, E, and Noegel, A.A. (2007) A G protein-coupled receptor with a lipid kinase domain is involved in cell-density sensing. Curr Biol 17:892-897.
    [8]Bigot, J., and Boucaud, J. (2000) Effects of Ca2+-signalling inhibitors on short-term cold-acclimation of hydraulic conductivity in roots of Brassica rapa plants.J. Plant Physiol.157: 1-12.
    [9]Blanco, F.A., and Judelson, H.S. (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56: 638-648.
    [10]Bolker, M. (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25:143-156.
    [11]Cameron, J.N., and Carlile, M.J. (1981) Binding of isovaleraldehyde, an attractant, to zoospores of the fungus Phytophthora palmivora in relation to zoospore chemotaxis.J Cell Sci 49: 273-281.
    [12]Casselton, L.A., and Olesnicky, N.S. (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55-70.
    [13]Chen, J.G., and Jones, A.M. (2004) AtRGSl function in Arabidopsis thaliana. Methods Enzymol 389:338-350.
    [14]Chen, J.G. (2008) Heterotrimeric G-proteins in plant development. Front Biosci 13: 3321-3333.
    [15]Chen, Y, Ji, E, Xie, H., Liang, J., and Zhang, J. (2006) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol 140:302-310.
    [16]Colucci, G, Apone, E., Alyeshmerni, N., Chalmers, D., and Chrispeels, M.J. (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci U S A 99:4736-4741.
    [17]Cvitanich, C, and Judelson, H.S. (2003a) Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet 42:228-235.
    [18]Cvitanich, C., and Judelson, H.S. (2003b) A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot Cell 2:465-473.
    [19]Dong, W., Latijnhouwers, M., Jiang, R.H.Y., Meijer, H.J.G, and Govers, F. (2004) Downstream targets of the Phytophthora infestans Ga subunit PiGPAl revealed by cDNA-AFLP. Molecular Plant Pathology 5:483-494.
    [20]Erwin, D.C., and Ribeiro, O.K. (1996) Phytophthora Diseases Worldwide:American Phytopathological Society, St. Paul, MN, USA.
    [21]Fabritius, A.L., Cvitanich, C., and Judelson, H.S. (2002) Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45:1057-1066.
    [22]Fowler, T.J., and Mitton, M.F. (2000) Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction. Genetics 156:1585-1594.
    [23]Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerre-Tugaye, M.T., and Bottin, A. (2002) The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates.J Cell Sci 115:4565-4575.
    [24]Gaulin, E., Haget, N., Khatib, M., Herbert, C., Rickauer, M., and Bottin, A. (2007) Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can J Microbiol 53:152-157.
    [25]Gavino, P.D., Smart, C.D., Sandrock, R.W., Miller, J.S., Hamm, P.B., Lee, T.Y., Davis, R.M., and Fry, W.E. (2000) Implications of sexual reproduction for Phytophthora infestans in the United States: generation of an aggressive lineage. Plant Dis.84:731-735.
    [26]Gornhardt, B., Rouhara, I., and Schmelzer, E. (2000) Cyst germination proteins of the potato pathogen Phytophthora infestans share homology with human mucins. Mol Plant Microbe Interact 13:32-42.
    [27]Grenville-Briggs, L.J., Anderson, V.L., Fugelstad, J., Avrova, A.O., Bouzenzana, J., Williams, A., Wawra, S., Whisson, S.C., Birch, P.R., Bulone, V, and van West, P. (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20:720-738.
    [28]Gronover, C.S., Kasulke, D., Tudzynski, P., and Tudzynski, B. (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 14:1293-1302.
    [29]Grunwald, N.J., and Flier, W.G. (2005) The biology of Phytophthora infestans at its center of origin. Annu Rev Phytopathol 43:171-190.
    [30]Han, K.H., Seo, J.A., and Yu, J.H. (2004) Regulators of G-protein signalling in Aspergillus nidulans:RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling. Mol Microbiol 53:529-540.
    [31]Hardham, A.R., and Hyde, GJ. (1997) Asexual sporulation in the oomycetes. Adv. Bot. Res. 24:353-398.
    [32]Hill, C., Goddard, A., Davey, J., and Ladds, G. (2006) Investigating RGS proteins in yeast. Semin Cell Dev Biol 17:352-362.
    [33]Horio, T., Kawabata, Y, Takayama, T., Tahara, S., Kawabata, Y., Y Fukushi, Nishimura, H., and Mizutani., J. (1992) A potent attractant of zoospores of Aphanomyces cochlioides isolated from its host, Spinacia oleracea. Experientia 48:410-414.
    [34]Jones, A.M., and Assmann, S.M. (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572-578.
    [35]Judelson, H.S., Tyler, B.M., and Michelmore, R.W. (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4:602-607.
    [36]Judelson, H.S., Tyler, B.M., and Michelmore, R.W. (1992) Regulatory sequences for expressing genes in oomycete fungi. Mol Gen Genet 234:138-146.
    [37]Judelson, H.S. (1993) Intermolecular ligation mediates efficient cotransformation in Phytophthora infestans. Mol Gen Genet 239:241-250.
    [38]Judelson, H.S., Coffey, M.D., Arredondo, F.R., and Tyler, B.M. (1993a) Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23:211-218.
    [39]Judelson, H.S., Dudler, R., Pieterse, C.M., Unkles, S.E., and Michelmore, R.W. (1993b) Expression and antisense inhibition of transgenes in Phytophthora infestans is modulated by choice of promoter and position effects. Gene 133:63-69.
    [40]Judelson, H.S., and Whittaker, S.L. (1995) Inactivation of transgenes in Phytophthora infestans is not associated with their deletion, methylation, or mutation. Curr Genet 28:571-579.
    [41]Judelson, H.S. (1997) The genetics and biology of Phytophthora infestans:modern approaches to a historical challenge. Fungal Genet Biol 22:65-76.
    [42]Judelson, H.S., and Roberts, S. (2002) Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1:687-695.
    [43]Judelson, H.S., and Blanco, F.A. (2005) The spores of Phytophthora:weapons of the plant destroyer. Nat Rev Microbiol 3:47-58.
    [44]Judelson, H.S., and Tani, S. (2007) Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6:1200-1209.
    [45]Judelson, H.S., Ah-Fong, A.M., Aux, G, Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L., Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S., Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, E., Kamoun, S., van West, P., and Windass, J. (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433-447.
    [46]Kamoun, S., van West, P., Vleeshouwers, V.G, de Groot, K.E., and Govers, F. (1998) Resistance of nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413-1426.
    [47]Kasahara, S., and Nuss, D.L. (1997) Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact 10: 984-993.
    [48]Kim, K.S., and Judelson, H.S. (2003) Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot Cell 2:1376-1385.
    [49]Ko, W.H. (1988) Hormonal heterothallism and homothallism in Phytophthora. Ann. Rev. Phytopathol.26:57-73.
    [50]Krumins, A.M., and Gilman, A.G. (2006) Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in non-targeted signaling proteins. JBiol Chem 281:10250-10262.
    [51]Krystofova, S., and Borkovich, K.A. (2006) The predicted G-protein-coupled receptor GPR-1 is required for female sexual development in the multicellular fungus Neurospora crassa. Eukaryot Cell 5:1503-1516.
    [52]Lafon, A., Han, K.H., Seo, J.A., Yu, J.H., and d'Enfert, C. (2006) G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 43:490-502.
    [53]Latijnhouwers, M., Munnik, T., and Govers, F. (2002) Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Mol Plant Microbe Interact 15:939-946.
    [54]Latijnhouwers, M., and Govers, F. (2003) A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2:971-977.
    [55]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004) A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925-936.
    [56]Lee, B.N., and Adams, T.H. (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323-334.
    [57]Lemaire, K., Van de Velde, S., Van Dijck, P., and Thevelein, J.M. (2004) Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gprl in the yeast Saccharomyces cerevisiae. Mol Cell 16:293-299.
    [58]Li, L., and Borkovich, K.A. (2006) GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell 5:1287-1300.
    [59]Liu, S., and Dean, R.A. (1997) G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075-1086.
    [60]Lorenz, M.C., Pan, X., Harashima, T., Cardenas, M.E., Xue, Y., Hirsch, J.P., and Heitman, J. (2000) The G protein-coupled receptor gprl is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154:609-622.
    [61]Ma, H., Yanofsky, M.F., and Meyerowitz, E.M. (1990) Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci U S A 87:3821-3825.
    [62]Malbon, C.C. (2005) G proteins in development. Nat Rev Mol Cell Biol 6:689-701.
    [63]Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. (2002) Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36:137-146.
    [64]Mason, M.G., and Botella, J.R. (2000) Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA. Proc Natl Acad Sci U S A 97:14784-14788.
    [65]Mason, M.G., and Botella, J.R. (2001) Isolation of a novel G-protein gamma-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochim BiophysActa 1520:147-153.
    [66]McLeod, A., Smart, C.D., and Fry, W.E. (2003) Characterization of 1,3-beta-glucanase and 1,3;1,4-beta-glucanase genes from Phytophthora infestans. Fungal Genet Biol 38:250-263.
    [67]McLeod, A., Fry, B.A., Zuluaga, A.P., Myers, K.L., and Fry, W.E. (2008) Toward improvements of oomycete transformation protocols. J Eukaryot Microbiol 55:103-109.
    [68]Morris, P.F., and Ward, E.W.B. (1992) Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol PI Pathol 40:17-22.
    [69]Penington, C.J., Iser, J.R., Grant, B.R., and Gayler, K.R. (1989) Role of RNA and protein synthesis in stimulated germination of zoospores of the pathogenic fungus Phytophthora palmivora. Exp. Mycol.13:158-168.
    [70]Prakob, W., and Judelson, H.S. (2007) Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44:726-739.
    [71]Qi, J., Asano, T., Jinno, M., Matsui, K., Atsumi, K., Sakagami, Y., and Ojika, M. (2005) Characterization of a Phytophthora mating hormone. Science 309:1828.
    [72]Randall, T.A., Dwyer, R.A., Huitema, E., Beyer, K, Cvitanich, C., Kelkar, H., Fong, A.M., Gates, K., Roberts, S., Yatzkan, E., Gaffney, T., Law, M., Testa, A., Torto-Alalibo, T., Zhang, M., Zheng, L., Mueller, E., Windass, J., Binder, A., Birch, P.R., Gisi, U., Govers, F., Gow, N.A., Mauch, F., van West, P., Waugh, M.E., Yu, J., Boller, T., Kamoun, S., Lam, S.T., and Judelson, H.S. (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18:229-243.
    [73]Segers, G.C., Regier, J.C., and Nuss, D.L. (2004) Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Galpha subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 3:1454-1463.
    [74]Sekizaki, H., and Yokosawa, R. (1988) Studies on zoospore-attracting activity.Ⅰ. Synthesis of isoflavones and their attracting activity to Aphanomyces euteiches zoospore. Chem. Pharm. Bull.36: 4876-4880.
    [75]Sekizaki, H., Yokosawa, R., Chinen, C., Adachi, H., and Yamane, Y. (1993) Studies on zoospore-attracting activity. Ⅱ. Synthesis of isoflavones and their attracting activity to Aphanomyces euteiches zoospore.. Biol. Pharm. Bull.16:698-701.
    [76]Senchou, V., Weide, R., Carrasco, A., Bouyssou, H., Pont-Lezica, R., Govers, F., and Canut, H. (2004) High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61:502-509.
    [77]Shan, W., Marshall, J.S., and Hardham, A.R. (2004) Gene expression in germinated cysts of Phytophthora nicotianae. Molecular Plant Pathology 5:317-330.
    [78]Skalamera, D., Wasson, A.P., and Hardham, A.R. (2004) Genes expressed in zoospores of Phytophthora nicotianae. Mol Genet Genomics 270:549-557.
    [79]Tani, S., Yatzkan, E., and Judelson, H.S. (2004) Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17:330-337.
    [80]Tani, S., Kim, K.S., and Judelson, H.S. (2005) A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42:42-50.
    [81]Tani, S., and Judelson, H. (2006) Activation of zoosporogenesis-specific genes in Phytophthora infestans involves a 7-nucleotide promoter motif and cold-induced membrane rigidity. Eukaryot Cell 5:745-752.
    [82]Torto-Alalibo, T.A., Tripathy, S., Smith, B.M., Arredondo, F.D., Zhou, L., Li, H., Chibucos, M.C., Qutob, D., Gijzen, M., Mao, C., Sobral, B.W., Waugh, M.E., Mitchell, T.K., Dean, R.A., and Tyler, B.M. (2007) Expressed sequence tags from Phytophthora sojae reveal genes specific to development and infection. Mol Plant Microbe Interact 20:781-793.
    [83]Trusov, Y., Rookes, J.E., Tilbrook, K., Chakravorty, D., Mason, M.G., Anderson, D., Chen, J.G., Jones, A.M., and Botella, J.R. (2007) Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell 19:1235-1250.
    [84]Tyler, B.M., Wu, M., Wang, J., Cheung, W., and Morris, P.F. (1996) Chemotactic Preferences and Strain Variation in the Response of Phytophthora sojae Zoospores to Host Isoflavones. Appl Environ Microbiol 62:2811-2817.
    [85]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, ED., Baxter, L., Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J., Huang, W., Ivors, KL., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261-1266.
    [86]van West, P., Kamoun, S., van't Klooster, J.W., and Govers, F. (1999) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3:339-348.
    [87]van West, P., Shepherd, S.J., Walker, C.A., Li, S., Appiah, A.A., Grenville-Briggs, L.J., Govers, E, and Gow, N.A. (2008) Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154:1482-1490.
    [88]Vijn, I., and Govers, F. (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Molecular Plant Pathology 4:459-467.
    [89]Walker, C.A., Koppe, M., Grenville-Briggs, L.J., Avrova, A.O., Homer, N.R., McKinnon, A.D., Whisson, S.C., Birch, P.R., and van West, P. (2008) A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans. Fungal Genet Biol 45:954-962.
    [90]Wang, P., Cutler, J., King, J., and Palmer, D. (2004) Mutation of the regulator of G protein signaling Crgl increases virulence in Cryptococcus neoformans. Eukaryot Cell 3:1028-1035.
    [91]Warburton, A.J., and Deacon, J.W. (1998) Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet Biol 25:54-62.
    [92]Whisson, S.C., Avrova, A.O., West, P.v., and Jones, A.J.T. (2005) A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Molecular Plant Pathology 6:153-163.
    [93]Xu, C., and Morris, P.F. (1998) External calcium controls the developmental strategy of Phytophthora sojae cysts. Mycologia 90:269-275.
    [94]Yoshikawa, D.M., Hatwar, M., and Smrcka, A.V. (2000) G protein beta 5 subunit interactions with alpha subunits and effectors. Biochemistry 39:11340-11347.
    [95]Zeng, Q., Wang, X., and Running, M.P. (2007) Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting. Plant Physiol 143: 1119-1131.
    [1]Anna O. Avrova, Stephen C. Whisson, Leighton Pritchard, Eduard Venter, Sergio De Luca, Hein, I., and Birch, P.R.J. (2007) A novel non-protein-coding infection-specific gene family is clustered throughout the genome of Phytophthora infestans. Microbiology.153:747-759.
    [2]Bigot, J., and Boucaud, J. (2000) Effects of Ca2+-signalling inhibitors on short-term cold-acclimation of hydraulic conductivity in roots of Brassica rapa plants. J. Plant Physiol.157: 1-12.
    [3]Blanco, F.A., and Judelson, H.S. (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56: 638-648.
    [4]Chen, J.G, and Jones, A.M. (2004) AtRGSl function inArabidopsis thaliana. Methods Enzymol 389:338-350.
    [5]Connolly, M.S., Williams, N., Heckman, C.A., and Morris, P.F. (1999) Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet Biol 28:6-11.
    [6]Forey, P., Janvier, P., and (1994) Evolution of the early vertebrates. Am. Sci.82:554-565.
    [7]Hardham, A.R., and Hyde, GJ. (1997) Asexual sporulation in the oomycetes. Adv. Bot. Res.24: 353-398.
    [8]Jones, A.M., and Assmann, S.M. (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572-578.
    [9]Judelson, H.S., and Roberts, S. (2002) Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1:687-695.
    [10]Judelson, H.S., Ah-Fong, A.M., Aux, G, Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L., Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S., Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433-447.
    [11]Latijnhouwers, M., Munnik, T., and Govers, F. (2002) Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Mol Plant Microbe Interact 15:939-946.
    [12]Latijnhouwers, M., and Govers, F. (2003) APhytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2:971-977.
    [13]Latijnhouwers, M., Ligterink, W, Vleeshouwers, V.G., van West, P., and Govers, F. (2004) A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925-936.
    [14]Li, L., Wright, S.J., Krystofova, S., Park, G., and Borkovich, K.A. (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423-452.
    [15]Malbon, C.C. (2005) G proteins in development. Nat Rev Mol Cell Biol 6:689-701.
    [16]Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. (2002) Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36:137-146.
    [17]Meijer, H.J., and Govers, F. (2006) Genomewide analysis of phospholipid signaling genes in Phytophthora spp.:novelties and a missing link. Mol Plant Microbe Interact 19:1337-1347.
    [18]Ogihara, H., Shima, F., Naito, K., Asato, T., Kariya, K., and Kataoka, T. (2004) Direct activation of fission yeast adenylyl cyclase by heterotrimeric G protein gpa2. Kobe J Med Sci 50: 111-121.
    [19]Prakob, W., and Judelson, H.S. (2007) Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44:726-739.
    [20]Randall, TA., Dwyer, R.A., Huitema, E., Beyer, K., Cvitanich, C., Kelkar, H., Fong, A.M., Gates, K., Roberts, S., Yatzkan, E., Gaffney, T., Law, M., Testa, A., Torto-Alalibo, T., Zhang, M., Zheng, L., Mueller, E., Windass, J., Binder, A., Birch, P.R., Gisi, U., Govers, F., Gow, N.A., Mauch, F., van West, P., Waugh, M.E., Yu, J., Boller, T., Kamoun, S., Lam, S.T., and Judelson, H.S. (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18:229-243.
    [21]Ross, E.M., and Wilkie, T.M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69: 795-827.
    [22]Tani, S., Kim, K.S., and Judelson, H.S. (2005) A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42:42-50.
    [23]Tyler, B.M. (2007) Phytophthora sojae:root rot pathogen of soybean and model oomycete. Molecular Plant Pathology 8:1-8.
    [24]Warburton, A.J., and Deacon, J.W. (1998) Transmembrane Ca2+fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet Biol 25:54-62.
    [25]Xu, G., and Morris, P.F. (1998) External calcium controls the developmental strategy of Phytophthora sojae cysts. Mycologia 90:269-275.
    [1]Chen, X., Shen, G., Wang, Y., Zheng, X., and Wang, Y. (2007) Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMS Microbiol Lett 269: 280-288.
    [2]Choquer, M., Boccara, M., and Vidal-Cros, A. (2003) A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Curr Genet 43:303-309.
    [3]Judelson, H.S., Ah-Fong, A.M., Aux, G, Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L., Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S., Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433-447.
    [4]Kamoun, S. (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2:191-199.
    [5]Kim, KS., and Judelson, H.S. (2003) Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot Cell 2:1376-1385.
    [6]Latijnhouwers, M., and Govers, F. (2003) A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2:971-977.
    [7]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004) A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925-936.
    [8]Mann, B., and Hanski, C. (2002) Semi-quantitative determination of differential gene expression in primary tumors and matched metastases by RT-PCR. Comparison with other methods. Methods Mol Biol 193:237-249.
    [9]Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. (2002) Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36:137-146.
    [10]Robbins, M.J., Critchlow, H.M., Lloyd, A., Cilia, J., Clarke, J.D., Bond, B., Jones, D.N., and Maycox, P.R. (2008) Differential expression of IEG mRNA in rat brain following acute treatment with clozapine or haloperidol:a semi-quantitative RT-PCR study.J Psychopharmacol 22:536-542.
    [11]Yang, Z., Woodahl, E.L., Wang, X.Y., Bui, T., Shen, D.D., and Ho, R.J. (2002) Semi-quantitative RT-PCR method to estimate full-length mRNA levels of the multidrug resistance gene. Biotechniques 33:196,198,200 passim.
    [12]Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D., and Doke, N. (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718.
    [13]郑小波(1997)疫霉菌及其研究技术
    [1]Ah Fong, A.M., and Judelson, H.S. (2003) Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50:487-494.
    [2]Appiah, A.A., van West, P., Osborne, M.C., and Gow, N.A. (2005) Potassium homeostasis influences the locomotion and encystment of zoospores of plant pathogenic oomycetes. Fungal Genet Biol 42:213-223.
    [3]Bakthavatsalam, D., Meijer, H.J., Noegel, A.A., and Govers, F. (2006) Novel phosphatidylinositol phosphate kinases with a G-protein coupled receptor signature are shared by Dictyostelium and Phytophthora. Trends Microbiol 14:378-382.
    [4]Becard, G., Douds, D.D., and Pfeffer, R.E. (1992) Extensive In Vitro Hyphal Growth of Vesicular-Arbuscular Mycorrhizal Fungi in the Presence of CO (2) and Flavonols. Appl Environ Microbiol 58:821-825.
    [5]Blanco, F.A., and Judelson, H.S. (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56: 638-648.
    [6]Broughton, W.J., Jabbouri, S., and Perret, X. (2000) Keys to symbiotic harmony. J Bacteriol 182: 5641-5652.
    [7]Cameron, J.N., and Carlile, M.J. (1981) Binding of isovaleraldehyde, an attractant, to zoospores of the fungus Phytophthora palmivora in relation to zoospore chemotaxis. J Cell Sci 49:273-281.
    [8]Coley-Smith, J.R. (1990) White rot disease of Allium: problems of soil-borne diseases in microcosm. Plant Pathol 39:214-222.
    [9]Connolly, M.S., Williams, N., Heckman, C.A., and Morris, P.F. (1999) Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet Biol 28:6-11.
    [10]Dijksterhuis, J., and Deacon, J.W. (2003) Defective zoospore encystment and suppressed cyst germination of Phytophthora palmivora caused by transient leaching treatments. Antonie Van Leeuwenhoek 83:235-243.
    [11]Doehlemann, G., Berndt, P., and Hahn, M. (2006) Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821-835.
    [12]Dohlman, H.G., and Thorner, J.W. (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70:703-754.
    [13]Donaldson, S.P., and Deacon, J.M. (1993) Changes in motility of Pythium zoospores induced by calcium and calcium-modulating drugs. Mycol Res 97:877-883.
    [14]Erwin, D.C., and Ribeiro, O.K. (1996) Phytophthora Diseases Worldwide: American Phytopathological Society, St. Paul, MN, USA.
    [15]Fisher, R.F., and Long, S.R. (1992) Rhizobium--plant signal exchange. Nature 357:655-660.
    [16]Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerre-Tugaye, M.T., and Bottin, A. (2002) The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115:4565-4575.
    [17]Gauthier, M.L., and O'Day, D.H. (2001) Detection of calmodulin-binding proteins and calmodulin-dependent phosphorylation linked to calmodulin-dependent chemotaxis to folic and cAMP in Dictyostelium. Cell Signal 13:575-584.
    [18]Griffith, J.M., Iser, J.R., and Grant, B.R. (1988) Calcium control of differentiation of Phytophthora palmiuora.Arch Microbzol 149:565-571.
    [19]Hawes, M.C., and Smith, L.Y. (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171:5668-5671.
    [20]Irving, H.R., and Grant, B.R. (1984) The effects of pectin and plant root surface carbohydrates on encystment and development of Phytophthora cinnamomi zoospores.J Gen Microbiol 130:1015-1018.
    [21]Jackson, S.L., and Hardham, A.R. (1996) A transient rise in cytoplasmic free calcium is required to induce cytokinesis in zoosporangia of Phytophthora cinnamomi. Eur J Cell Biol 69: 180-188.
    [22]Judelson, H.S., Tyler, B.M., and Michelmore, R.W. (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4:602-607.
    [23]Judelson, H.S., and Roberts, S. (2002) Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1:687-695.
    [24]Kamoun, S. (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2:191-199.
    [25]Koelle, M.R. (2006) Heterotrimeric G protein signaling: Getting inside the cell. Cell 126: 25-27.
    [26]Lafon, A., Seo, J.A., Han, K.H., Yu, J.H., and d'Enfert, C. (2005) The heterotrimeric G-protein GanB (alpha)-SfaD (beta)-GpgA (gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171:71-80.
    [27]Lamour, K.H., Finley, L., Hurtado-Gonzales,0., Gobena, D., Tierney, M., and Meijer, H.J. (2006) Targeted gene mutation in Phytophthora spp. Mol Plant Microbe Interact 19:1359-1367.
    [28]Latijnhouwers, M., Munnik, T., and Govers, F. (2002) Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Mol Plant Microbe Interact 15:939-946.
    [29]Latijnhouwers, M., and Govers, F. (2003) A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2:971-977.
    [30]Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004) A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925-936.
    [31]Lengeler, KB., Davidson, R.C., D'Souza, C., Harashima, T, Shen, W.C., Wang, P., Pan, X., Waugh, M., and Heitman, J. (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746-785.
    [32]Li, L., Wright, S.J., Krystofova, S., Park, G, and Borkovich, K.A. (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423-452.
    [33]Malbon, C.C. (2005) G proteins in development. Nat Rev Mol Cell Biol 6:689-701.
    [34]Maria Laxalt, A., Latijnhouwers, M., van Hulten, M., and Govers, F. (2002) Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36:137-146.
    [35]Morris, P.F., and Ward, E.W.B. (1992) Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol PI Pathol 40:17-22.
    [36]Morris, P.F., Bone, E., and Tyler, B.M. (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117: 1171-1178.
    [37]Ruan, Y., Kotriaiah, V., and Straney, D.C. (1995) Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol Plant Microbe Interact 8:929-938.
    [38]Spaink, H.P. (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257-288.
    [39]Tamaki, H. (2007) Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng 104:245-250.
    [40]Tsai, S.M., and Phillips, D.A. (1991) Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro. Applied and Environmental Microbiology 57: 1485-1488.
    [41]Tyler, B.M., Wu, M., Wang, J., Cheung, W, and Morris, P.F. (1996) Chemotactic Preferences and Strain Variation in the Response of Phytophthora sojae Zoospores to Host Isoflavones. Appl Environ Microbiol 62:2811-2817.
    [42]Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L., Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M., Gijzen, M., Gordon, S.G, Govers, F., Grunwald, NJ., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S., Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S., Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A., Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261-1266.
    [43]Tyler, B.M. (2007) Phytophthora sojae:root rot pathogen of soybean and model oomycete. Molecular Plant Pathology 8:1-8.
    [44]van West, P., Morris, B.M., Reid, B., Appiah, A.A., Osborne, M.C., Campbell, T.A., and Shepherd, S.J. (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15:790-798.
    [45]Warburton, A.J., and Deacon, J.W. (1998) Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet Biol 25:54-62.
    [46]Willard, S.S., and Devreotes, P.N. (2006) Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 85:897-904.
    [1]Berridge, M.J., Lipp, P., and Bootman, M.D. (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11-21.
    [2]Carafoli, E. (1994) Biogenesis: plasma membrane calcium ATPase:15 years of work on the purified enzyme. Faseb J 8:993-1002.
    [3]De Vries, L., Zheng, B., Fischer, T., Elenko, E., and Farquhar, M.G. (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235-271.
    [4]Erwin, D.C., and Ribeiro, O.K. (1996) Phytophthora Diseases Worldwide:American Phytopathological Society, St. Paul, MN, USA.
    [5]Gutkind, J.S. (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839-1842.
    [6]Jones, A.M., and Assmann, S.M. (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572-578.
    [7]Li, L., Wright, S.J., Krystofova, S., Park, G., and Borkovich, K.A. (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423-452.
    [8]Ma, L., Xu, X., Cui, S., and Sun, D. (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11:1351-1364.
    [9]Malbon, C.C. (2005) G proteins in development. Nat Rev Mol Cell Biol 6:689-701.
    [10]Morris, P.F., and Ward, E.W.B. (1992) Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Pl Pathol 40:17-22.
    [11]Morris, P.F., Bone, E., and Tyler, B.M. (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117: 1171-1178.
    [12]Munnik, T, Arisz, S.A., De Vrije, T., and Musgrave, A. (1995) G Protein Activation Stimulates Phospholipase D Signaling in Plants. Plant Cell 7:2197-2210.
    [13]Neylon, C.B., Nickashin, A., Tkachuk, V.A., and Bobik, A. (1998) Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Cell Calcium 23:281-289.
    [14]Ross, E.M., and Wilkie, T.M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69: 795-827.
    [15]Tada, M., and Inui, M. (1983) Regulation of calcium transport by the ATPase-phospholamban system. J Mol Cell Cardiol 15:565-575.
    [16]Temple, B.R., and Jones, A.M. (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249-266.
    [17]Toyoshima, C. (2007) Ion pumping by calcium ATPase of sarcoplasmic reticulum. Adv Exp Med Biol 592:295-303.
    [18]Tyler, B.M., Wu, M., Wang, J., Cheung, W., and Morris, P.F. (1996) Chemotactic Preferences and Strain Variation in the Response of Phytophthora sojae Zoospores to Host Isoflavones. Appl Environ Microbiol 62:2811-2817.
    [19]Wu, Y., Xu, X., Li, S., Liu, T., Ma, L., and Shang, Z. (2007) Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasmamembrane hyperpolarization-activated Ca2+-permeable channel. New Phytol 176:550-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700