用户名: 密码: 验证码:
高山冰缘植物高山离子芥细胞磷脂酶D基因克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以高山冰缘植物中的高山离子芥(Chorispora bungeana Fisch et. Mey, Chorispora bungean)作为研究材料,克隆了高山离子芥细胞磷脂酶D基因,通过RT-PCR、Western-blotting等方法研究了磷脂酶D在高山离子芥抵御胁迫过程中的作用,探讨了高山冰缘植物胁迫适应性与磷脂酶D的关系,揭示磷脂酶D在植物抗逆反应中的生理生化和分子生物学机制。取得的主要研究结果如下:
     (1)克隆获得了高山离子芥细胞磷脂酶D基因(CbPLD),并分析预测了其结构组成,揭示了CbPLD的系统进化关系。结果显示:CbPLD cDNA全长2939bp,5’和3’端的非翻译区分别为70bp和39bp;含有一个完整的开放阅读框2712bp,编码903个氨基酸,蛋白质分子量约为100.5kDa,等电点为7.12。二级结构分析预测认为:CbPLD含有C2结构域、"IYIENQYF"结构域、以及磷脂酶D家族的活性结构域——两个HKD结构域;CbPLD预测蛋白序列包含26.14%α-螺旋(alpha helix),19.38%伸展链(extended strand),5.54%β-转角(beta turn),48.95%无规卷曲(random coil),其中α-螺旋和无规卷曲是CbPLD蛋白质中的主要二级结构域。从系统进化分析可以看出,CbPLD属于植物PLD beta亚型,在PLD beta亚型中,Chorispora bungeana和Arabidopsis PLD亲缘关系最接近,达到85%。
     (2)研究了高山离子芥磷脂酶D基因CbPLD表达的组织特异性以及不同胁迫处理(温度、ABA、盐、以及H2O2)条件下转录和蛋白水平的变化,从转录和蛋白水平揭示了CbPLD可以被多种环境胁迫诱导,它广泛参与了高山离子芥对逆境胁迫的响应。结果表明:CbPLD表达不具备组织特异性,它是植物的生长和发育的基础因子之一;低温胁迫条件下,在-4℃下处理时,CbPLD基因的转录水平逐渐增长,并且在处理6天时达到峰值,之后逐渐下降;在4℃处理下,CbPLD基因的转录水平迅速增长,并在处理1天达到峰值,并在之后保持较高的水平,处理12天后表达量降低;Western-blot反应,杂交得到了分子量约为100kDa的主要特异性条带,该条带的明亮度与胁迫处理之间存在相关性,CbPLD蛋白质水平变化趋势与CbPLD基因的转录水平基本一致,推测认为,转录水平的增加导致了蛋白水平的增加;其他胁迫(ABA、盐、H2O2以及热胁迫)处理均诱导了CbPLD的表达。
     (3)进行了高山离子芥细胞磷脂酶D响应冷冻胁迫的生化特性研究,阐明了高山离子芥细胞磷脂酶D响应冷冻胁迫的生化特性变化规律,揭示了磷脂酶D在高山离子芥特殊抗寒机制中的作用。结果显示:-4℃冷冻胁迫3天后,线粒体和微粒体膜结合态磷脂酶D酶活性显著增加,在6天时达到最高的酶活水平,之后逐渐下降。RT-PCR分析说明磷脂酶D基因转录水平变化与酶活性变化基本一致。冷冻胁迫下,线粒体和微粒体膜结合Ca2+含量均下降。酶动力学分析认为,线粒体和微粒体膜结合态磷脂酶D的活性遵从Michaelis-Menten酶动力学方程,冷冻胁迫分别引起线粒体和微粒体膜结合态磷脂酶D的Km和Vmax增加;酶活反应的最适pH和Ca2+含量发生了改变。
     (4)研究了冷冻胁迫条件下,高山离子芥细胞磷脂酶D参与生理生化代谢的调控作用,分析了高山离子芥细胞磷脂酶D与膜稳定性、渗透调节物质积累和抗氧化酶系的关系,揭示了高山离子芥细胞磷脂酶D响应冷冻胁迫的生理生化代谢机制。结果表明,磷脂酶D参与了膜稳定性调节、渗透调节物质的积累和抗氧化酶系中过氧化氢酶活性的调控,并且与激素ABA信号通路相关。
Chorispora bungeana Fisch. and C.A. Mey (Chorispora bungeana) is a rare alpine subnival plant species that is highly tolerant of stress environment. Phospholipase D (PLD) is a key enzyme involved in membrane phospholipid catabolism during plant growth, development and stress responses. We have isolated and partially characterized a full-length cDNA encoding PLD from the calluses of Chorispora bungeana, with the aim of furthering our understanding of the role of PLD at the molecular level. Although PLD has been studied in many plants, no examinations of its metabolism, regulation and molecular properties during environmental stresses have been undertaken. In this study, we investigated the response of PLD to environmental stresses and the role of PLD in metabolism pathway of Chorispora bungeana. The main results are as follows:
     (1) Through PCR and RACE techniques, a whole sequence of PLD cDNA was isolated from Chorispora bungeana (GenBank accession No. HM756247). The cloned full-length cDNA of Chorispora bungeana (CbPLD) was2939bp. The cDNA contained a2712bp ORF encoding a protein of903amino acids with a calculated molecular weight of about100.5kDa and with a PI of7.12. A5'untranslated region (UTR) of70bp was found upstream of the first ATG codon, and a3'untranslated region (UTR) of39bp was found downstream from the stop codon. Secondary structure analysis showed that CbPLD had C2domain,"IYIENQYF" region and two HKD motifs belonging to PLD family as their activity region. The putative CbPLD peptide contained26.14%alpha helix,19.38%extended strand,5.54%beta turn, and48.95%random coil. The alpha helix and random coil constituted interlaced domination of the main part of the secondary structure.A comparison of the predicted protein sequences of the CbPLD with PLDs of other plants shows that CbPLD is highly identical to PLD from Arabidopsis thaliana PLD beta (85%).
     (2) CbPLD expression patterns under stresses were analyzed by semi-quantitative RT-PCR. The results indicated that CbPLD is ubiquitously expressed in Chorispora bungeana, with almost no tissue specificity even though the expression levels showed slight variations between tissue types. The accumulation pattern of the CbPLD mRNA in response to low temperature was studied. Following exposure to-4℃, the transcript levels of CbPLD progressively increased, almost reaching the peak at6days of treatment, and then declined. After exposure to4℃, the transcript level of CbPLD increased rapidly. The level of the CbPLD transcript almost reached the peak at1day and remained at a high level, then decreased at12days. Immunoblots of PLD protein showed a molecular mass around100kDa. In parallel with the RT-PCR and immunoblots analyses, there were no distinguishable differences. The increases of PLD protein content are corresponding to the different levels of CbPLD mRNA. It seems to be a clear correlation between increase in CbPLD transcription levels and protein contents at different days of low temperature treatments. These results suggested that the major cause of the increases of PLD protein content during the low temperature stresses in Chorispora bungeana callus could be due to the up-regulation of CbPLD gene.
     The transcripts of CbPLD accumulated highly when Chorispora bungeana was treated with abscisic acid (ABA), salinity, hydrogen peroxide (H2O2) and heat. These results indicate that the CbPLD may play an important role in response to stresses in Chorispora bungeana.
     (3) The influence of freezing treatment on CbPLD activities was studied in Chorispora bungeana. The results showed that:
     During the freezing treatment (-4℃), PLD activities in both microsomal and mitochondrial membranes showed significant increases at day3, and remained at a high level at day6, then declined to a moderate level. The RT-PCR analyses showed that PLD activity partially corresponded to the PLD gene transcript level. Freezing injury, as measured by electrolyte leakage and malondialdehyde content, peaked at day6and then gradually decreased to a low level. Alleviation of freezing injury was related to a decreased content of membrane-associated Ca2+and in parallel with the changes of PLD activities. The influence of freezing treatment on PLD catalytic mechanism showed that freezing treatment resulted in increases in the Km and Vmax for microsomal and mitochondrial PLD, respectively. Both the optimal pH and calcium ion concentration of the mitochondrial and microsomal PLD were changed under freezing treatment. The findings indicated that PLD is involved in membrane deterioration and the signaling pathway in response to freezing stress, and the specific mechanism of cold resistance of Chorispora bungeana is linked with PLD.
     (4) The metabolism regulations of CbPLD in response to freezing stress were analyzed. The results showed that CbPLD have mediated the regulation pathway of membrane stability, osmotic adjustment and regulated CAT activity in anti-oxidative system. It also involved in the pathway of ABA signaling.
引文
An LZ, Liu YH, Feng HY, Feng GN, Chen GD. Studies on characteristics of element contents of altifrigetic subnival vegetation at the source area of Urumqi River. Acta Bot Boreal-Occident Sinica,2000,20:80-86
    Arora R, Palta JP. A loss in plasma membrane ATPase activity and its recovery coincides with incipient freeze-thaw injury and is recovery in onion bulb scale tissue. Plant Physiol,1991,95:845-852
    Austin-Brown SL, Chapman KD. Inhibition of phospholipase Da by N-acylethanolamines. Plant Physiol,2002,129:1892-1898
    Ayitu R, Tan DY, Li ZJ, Yao F. The relationship between the structures of vegetative organs in Chorispora bungeana and its environment. J. Xinjiang Agr Univ,1998,21: 273-277 [In Chin.]
    Bailly C, Benamar A, Corbineau F. Changes in malondialdehyde content and in superoxide dismutase, catalase glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum,1996,97:104-110
    Bargmann BO, Munnik T. The Role of Phospholipase D in Plant Stress Responses. Current Opinion in Plant Biology,2006,9:515-522
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein-dye binding. Anal Biochem,1976,72:248-254
    Brown JH, Paliyath G, Thompson JE. Influence of acyl chain composition on the degradation of phosphatidylcholine by phospholipase D in carnation microsomal membranes. J Exp Bot,1990,229:979-986
    Bush DS. Calcium regulation in plant cells and its role in signaling. Annu. Rev Plant Mol Biol,1995,46:95-122
    Campos PS, Quartin V, Ramalho JC, Nunes MA. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plant J Plant Physiol,2003, 160:283-292
    Chapman KD. Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants:signal transduction and membrane protection. Chemistry and Physics of Lipids,2000,108:221-230
    Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, De Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M. Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact,2002,15:808-816
    De Ridder BP, Crafts-Brandner SJ. Chilling stress response of postemergent cotton seedlings. Physiol Plant,2008,134:430-439
    Edwards GE, Gardestrom P. Isolation of mitochondria from leaves of C3, C4, and crassulacean acid metabolism plants. Methods Enzymol,1987,148:421-433
    Exton JH. Regulation of phospholipase D. Biochim. Biophys. Acta,1999,1439:121-133
    Fan L, Zheng S, Wang XM. Antisense suppression of phospholipase Da retards abscisic acid-and ethylenepromoted senescence of postharvest Arabidopsis leaves. Plant Cell,1997,9:2183-2196
    Fersht A. Enzyme structure and mechanism. Freeman,1985, NewYork
    Fu XY, Chang JF, An LZ, Zhang MX, Xu SJ, Chen T, Liu YH, Xing H, Wang JH. Association of the cold-hardness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. Environ exp Bot,2006,55:282-293
    Heller M. Pospholipase D. Adv lipid Res,1978,16:267-232
    Herrera-Estrella L. Phospholipase D≤2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Nat Acad Sci USA,2006,103:6765-6770
    Huang Y, Wu XZ, Qureshi IA, Chen HL. Determination of phosphatidyl choline specific phospholipase D using enzyme coupling colorimetric method and its application. Acta Academiae Medicine Shanghai,1997,24:343-346
    Jacob T, Ritchie S, Assmann SM, Gilroy S. Abscisic acidsignal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci USA.,1999,96: 12192-12197
    Kang GZ, Wang ZX, Sun GC. Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Botanica Sinica,2003,45(5):571-574
    Karen LK, Lynch DV. Solute accumulation and comartmentation during the cold acclimation of pumarye. PlantPhysiol,1992,98(1):108-113
    Khatoon H, Talat S, Younus H. Identification and partial characterization of a highly active and stable phospholipase D from Brassica juncea seeds. International Journal of Biological Macromolecules,2007,40:232-236
    Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 1996,8:489-503
    Knorzer OC, Durner J. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine mx) induced by oxidative stress. Physiologia Plantarum,1996,97:388-396
    Lachaud C, Silva DD, Cotelle V, Thuleau P, Xiong TC, Jauneau A, Briere C, Graziana A, Bellec Y, Faure JD, Ranjeva R, Mazars C. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells. Cell Calcium,2010, 47:92-100
    Leshem . Membrane phospholipid catabolism and Ca2+ctivity in control of senescence. Physiol Plant,1987,69:551-559
    Leung J, Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol,1998,49:199-222
    Li W, Li M, Zhang W, Welti R, Wang X. The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol,2004,22:427-433
    Li M, Qin C, Welti R, Wang X. Double knockouts of phospholipases D ≤ and D ≤2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol,2006,140:761-770
    Liu CL, Chen HP, Liu EE, Peng XX, Lu SY, Guo ZF. Multiple tolerance of rice to abiotic stresses and its relationship with ABA accumulation. Acta Agro Sin,2003,29:725-729
    Ma S, Gong Q, Bohnert HJ. Dissecting salt stress pathways. J Exp Bot,2006,57:1097-1107
    Mantyla E, Lang V, Palva ET. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. PlantPhysiol,1995,107(1):141-148
    Mao LC, Pang HQ, Wang GZ, Zhu CG. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biology and Technology, 2007,44:42-47
    Mishra G, Zhang W, Deng F, Zhao J, Wang X. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science,2006,312:264-266
    Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS. Molecular cloning and relationship to freezing tolerance of cold acclimation-specific genes of alfalfa. Plant physiol, 1989,89:375-380
    Munnik T, Irivine RF, Musgrave A. Phospholipid signaling in plants. Biochim Biophys Acta,1998,1398:222-27
    Munnik T. Phosphatidic acid:an emerging plant lipid second messenger. Trends in Plant Science,2001,6(5):227-233
    Navari-Izzo F, Cestone B, Cavallini A, Natali L, Giordani T, Quartacci MF. Copper excess triggers phospholipase D activity in wheat roots. Phytochemistry,2006,67:32-42
    Nooden LD, Leopold AC. Senescence and aging in plants, New York:Academic Press,1988, 52-84
    Novotna Z, Kas J, Daussant J, Sajdok J, Valentova 0. Purification and characterisation of rape seed phospholipase D. Plant Physiol Biochem,1999,37:531-537
    Paliyath G, Droillard MJ. The mechanisms of membrane deterioration and disassembly during senescence. Plant Physiol Biochem,1992,30:789-812
    Paliyath G, Pinhero RG, Yada RY, Murr DP. Effect of processing conditions on phospholipase D activity of corn kernel subcellular fractions. J Agric Food Chem, 1999,47:2579-2588
    Paliyath G, Murr DP, Thompson JE. Catabolism of phosphorylated phosphatidylinositols by carnation petal microsomal membranes enriched in plasmalemma and endoplasmic reticulum. Physiol Mol Biol Plant,1995,1:141-150
    Paliyath G, Thompson JE. Calcium and calmodulin-regulated breakdown of phospholipids by microsomal membrane from bean cotyledons. Plant Physiol,1987,83:63-68
    Pappan K, Austin-Brown S, Chapman KD, Wang X. Substrate selectivities and lipid modulation of plant phospholipase D alpha,-beta, and-gamma. Arch. Biochem Biophys,1998,353:131-140
    Pinhero RG, Almquist KC, Novotna Z, Paliyath G. Developmental regulation of phospholipase D in tomato fruits. Plant Physiol Biochem,2003,41:223-240
    Pinhero RG, Paliyath G, Yada RY, Murr DP. Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedldings. Plant Physiol Biochem,1998,36:213-224
    Ponting CP, Kerr ID. A novel family of phospholipase D homologues that include phospholipid synthases and putative endonucleases. Protein Sci,1996,5:914-922
    Price AH, Hendry GAR. Iron-catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ,1991,14:451-477
    Qin C, Wang X. The Arabidopsis Phospholipase D family characterization of ca2-independent and Phosphaidylcholine selective PLD with distinct regulatory domain. Plant Physiol,2002,128:1057-1068
    Qin W, Pappan K, Wang X. Molecular heterogeneity of phospholipase D (PLD):cloning of PLD gamma and regulation of plant PLD alpha, beta and gamma by polyphosphoinositides and calcium. J Biol Chem,1997,272:28267-28273
    Rappan K, Wang X. Plant PLD is an acidic phospholipase active at near physiological Ca2+ concentratious. Arch Bio Chem Biophys,1999,368(2):347-353
    Ritchie S, Gilroy S. Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol,2000,124:693-702
    Rossum DB, Patterson RL. PKC and PLA2:Probing the complexities of the calcium network. Cell Calcium,2009,45:535-545
    Russo MA, Quartacci MF, Izzo R, Belligno A, Navari-Izzo F. Long-and short-term phosphate deprivation in bean roots:plasma membrane lipid alterations and transient stimulation of phospholipases. Phytochemistry,2007,68:1564-71
    Ryu SB, Wang X. Activation of phospholipase D and thepossible mechanism of activation in wound-induced lipid hydrolysis in caster bean leaves. Biochim Biophys Acta,1996,1303:243-250
    Ryu SB, Karlsson BH, Ozgen M, Palta JP. Inhibition of phospholipase D by lyso-phosphatidylethanolamine, a lipid-derived senescence retardant. Proc Natl Acad Sci USA,1997,94:12717-12721
    Ryu SB, Wang X. Increase infree linolenie and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. J Biochim Biophys Acta,1998,1393:193-202
    Salama AM, Pearce RS. Aging of cucumber and onion seeds:phospholipase D, lipoxygenase activity and changes in phospholipids content. J Exp Bot,1993,44:1253-1265
    Sang YM, Zheng SQ, Li WQ, Huang BR, Wang XM. Regulation of plant water loss by manipulating the expression of phospholipase D. Plant J,2001,28:135-144
    Sato TK, Overduin M, EMr SD. Location, location, location:membrane targeting directed by PX domains. Science,2001,294:1881-1885
    Sergiev I,Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci,1997,51:121-124
    Sgherri C, Quartacci MF, Navari-Izzo F. Early production of activated oxygen species in root apoplast of wheat following copper excess. J. Plant Physiol,2007,164:1152-60
    Shaterian J, Georges F, Hussain A, Waterer D, De Jong H, Tanino KK. Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones. Environ Exp Bot,2005,53:323-332
    Shi YL, An LZ, Zhang MX, Huang CH, Zhang H, Xu SJ. Regulation of the plasma membrane during exposure to low temperatures in suspension-cultured cells from a cryophyte (Chorispora bungeana). Protoplasma,2008,232:173-181
    Srivastava S, Rahman MH, Shah S, Kav NNV. Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana. Plant Biotech J,2006,4:529-549
    Sun WH, Duan M, Li F, Shu DF, Yang S, Meng QW. Over expression of tomato t APX gene in tobacco improves tolerance to high or low temperature stress. Biol Plant, 2010,54(4):614-620
    Sung TC, Roper RL, Zhang Y. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein requried for poxvirus pathogenicity. ENBO, 1997,16:4519-4530
    Thompson J E. The molecular basis for membrane deterioration during senescence, In: Jandus J. Phospholipase D during tomato fruit ripening. Plant Physiol Biochem, 1997,35:123-128
    Uemura M, Steponkus PL. Cold acclimation in plants:relationship between the lipid composition and the cryostability of the plasma membrane. J. Plant Res,1999,112, (2):245-254
    Uike J, Morioka S, Komari T. Purification and characterization of phospholipase D(PLD) from fice and cloning of cDNA for phospholipase D from rice and maize.Plant Cell Physiol,1995,36:903-914
    Ulbrich-Hofmann R, Lerchner A, Oblozinsky & Lydia Bezakova M. Phospholipase D and its application in biocatalysis. Biotechnology Letters,2005,27:535-543
    Walker DJ, Romero P, Correal E. Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. Biol Plant,2010,54(2):293-298
    Wan SB, Tian L, Tian R R, Pan QH, Zhan JC, Wen PF, Chen JY, Zhang P, Wang W, Huang WD. Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Plant Physiology and Biochemistry,2009,47:504-510
    Wang LJ, Huang WD, Li JY, Liu YF, Shi YL. Peroxidation of membrane lipid and Ca2 homeostasis in grape mesophyll cells during the process of cross adaptation to temperature stresses. Plant Sci,2004,167:71-77
    Wang XM, Xu L, Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L..J Bio Chem,1994,269(32):20312-20317
    Wang XM. The role of phospholipase D in signaling cascades.Plant Physiology,1999, 120:645-656
    Wang XM. Multiple forms of phospholipase D in plant:the gene family, catalytic and regulatory properties,and cellular function. Prog Lipid Res,2000,39:109-149
    Wang XM.Plant phospholipases.Annu.Rev.Plant Physiol.Plant Mol.Biol,2001,52:211-231
    Wang XM. Phospholipase D in hormonal and stress signaling. Current Opinion in Plant Biology,2002,5:408-414
    Wang XM,Wang CX, Sang YM,Qin CB,Welti R.Networking of phospholipases in plant signal transduction.Physiol.Planta.,2002,115:331-335
    Wang XM. Lipid signaling. Current Opinion in Plant Biology,2004,7:329-336
    Wu JM, Qu T, Chen SY, Zhao ZG, An LZ.Molecular cloning and characterization of a Y-glutamylcysteine synthetase gene from Chorispora bungeana.Protoplasma,2009,235: 27-36
    Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell,2002,14:165-183
    Xu L, Zheng S, Zheng L.Promoter analysis and expression of a phospholipase D gene from castor bean. Plant Physiol,1997,115:387-395
    Yapa PAJ,Kawasaki T,Matsumoto H.Changes of some membrane-associated enzyme activities and degradation of membrane phospholipids in cucumber roots due to Ca.starvation. Plant Cell Physiol,1986,27:223-232
    Young SA, Wang XM, Leach JE. Changes in the plasma membrane distribution of rice phospholipase D druing resistant interactions with,Xanthimonas pryzae pv oryzae. Plant cell,1996,8:1079-1090
    Younus H, Schops R, Lerchner A, Rucknagel KP, Schierhorn A, Saleemuddin M, Ulbrich-Hofmann R. Proteolytic sensitivi ty of a recombinant phosphol ipase D from cabbage:identification of loop regions and conformational changes. J.Protein Chem,2003,22:499-508
    Yuan H, Chen L, Paliyath G, Sullivan A, Murr DP. Characterization of microsomal and mitochondrial phospholipase D activities and cloning of a phospholipase D alpha cDNA from strawberry fruits. Plant Physiol Biochem,2005,43:535-547
    Zhang H, Zhou RX, Zhang LJ, Wang RY, An LZ. CbLEA, a Novel LEA Gene from Chorispora bungeana,Confers Cold Tolerance in Transgenic Tobacco. Journal of Plant Biology, 2007,(50G):336-343
    Zhang T, Liu Y, Xue L, Xu , Chen T, Yang T, Zhang L, An I.. Molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem,2006,44:78-84
    Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R. The oleate-stimulated phospholipaseD, PLD 5, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell,2003,15:2285-2295
    Zhao P, Wang DL. The role of phospholipase Dβ on signal transduction of low temperature in Arabidopsis thaliana. Genomics and Applied Biology,2009,28:901-907 [In Chin.]
    Zheng L, Krishnamoorthi R, Zolkiewski M, Wang XM. Distinct calcium binding properties of novel C2 domains of plant phospholipase D alpha and beta. J Biol Chem,2000,275:19700-19706
    陈石良,许正宏,孙微,谷文英,陶文忻.磷脂酶D的研究进展.工业微生物,1999,29(04):47-50
    崔德才,温孚江.磷脂酶D(PLD)在植物信号转导中的作用.山东农业大学学报(自然科学版),2000,31(2):115-119
    贺文婷,郭维明.超声波对蓝睡莲湿藏期间水分状况和膜稳定性的影响.园艺学报,2006,33(2):328-332
    黄勇,张夏英,陈惠黎.蛋白激酶和D-鞘氨醇对人肝癌细胞磷脂酶D活力的调节.生物化学与生物物理学报,1999,31(5):572-576
    李合生.现代植物生理学[M].2002,北京:高等教育出版社
    李琳,焦新之.应用蛋白质染色剂考马斯亮蓝G250测定蛋白质的方法.植物生理学通讯,1980,6:52-54
    刘洪展,郑风荣.PLD的生化特性及在信号传导中的作用.生命科学研究,2005,9(4):14-17
    沈文飚.抗坏血酸过氧化物酶的提取.植物生理学通报.1996,32(3):203-205
    闫旭宇,李玉中,李玲.植物中的磷脂酶D信号转导.植物生理学通讯,2006,42(6):1183-1190
    袁海英,陈力耕,何新华,李素芳.磷脂酶D在果实发育和成熟过程中的作用.园艺学报,2005,32(5):933-938
    袁海英,陈力耕,李疆,Gopinadhan Paliyath草莓果实磷脂酶活性的测定.果树学报,2005,22(5):579-581
    王瑞霞,高庆荣,崔德才.PLD基因的基本功能及在植物中的利用研究现状.西北植物学报,2004,24(8):1537-1542
    王国泽.植物磷脂酶D对环境胁迫的响应和传导信号的功能.西北农林科技大学学报(自然科学版),2005,33(2):147-148
    张充,蒋继.植物中的磷脂酶D.植物生理学通讯,2005,41(5):691-697
    张萍,张志娟,钟儒刚.冬小麦PLD对低温胁迫刺激的响应研究.中国农学通报,2008,24(10):264-268
    赵鹏,王道龙PLDβ在拟南芥低温信号中的转导作用.基因组学与应用生物学,2009,28(5): 901-907
    郑风荣,李德全.磷脂酶(PLD)基因的结构、表达及其表达产物在信号转导中的作用.植物学通报,2002,19(2):156-163
    朱广廉,钟诲文,张爱琴.植物生理学实验[M].1990,北京:北京大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700