用户名: 密码: 验证码:
新型电活性可降解纳米复合骨修复材料的制备及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HA)是人体骨组织和牙齿的主要无机成分,人工合成的HA由于其成分和结构与骨骼相似,且与骨组织具有很强的键合能力,在骨科具有广泛的应用前景。聚(乳酸-乙醇酸)(PLGA)是已被FDA许可应用于临床的生物可降解高分子材料。将纳米化HA(n-HA)与PLGA复合可以显著提高PLGA的力学强度和成骨性能,因而成为近年来的研究热点。为改善纳米粒子的分散性,本研究采用低聚乳酸表面接枝改性的n-HA(op-HA),与PLGA共混制成新型纳米复合材料op-HA/PLGA,并采用熔体模压/颗粒浸出法制备出不同孔隙率的三维组织工程支架。分析支架材料的孔隙结构特征和力学强度。通过细胞培养、流式细胞仪、Realtime-PCR评价成骨细胞在材料表面的粘附、扩展、增殖和成骨相关基因的表达情况;通过动物实验,研究支架材料对兔桡骨缺损的修复效果。探讨op-HA/PLGA的生物活性和支架材料的最佳致孔剂比例。
     在上述工作基础上,为进一步提高材料的生物活性和智能性,将可生物降解的导电高分子聚苯胺(PA)和聚乳酸(PLA)的嵌段共聚物(PAP)与op-HA/PLGA以一定比例复合,制备电活性可降解纳米复合骨修复材料(PAP/op-HA/PLGA)。通过细胞毒性实验、全身急性毒性实验和热原实验来评价材料的生物安全性;同时,在一定的脉冲电刺激作用下,研究该电活性材料对成骨细胞的粘附、生长和增殖能力以及成骨相关基因表达的影响;通过动物植入实验,评价支架材料对兔桡骨缺损的再生修复功能。
     研究结果表明,op-HA/PLGA复合材料由于掺入了HA纳米粒子,其细胞粘附、扩展和增殖能力,以及I型胶原等成骨相关基因的表达水平均明显提高;三维支架材料的力学性能和动物骨骼修复效果以85%致孔剂为最佳。电活性纳米复合材料PAP/op-HA/PLGA具有良好的生物相容性,在脉冲电刺激的作用下,明显增强成骨细胞的粘附、生长和增殖能力,促进成骨活性基因的表达;将该材料与op-HA/PLGA结合应用,在脉冲电刺激作用下,可显著提高骨骼的愈合速度和愈合质量。该新型智能材料显示了良好的骨科临床应用前景。
     本研究通过对op-HA/PLGA纳米复合材料和电活性PAP/op-HA/PLGA纳米复合材料的生物相容性、成骨活性和骨修复能力进行详细深入研究,为新材料的制备和临床应用提供了实验依据。
Bone defection and nonunion induced by trauma or tumor are still the puzzles of reconstructive orthopaedic surgery nowadays. Although autologous and allogeneic bone substitute materials, as the common replaceable materials, play important role in treatments, they still have many intrinsic disadvantages and do not meet the demands in all situations. Autologous bone grafts are considered to be the optimal selection, but the morbidity at donor sites, limited shape, size and amount of graft are the major drawbacks of this technique. Furthermore, the additional surgery makes patient undergo more body injuries, including pain and infection. Allogeneic bone material can be prepared with any shape, size needed in surgery without the limits of amount, however the inevitable immune response and the risk of virus disease transmission make it limit with application. In order to overcome the limitation of the two methods, it is important task to develop the better man-made biological material to repair bone defect.
     Hydroxyapatite (HA), a major in component of bone organic, has been used extensively for biomedical implant applications and bone regeneration dueing to its bioactive, biodegradable and osteoconductive properties. The microstructure of nano Hydroxyapatite (n-HA)is the same as natural bone matrix, it can be adsorbed by bone matrix, therefore it can enhance the biological activity. The n-HA can release more calcium and phosphor for inducing the formation of new bone. The mechanical properties of n-HA can not be fixed and repaired to meet the orthopedic needs, limiting its clinical application. The biodegradable material of poly(lactic-co-glycolic acid)(PLGA) have been permitted by FDA of USA for clinical application. PLGA used in tissue engineering bone and cartilage of the building and tissue repairing, there must be a prerequisite for uniform stent planted in a sufficient number of seed cells. Construction of tissue engineering will take some time and conditions, which limit its clinical application.
     In order to overcome the above shortcomings, a new type of n-HA and PLGA composite materials will be prepared in this study. The n-HA particles will be transplanted to the surface of grafted oligomeric lactic acid (LAc oligomer), then,modified n-HA (op-HA) blends with composite material made of PLGA. Thus ,op-HA/PLGA. is formatted. Modified op-HA particles in the PLGA matrix has more uniform dispersion, and op-HA surface oligomeric lactic acid chains into the PLGA matrix can be internal, it can enhance both the organic and inorganic phase of adhesion, increase the mechanical strength of composite materials. PLGA matrix material can be adjusted degradation of the material by adjusting the the ratio of the composition of lactic acid (LA) and glycolic acid (GA). The biological activity of the op-HA and PLGA degradation characteristics of the combination of polymer materials will enhance the biocompatibility and osteoinductive capabilities, making it more suitable for clinical need for bone defection repairing.
     To further enhance the biological activity and intelligent of materials, on the baseis on op-HA/PLGA materials, a conductive polymer materia will be introduced. Polyaniline (PA) is a synthetic polymer materials, commonly known as conductive plastics. As a medical biological materials, there is poor biocompatibility, non-degradable and difficult to process, poor solubility of defects, thus affecting its medical applications. A biodegradable aliphatic polyester and aniline oligomer block copolymer of (PAP) will be prepared in this study. By aliphatic polyester and the introduction of natural bio-polymer, can not only greatly improve the electrical activity of the soluble material, but also improve the biocompatibility of materials. The introduction of the aniline oligomer, which has the similar electrical activity as Polyaniline.
     Combined with pulsed electrical stimulation, a new type of electrical activity of nano-composite bone repairing material PAP/op-HA/PLGA, reflects the intelligence, induces bone formation and shortens the bone healing process, provides a basis for clinical applications.
     Ⅰ. Nanocomposite of op-HA/PLGA bioabsorbable bone repairing material
     1. Preparation and Characterization of Materials
     We will grafte Lactic acid oligomer to the surface of n-HA,then blend with the PLGA matrix, thus op-HA/PLGA will be prepared. Op-HA grafting yield will be analyzed through Fourier transform infrared spectrometer (FT-IR), thermogravimetric instrument (TGA); op-HA/PLGA dispersion of surface particles will be observed through field emission scanning electron microscope (ESEM). By adjusting the ratio of porogen, different op-HA/PLGA porosity of composite materials, microstructure of materials, pore structure and porosity will be detected through ESEM, automatic surface area and porosity analyzer; the compressive strength of scaffold materials and bending strength will be tested by electronic Instron 1121 universal testing machine.
     The results showed that the graft ratio of op-HA was 8.3%(w/w), when blended with PLGA, op-HA has good dispersion. Preparation of the porous scaffolds. The porous scaffolds were prepared with the porogen of salt particles with certain size by melt-molding/particle leaching method. The mechanical strength, pore size and porosity were tested.
     2. Biocompatibility evaluation
     Culture osteoblasts vaccinated in op-HA/PLGA membrane, persisting 7d. At different time points we will stain osteoblasts by using fluorescein isothiocyanate (FITC), observe cells form and quantity in the material by Inverted fluorescence microscope, analyze the percentage of single-cell area by NIH Image J software, detect osteoblast proliferation in the surface of material by MTT; detect the expression of Collagen-I, BMP-2 and Osteonectin by RT-PCR. ESEM and EDX will be used to analyze calcium deposition of the composites. The results show that it can exhibite better cell adhesion, spreading and proliferation of rabbit osteoblasts compared with pure PLGA. Its gene expression of Collagen-I, Bone Morphogenetic Protein 2 (BMP-2) and Osteonectin are higher than that of PLGA. It indicate that the biocompatibility and osteogenic bioactivity of the op-HA/PLGA nanocomposite will be improved obviously than that of the pure PLGA.
     3. The repairing of rabbit radius defects of op-HA/PLGA
     The rabbit’s 20 mm radius defection is made and implanted with the composites. At 6 and12 weeks after operation, samples are harvested and examined by radiograph to evaluate the bone repairing property of the novel materials. The results show that at 12 weeks postoperatively, there is evident healing in 85% bone defection op-HA/PLGA groups.
     Ⅱ. New types of electrical activity of biodegradable nano-composite bone repairing material PAP/op-HA/PLGA
     1. Preparation and Characterization of Materials
     In order to prepare the electric activity of biodegradable nano-composite bone repairing material PAP/op-HA/PLGA, we will use solution method. It will be prepared by compositing conductive polymer aniline oligomer (AP) and polylactic acid (PLA) block copolymer of (PAP) and op-HA/PLGA by a certain percentage. To analyze the electrochemical properties by ultraviolet spectrophotometer, cyclic voltammetry and electrochemical analyzer; to prepare PAP/op-HA/PLGA porous membrane by supercritical CO2 foam method, to observe membrane surface morphology by ESEM. The results showed that PAP/op-HA/PLGA has electrochemical properties; surface covered with porous.It can meet the requirements of tissue engineering scaffold material .
     2. Biocompatibility evaluation
     In accordance with the biological materials compatibility testing methods and requirements, the International Organization for Standardization (ISO10993) and China (GB/T 16886). We detect PAP/op-HA/PLGA composites cytotoxicity by using vitro experiments, animal acute toxicity and pyrogen experiments in order to evaluate the biocompatibility of materials. The results show that PAP/op-HA/PLGA material has no cytotoxicity, no acute toxicity, no heat reaction, has better biocompatibility.
     3. Evaluation of cell adhesion, proliferation and osteogenic activity
     Under the pulse of electrical stimulation, we will culture cell vaccinated in PAP/op-HA/PLGA membrane, persisting 7d. At different time points we will stain osteoblasts by using fluorescein isothiocyanate (FITC), observe cells form and quantity in the material by Inverted fluorescence microscope, analyze the percentage of single-cell area by NIH Image J software, detect osteoblast proliferation in the surface of material by flow cytometry; detect the expression of Collagen-I, BMP-2 and Osteonectin by RT-PCR. The results show that PAP/op-HA/PLGA osteoblast adhesion and proliferation will be evaluated, gene expression of Collagen-I, BMP-2 and Osteonectin will be promoted under the pulse electrical stimulation.
     4. Experiment of implanted animals repairing
     Preparing rabbit radial defection model to evaluate the capacity of bone repairing materials under the pulse of electrical stimulation. We will put to death rabbit 12w old, take muscle tissue from implanting site. By RT-PCR, we will detect gene expression Type I collagen (Collagen-I), bone morphogenetic protein -2 (BMP-2) and bone connexin (Osteonectin). Under the pulse of electrical stimulation, PAP/op-HA/PLGA will play electrical activity , promot the repairing of bone defect, enhance bone healing process, promote bone plasticity, functional recovery, promot gene expression of BMP-2, Collagen-I and osteonectin.
     Conclusion: Op-HA/PLGA bone repair composite material has better cell adhesion, proliferation and osteogenic activity. The proportion of 85% porogen scaffolds has the best bone repairing. PAP/op-HA/PLGA has better biocompatibility, osteoblast adhesion, proliferation and osteogenic activity of gene expression. Under the pulse electrical stimulation, material properties has a better reflection.
引文
[1] Braddock M, Houston P, Campbell C, and Ashcroft P. Born Again Bone: Tissue Engineering for Bone Repair. News Physiol Sci, 2001,16: 208-213.
    [2] Sefton MV, Woodhouse KA. Tissue engineering. Cutan Med Surg., 1998, 3 Suppl1:S1 18-23.
    [3] Dekker RJ, De Bruijn JD, Van den Brink I, Bovell YP, Layrolle P, Van BlitterswijkCA. Bone tissue engineering on calcium phosphate- coated titanium plates utilizingcultured rat bone marrow cells: a preliminary study. J Mater Sci Mater Med, 1998,9: 859-63.
    [4] Ma Px, Langer R. Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Human Press Inc: 1998.
    [5] Croteau S, Rauch F, Silvestri A, Hamdy RC. Bone morphogenetic proteins in orthopaedics: from basic science to clinical practice. [J] Orthopaedics, 1999, 22: 686-95.
    [6] Harakas NK. Demineralized bone-matrix-induced osteogenesis. Clin Orthop Rel Res, 1984, 188: 239-251.
    [7]黄泽铣主编.功能材料词典[M].科学出版社,北京, 2002, 649-57.
    [8]熊佳,黄英,王琦洁,等.生物降解高分子材料[J] ,塑料科技, 2004,3:46-49.
    [9] Frazza EJ and Schmitt EE, [J] Biomed. Mater. Res., Symposium, 1971, 43.
    [10] Katthagen BD. Mittelmeier H.Experimental animal investigation of bone regeneration with collagen-apotite[J]. Arch Orthop Tram Surg, 1984, 103(5): 291-302.
    [11] Sato M , Asazuma T, Ishiham M,et a1. Anatelo collagen honeycomb shaped scafold with amembrane sealf(ACHMS-scafold)for the culture of annulus fibrosus cells from an intervertebral disc[J]. JBiomod MaterResA, 2003,64(2):248-256.
    [12] Madihally SV, Matthew HWT. Porous chitosan scafolds for tissue engineering[J]. Biomaterials,1999, 20(1):133-1 142.
    [13] SeongCM, GiraltS, KantarjianH, eta1. Early detection of relapse by hypermetaphasc fluorescence in sity hubridization after allogeneic bone marrow tranaplanlation for chronic myeloid leukemia[J]. J Clin Oncol, 2000, 18(9):183 1-1836.
    [14] LefflerCC, MullerBW. Influence ofthe acidtype onthe physical and drug liboration properties of chitosan-gelatin sponges[J].Int.J.Pharm,2000 ,194:229-237.
    [15] ZhangY, ZhangM. Synthesisand characterization ofmacropemua chitosan/ calcium phosphate compositescaf olds fortissue engineering[J].J Biomed Mater Res, 2001, 55(3):304-312.
    [16] ZhaoF, YinY, LuWW, eta1. Preparation andhistological evaluatlon Of biomimetic three- dimensional hydmxyapatite/ ehitoesn- gelatin network composite scafolds[J]. Biomaterials, 2002,23(15):3227-3234.
    [17]李孝红,袁明龙,黄志锉,等.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子通报, 1999, 1: 24.
    [18] Mooney DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents[J]. Biomaterials, 1996, 17: 1417-1422.
    [19] Reed AM, Gilding DK et al. Biodegradable polymers for use in surgery-poly (glycolic)/poly (lactic acid) homo and copolymers: 2. In vitro degradation. Polymer, 1981, 22: 494-498.
    [20] Anderson JM, Hiltner A, Wiggins MJ,et al. Recent advances in biomedical polyurethane biostability and biodegradation[J]. Polymer International, 1998, 46(3):163.
    [21] Amass W, Amass A, Tight B, et al. Review of biodegradable polymers[J]. Polymer International, 1998, 47(2):89.
    [22] Min Wang. Developing bioactive composite materials for tissue replacement.Biomaterials, 2003(24):2133-2151.
    [23] Ashammakhi N, Rokkanen P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials, 1997, 18: 3-9.
    [24] Leenslag JW, Pennings AJ, Bos RM, Rozema FR, Boering G. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation. Biomaterials, 1987,8: 70-73.
    [25]刘彦春,王炜,曹谊林,等.卵磷脂、多聚赖氨酸和PLA包埋PGA与软骨细胞体外培养的实验研究[J].实用美容整形外科杂志, 1997, 8(5):225.
    [26]郑磊,王前,裴国献.可降解聚合物在骨组织工程中的应用进展[J].中国修复重建外科杂志, 2000, (14)3:200-203.
    [27] Zignani M,Le Minh T,Einmahl S,et al.Improved biocompatibility of a viscous bioerodible poly(ortho ester)by controlling the environmental pH during degradation.Biomaterials,2000,21(17):1773-8.
    [28] Wang HN, Li YB, Zuo Y, et al Biocompatibility and osteogenesis of biom imetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering.Biomaterials, 2007, 28(22): 3338-3348
    [29] Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials, 1998, 19: 1405-1412.
    [30] Agarwal CM, Bert J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials, 1995, 16: 1255-1260.
    [31] G?pferich A, Peter SJ, Lu L, Mikos AG. Modulation of marrow stromal cell function using poly (D,L-lactic acid)-block-poly(ethylene glycol)- monomethyl ether surfaces. Journal of Biomedical Materials Research, 1999, 46: 390-398.
    [32]曹谊林,商庆新.软骨、骨组织工程的现状与趋势[J].中华创伤杂志, 2001, 17(1):7-9.
    [33] Kim WS, Vacanti CA, Upton J , et al. Bone defect repair withtissue-engineered cartilage. Plast Reconstr Surg, 1994, 94(5):580-584.
    [34] Kim WS, Vacanti JP, Clima LG, et al. Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Reconstr Surg, 1994,94(2):233-237.
    [35] Vacanti CA, Langer R, Schico B, et al. Synthetic polymers seeded with chondrocytes provide a templater for new cartilage formation. Plast Reconstr Surg, 1991, 88: 753.
    [36]王德春,陈峥嵘,宋后燕,等.聚乙醇酸负载同种异体软骨细胞移植修复兔关节软骨缺损[J],中华创伤杂志, l997, 13 (4):228-231.
    [37] Wojciech Suchanek, Masahiro Yoshimura. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Mater Res, 1998, 13(1):94-117.
    [38] Hideki Aoki. Science and Medical applications of Hydroxyapatite. Printed in Tokyo, Takayama Press system center Co. Inc. 1991.
    [39]林晓艳,范红松,李旭东,等.纳米羟基磷灰石/胶原复合材料的制备及生物学评价[J].中国生物医学工程学报,2006,25 (1):63-68.
    [40]田从学.羟基磷灰石的实验合成研究[J].陶瓷学报, 2003,24(1):20-24.
    [41] Nims LFJ. Preparative techniques based on the dissciation constants of phosphoric acid. J Am Chem Soc, 1934, 56:1110-1115.
    [42] Tromel GZ. The optimum conditions for the formation of HA. Physic Chem 1932, 158:422-425.
    [43] Aoki H. Additional clinical application of apatite-coated ceramics for use as dental prosthesis. Jpn Kakai Tokkyo Koho 1978, 118:411-418.
    [44] Hamamoto AK, Akkichi. Artificial bone-apatite-coated ceramics. Jpn Kakai Tokkyo Koho, 1978, 460-464.
    [45] Alexandra. Porter,Nelesh Patel,Jeremy N. Skepper,Serena M. Best,William Bonfield. Effect of sintered silicate-substituted hydroxyapatite on remodeling processes at the bone-implant interface. Biomaterials, 2004, 25:3303-3314.
    [46] V. Salih,G. Georgiou,J.C. Knowles,I. Olsen. Glass reinforced hydroxyapatitefor hard tissue surgery Part II: in vitro evaluation of bone cell growth and function. Biomaterials, 2001, 22: 2817-2824.
    [47]黄志良,刘羽,王大伟,等.氟羟磷灰石固溶体比较晶体化学FT-IR研究[J].武汉化工学院学报, 2003, 25(1): 55-60.
    [48] X. Zhang, J. Chen, J. Zhou, et al. Porous hydroxyapatite granules: their synthesis,application and characterization. Clinical Materials, 1989, 4: 319-327.
    [49] Z. Yang, H. Yuan, W. Tong, et al. Osteogenesis in exrtaskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials, 1996, 17: 2131-2137.
    [50]闫玉华,樊东辉,刘畅,等.β-磷酸三钙多孔陶瓷药物载体的制备与微观结构[J].武汉工业大学学报1995,17(4):106-108.
    [51]牟善松,毛萱,石海涛,等.骨组织工程支架多孔β-磷酸三钙陶瓷的制备与性能[J] .材料科学与工程学报,2003,21(4):569-571.
    [52] E.M. Erbe, L.G. Marx, T.P. Clineff, et al. Potential of an ultra porous-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft[J]. Eur Spine,2001, 10:141-146.
    [53] Baksh D, Daives JE, Kim S. Three-dimensional matrices of calcium polyphosphares support bone growth in vitro and in vivo [J]. J Mater Med, 1998, 9:743-748.
    [54] Zhang,Liheng Zhou,Di Li、Naicun Xue,Xiudong Xu,Jinghong Li. Oriented nano-structured hydorxyapatite from the template. Chemical Physics Letters. 2003, 376: 493-497.
    [55] Zhang W, Liao S. S., Cui F. Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials, 2003, 15(16):3221-3226.
    [56] Ala Fei Chen, Zhou-Cheng Wang, Chang-Jian Lin. Preparation and characterization of Nano-sized hydroxyapatite particles and hydroxyapatite/ chitosan nano-composite for use in biomedical materials. Materials Letters, 2002, 57:858-861.
    [57] Yunyu Hu, Chao Zhang, Shuming Zhang, Zhuo Xiong, Jianqiang Xu. Development of a porous poly(L-lactic-acid) hydroxyapatite/collagen scaffold as a BMP delivery system and its use in healing canine segmental bone defect. J Biomed Mater Res, 2003,67A:591-598.
    [58] Caner Durucan, Paul W. Brown. Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation. J Biomed Mater Res, 2000, 51:726-734.
    [59] Gilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials.Biomaterials, 2007, 28(20):147-150.
    [60] Myung Chul Chang,Ching-Chang Ko,Willima H. Douglas. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003, 24: 2853-2862.
    [61] Anna Tampieri, Giancarlo Celotti, Elena Landi, Monica Sandri, Norberto Roveri, Giuseppe Falini. Biologically inspired synthesis of bone-like composite: Self-assembled collagen fibers/hydroxyapatite nanocrystals.J Biomed Mater Res, 2003, 67A:618-625.
    [62] N. Roveri, G. Falini, M.C. Sidoti, A. Tampieri, E. Landi,M. Sandri,B. Parma. Biological inspired growth of hydroxyapatite nanocrystals inside self ssembled collagen fibers. Materials Science and Engineering C, 2003, 23:441-446.
    [63] C.C. Silva, G. Pinheiro, D. Figueir’O, C.Goes, M.Sasaki, A.R.Miranda,A.S.B. ombra. iezoelectric properties of collagen-nanocrystalline hydorxyapatite composites. Journal of materials science, 2002, 37:2061-2070.
    [64] Kevor S.TenHuisen, Roger I. Martin, Maria Klimkiewica, Paul W. Borwn. Formation and properties of a synthetic bone composite: Hydorxyapatite- collagen. Journal of Biomedical Materials Research, 1995, 29:803-810.
    [65] Y. Doi, T. Horiguchi, Y. Moriwkai, H. Kitago, T. Kajimoto, Y. Iwayama. Formation of apatite-collagen complexes. Journal of Biomedical Materials Research, 1996, 31:43-49.
    [66] Banks E, Nakajima S,Shaprio L C. Fibrous apatite grown on modified collagen. Science, 1977, 198:1164-1166.
    [67] Hiroyuki Ishikaw, Tomihisa Koshino, Ryohei Takeuchi, Tomoyuki Saito. Effects of collagen gel mixed with hydorxyapatite powder on interface between newly formed bone and grafted Achilles tendon in rabbit femoral bone tunnel. Biomaterials, 2001, 22:1689-1694.
    [68] Ta-Jen Wu, Hsiu-Hsuna Huang, Cheng-Wen Lan, Chi-Hung Lin, Fu-Yin Hsu,Yng-Jiin Wang, Studies on the microspheres comprised of reconstituted collagen and hydorxyapatite. Biomaterials, 2004, 25:651-658.
    [69] Fu Yn Hsu, Shan-Chang Chueh, Yng Jiin Wang. Micorspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials, 1999, 20:1931-1936.
    [70] C. Du, F.Z. Cui,W. Zhang, Q.L. Feng, X.D. Zhu, K.de Groot. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of Biomedical Materials Research, 2000, 50:518-527.
    [71] C. Du, F.Z. Cui, X.D. Zhu, K.de Groot. Three-dimensional nano-Hap/collagen matrix loading with osteogenic cells in organ cultuer. Journal of Biomedical Materials Research, 1999, 44:407-415.
    [72]崔福斋,张伟,冯庆玲,李恒德,蔡强.用于骨修复的纳米晶磷酸钙胶原基复合材料的制备方法. 2001, 01136246.4,公开号CN1338315.A
    [73]李保强,胡巧玲,钱秀珍,等.原位沉析法制备可吸收壳聚糖/羟基磷灰石棒材[J].高分子学报, 2002,6:828-833.
    [74] Mukherjee, D..P, Roberts, R.A., et,al. Annaimale valuation of a Paste of ehitosnaglutmaatenad hydroxyPaptite asasynihetie bone gartf material .Joumal of Biomedieal Materials Reseacrh PartB.APPlied Biomaterials , 2003,67B: 603-609.
    [75] Xu HHK, Jr ClGS. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials, 2005,26: 1337-1348.
    [76] Verheyen CCPM, De Wijn JR,VanBlitterswijk CA. Evaluation of hydroxyapatite/poly(L-lactide) composites: mechanical behavior. J Biomed Mater Res, 1992, 26(5):1274-1277.
    [77] Verheyen CCPM, De Wijn JR, Van Blitterswijk CA. Hydroxyapatite/ poly (L-lactide): An animal study on push-out strengths and interface histology. J Biomed Mater Res, 1993, 27(4):433
    [78] Verheyen CCPM, De Wijn JR, Van Blitterswijk CA. Evaluation of hydroxyapatite/poly(L-lactide) composites: Physico-chemical properties. J. Mater Sci: J. Mater Med, 1993, 4:58.
    [79] Wei Guobao, Ma. Peter X. Structure and properties of nano- hydroxyapatite/ polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, (25): 4749-4757.
    [80] Junqiu Cheng, Ke Duan, Jie Weng,Xingdong Zhang. A novel way of preparation of dense nano- hydroxyapatite/ PLA composite and its characteristics,5th Asian Symposium on Biomedical Materials 200l,. C5(11), 9-12.
    [81] Zhang R, Ma PX. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res, 1999, 45:285-293.
    [82] Bennett S, Connolly K, Lee DR, Jiang Y, Buck D, Hollinger JO, Gruskin EA. Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone, 1996, 19:101-107.
    [83] Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res, 1999, 44: 446-455.
    [84] Roweton SL. A new approach to the formation of tailored microcellular foams and microtextured surfaces of absorbable and non-absorbable thermoplastic biomaterials. Master of Science Thesis, Department of Bioengineering, Clemson University,1994.
    [85] Zhang SM, Liu J, Zhou W, et al. Interfacial fabrication and property of
    [76] Verheyen CCPM, De Wijn JR,VanBlitterswijk CA. Evaluation of hydroxyapatite/poly(L-lactide) composites: mechanical behavior. J Biomed Mater Res, 1992, 26(5):1274-1277.
    [77] Verheyen CCPM, De Wijn JR, Van Blitterswijk CA. Hydroxyapatite/ poly (L-lactide): An animal study on push-out strengths and interface histology. J Biomed Mater Res, 1993, 27(4):433
    [78] Verheyen CCPM, De Wijn JR, Van Blitterswijk CA. Evaluation of hydroxyapatite/poly(L-lactide) composites: Physico-chemical properties. J. Mater Sci: J. Mater Med, 1993, 4:58.
    [79] Wei Guobao, Ma. Peter X. Structure and properties of nano- hydroxyapatite/ polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, (25): 4749-4757.
    [80] Junqiu Cheng, Ke Duan, Jie Weng,Xingdong Zhang. A novel way of preparation of dense nano- hydroxyapatite/ PLA composite and its characteristics,5th Asian Symposium on Biomedical Materials 200l,. C5(11), 9-12.
    [81] Zhang R, Ma PX. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res, 1999, 45:285-293.
    [82] Bennett S, Connolly K, Lee DR, Jiang Y, Buck D, Hollinger JO, Gruskin EA. Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone, 1996, 19:101-107.
    [83] Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res, 1999, 44: 446-455.
    [84] Roweton SL. A new approach to the formation of tailored microcellular foams and microtextured surfaces of absorbable and non-absorbable thermoplastic biomaterials. Master of Science Thesis, Department of Bioengineering, Clemson University,1994.
    [85] Zhang SM, Liu J, Zhou W, et al. Interfacial fabrication and property ofVacanti JP. Preparation and characterization of poly(L-lactic acid) foams. Polymer, 1994, 35:1068-1077.
    [97] Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res,1999, 47: 8-17.
    [98] Whang K,Goldstick TK,Healy KE. A biodedradable po1ymer scaffold for delivery of osteotropic factors. Biomaterlals, 2000, 21: 2545-2551.
    [99] Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res.,2000, 53(1):1-7.
    [100]何创龙,黄争鸣,张彦中,等.静电纺丝法制备组织工程纳/微米纤维支架,自然科学进展,2005,15:1175-1182.
    [101] Lam CXF, Mo XM, Teoh SH. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering, 2002, 20: 49-56.
    [102] Yang SF, Leong KF, Du ZH, et al. The design of scaffolds for use in tissueengineering. Part II. Rapid prototyping techniques. Tissue engineering, 2002, 80:1-11.
    [103] MacDiarmid AG. Synthetic metals: a novel role for organic polymers Angew. Chem. Int. Ed 2001,40: 2581-2590.
    [104] Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1962, 15: 161-163.
    [105] Macdiarmid AG, Chiang JC, Halpern M, Huang WS, Mu SL, Nanaxakkara LD, et al.“Polyaniline”: interconversion of metallic and insulating forms. Mol. Cryst. Liq. Cryst. 1985,121: 173-180.
    [106] Guterman E,Cheng S,Palouian K,et a1.Peptide-modified dectroactive polymers for tissue engineering applications. Polym Prepr(Am Chem Soc,Div Polym Chem),2002,43 (2):766-767.
    [107] Mattioli-Belmonte M, GiavaresiG, BinginiG,et al. Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior.Int J Artif Organs, 2003, 26(12):1077-1085.
    [108]李梦燕,Paul Bidez, Elizabeth Guterman-Tretter,等.电活性导电聚合物组织工程支架材料研究进展[J],中国医学科学院学报, 2006, 28(6):845-848.
    [109]门吉英,邓小燕,毕彦平,等.聚吡咯/聚乳酸电活性复合物的制备与表征[J],生物医学工程研究, 2007,26(3):275-277.
    [110] Wong JY, Langer R, Ingber DE. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc. Natl. Acad. Sci. USA 1994,91: 3201-3204.
    [111] Garner B, Georgevich A, Hodgson AJ, Liu L, Wallace GG. Polypyrrole- heparin composites as stimulus-responsive substrates for endothelial cell growth. J. Biomed. Mater. Res. 1999, 44: 121-129.
    [112] Garner B, Hodgson AJ, Wallace GG, Underwood PA. Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. Journal of Materials Science: Materials in Medicine 1999,10: 19-27.
    [113] Hodgson AJ, John MJ, Campbell T, Georgevich A, Woodhouse S, Aoki T, et al. Integration of biocomponents with synthetic structures: use of conducting polymer polyelectrolyte composites. Proceedings of SPIE 1996,2716: 164.
    [114] Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA 1997,94: 8948-8953.
    [115] Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. 2004, 68: 411-422.
    [116] Song HK, Toste B, Ahmann K, Hoffman-Kim D, Palmore GTR. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: A new platform for characterizing neurite extension in complex environments. Biomaterials. 2006, 27: 473-484.
    [117] Stauffer WR, Cui XT. Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials. 2006,27: 2405-2413.
    [118] Gomez N, Lee JY, Nickels JD, Schmidt CE. Micropatterned polypyrrole: acombination of electrical and topographical characteristics for the stimulation of cells. Adv. Funct. Mater. 2007, 17: 1645.
    [119] Ateh DD, Vadgama P, Navsaria HA. Culture of human keratinocytes on polypyrrole-based conducting polymers. Tissue Eng. 2006,12: 645-655.
    [120] Castano H, O'Rear EA, McFetridge PS, Sikavitsas VI. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Macromol. Biosci. 2004, 4: 785-794.
    [121] Kamalesh S,Tan P,Wang J,et al. Biocompatibility of electroactive polymers in tissues.[J] Biomed Mat Res,2000,52 (3):467-478.
    [122] Aoki T,Tanino M ,Sanui,K ,et a1.Secretory function of adrenal chromaffin cells cultured on polypyrrole films[J].Biom aterials, 1996,17(20):1971
    [123]贾骏,姚月玲,宋应亮,等.导电高分子聚吡咯纯钛表面改性对成骨细胞生长的影响[J],牙体牙髓牙周病学杂志, 2003,13(1):30-33
    [124] 1akard S, Heflem GValles-Villareal N,el al. Culture of neural cells on polymers coated surfaces for biosensor appfications. Biosens Bioelectron, 2005, 20(10):1946-1954.
    [125] George PM, Lyckman AV,LaVan DA,et al.Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.Biomaterials, 2005,26(17):3511-3519.
    [126] Wan Y, Wu H, Wen D. Porous-conductive chitosan scaffolds for tissue engineering. Preparation and characterization.Macromol Biosci, 2004, 4(9):882-890.
    [127]黄有荣.脉冲电磁场促进骨折愈合的研究进展[J],广西中医学院学报, 2003,6(2):49-51.
    [128]邓廉夫,马璟,郭洪敏,等.功能性电刺激在实验性骨折愈合过程中的作用.骨与关节损伤杂志.1997,12(2):95-97.
    [129]梅强,阴小龙,李永革,等.髓腔内恒定低压直流电刺激修复家兔桡骨缺损的实验研究[J],西安交通大学学报:医学版, 2005, 26(2):169-171.
    [130] Inoue N, Ohnishi I. Chen D. et a1. Effect of pulsed electromagnetic fields (PEMF)on late-phase osteotomy gap healing in a canine tibial mode1. J Orthop Res 2002, 120(5): 1106-1114.
    [131]孟志斌,孙材江,寥龙元,等.用双极恒直流电刺激促进骨移植愈合.湖南医科大学学报,1993,18(1):29-32.
    [132] Kaynak D,Mefert R.Gunhan M,et a1.A histopathologic investigation on the efects of electrica I stimulation on period ontaI tissue regeneration in experimental bo ny defects in dogs.J PeriodontoI 2005,76(12):2194-2204.
    [133] Friedenberg ZB, Harlow MC.Brighton CT. Healing of nonunion of the mediaI malleolus by means of direct curent: a case report. J Trauma 1971, 11(10):883-885.
    [134]谢锡芬,吴德仙,邱有贤,等.尼万隆电脑骨折愈合仪在临床德应用,贵州医药. 1999,23(6):440-441.
    [135]胡建山,敖福荣.低频调制中频电对骨折影响的实验研究及临床应用.中华理疗杂志. 1996,19(3):138-140.
    [136] Paterson DC, Lewis GN, Cass CA.Treatment of delayed union and nonunion with an implanted direct current stimulator. Clin Orthop Relat Res 1980,14(8):117-128.
    [137]杨柳,段小军,戴刚,等.人间充质干细胞体外成骨诱导培养及其生物学特变化[J].第三军医大学学报, 2002, 24(5): 509-512.
    [138]宋晋刚,许建中.脉冲电磁场在组织工程骨培养中的研究与进展,中国临床康复. 2004,8(14):2711-2713.
    [139]贡长生,张克立.新型功能材料[M].北京:化学工业出版社, 2001.
    [140] Yolanda Garcia, Ailish Breen, Krishna Burugapalli, et a1. Stereological methods to assess tissue response for tissue-engineered scaffolds.Biomaterials, 2007, 28(2) :175-186.
    [141] Svensson A, Nicklassou E.Harrah T, et a1.Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005, 26(4) : 419-431.
    [142] Artzi Z, ozlovsky A.Nemcovsky CE, et al The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted materia1 . J Clin Periodontol, 2005, 32(2) :193-199.
    [143] Min Wang. Developing bioactive composite materials for tissue replacement. Biomaterials, 2003(24):2133-2151.
    [144] Borum-Nicholas L, Wilson JOC. Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials 2003, 24: 3671-3679.
    [145] Tang ZG,Hunt JA.The effect of PLGA doping of po1yc prolactone films on the control of osteoblast adhesion and proliferation in vitro.Biomaterials,2006,27 (25):4409 -44l8.
    [146] Shi DH, Cai DZ, Zhou CR, et al. Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering. Chinese Medical Journal, 2005,118(17):1436-1443.
    [147]蒋毅,尹光福.国外医生医学工程分册, 2004, 27(4):238.
    [148]程俊秋,段可.化学研究与应用, 2001, 13(5): 51.
    [149]廖其龙,徐光亮,周大利,等.水热合成纳米羟基磷灰石粉末及其结构表征. [J].四川大学学报, 2002,34(3):69-71.
    [150] Roy R. Ceramics by the solution sol-gel route. Science, 1987,238 (12):1664-9.
    [151]谭延斌,杨庆铭,王毅.纳米级羟基磷灰石骨科材料研究进展[J],国外医学,骨科学分册,2004,25(3):164-165.
    [152] Burg KJL, Porter S, Kellam JF. Biomaterials [J], 2000;21:2347-2359.
    [153] Lin CY, Schek RM, Mistry AS, et al. Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng., 2005, 11(9-10): 1589-1598.
    [154] El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expect Rev Med Devices, 2005,2(1):87-101.
    [155] Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratμm controls BMP-induced osteogenesis. J Biochem Tokyo,1997,121(2):317-24.
    [156]彭文娟,宋国军.纳米羟基磷灰石/聚乳酸复合纳米结构组织工程支架材料的制备与表征.[J].材料导报2008 ,22(5):163-165.
    [157] AntonioJ., Salgada, Olga P. Coutinho, Rui L. Reis. Bone tissue engineering: state of the art and future trends.Macromol Biosci 2004,4:743-65.
    [158]屈阳,李振声,杨邦成,等.成骨肿瘤细胞在纳米氧化钛陶瓷表面的生物活性研究,[J]高等学校化学学报, 2007,28:1288-91.
    [159]章培标,崔阳,于婷,等.生物可吸收高分子纳米复合人工骨材料东北三省生物化学与分子生物学学会2008年学术交流会2008.
    [160]崔阳,刘一,陈学思,等.改性羟基磷灰石修复纳米复合材料的制备及生物学评价,中国组织工程研究与临床康复[J],2007,11(26), 5074-77.
    [161]傅德皓,杨述华,马德彰,等.鼠胚成骨细胞的原代培养与鉴定.创伤外科杂志, 2006,8(2):1571-60.
    [162]李先安,雷光华,刘文和,等.大鼠成骨细胞的体外培养和鉴定,湘南学院学报(医学版),2007,9(1):23-25,28.
    [163]闫爱民,刘力,陈秉礼,等.兔胚成骨细胞的原代培养与鉴定,创伤外科杂志,2002,4:15-17.
    [164] Hock J, Canalis E, Centrella M. Endocri no logy [M], 1990, 126: 421.
    [165] Baadsgaard K. Defect pseudarthroses. An experimental study on rabbits. Acta Orthop Scand, 1969,40(6):689-695.
    [166]马英锋,徐武清,赵炎,等.氧化铝/羟基磷灰石修复兔桡骨缺损模型的手术方法学研究[J],宁夏医学杂志2007, 29(10):871-873.
    [167]邵桢.骨组织工程基质材料的研究进展[J].国外医学生物医学工程分册, 1999, 22 (5) : 277-282.168
    [168] SionkowskaA.Effectsof solar radiation on collagen and chitosan films. J Photochem PhotobiolB 2006;82(1):9-15
    [169] WakeMC, Pat rik CW ,M iko s A G. Po re mo rpho logy affects on the fibrovascular t issue grow th in po rous polymer subst rates [J]. Cell T ransp lant, 1994, 3 (4) :339-343.
    [170] Ishaug-Riley SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Journal of Biomedical Materials Research, 1997, 36: 17-28.
    [171] Urist MR. Bone: formation by autoinduction. Clin Orthop Relat Res, 2002 (395):4-10.
    [172] Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release, 2001, 72(1-3): 191-202.
    [173] Djouad F, Plence P, Bony C, et a1. Immunosuppressive efect of mesenchymal stem cells favors tumor growth in allog eneic animals [J]. Dent Res 1996,75(4):1045-1051.
    [174]李彦林,杨志明,解慧琪,等.生物衍生组织工程骨支架材料的制备及理化特征[J].生物医学工程学杂志, 2002, 19(1): 10-12.
    [175]雷荣昌,翦新春.松质骨支架的制备及结构特征观察[J].生物医学工程与临床, 2006, 10(3): 128-130.
    [176]闫玉华,周文娟,万涛,等.组织工程基质材料研究进展国外医学生物医学工程分册, 2001, 24(4):149-153.
    [177]袁建军,封麟先.嵌段共聚物自组装及其在纳米材料制备中的应用(下).高分子通报2002:9-17.
    [178] Atri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 2002; 6: 466-471.
    [179] Vischer E, ChargI E. J.Bio1. Chem.[J], 1948,176:703-7l4.
    [180] Yang SM. Shiah W. M.az. Synthetic Metals[J],1991,41(12):757-760.
    [181] Kuo CT, Weng S. Z.Polym. Adv. Techno1. [J],2000,11(8-l2):7l6-722.
    [182] mIll A,Mills CA,Taylor DM.Chem.[J],2000,10(1):9l-97.
    [183] KvarnstromC, Bilger R, Ivaska A.Electrochimica Acttt[J], 1998, 4(3-4): 355-366.
    [184]黄利红,胡军,庄秀丽,等.电活性可生物降解材料聚乳酸与苯胺五聚体嵌段共聚物的合成与表征[J],高等学校化学学报,2005,26(9):1771-1773.
    [185] El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expect Rev Med Devices, 2005,2(1):87-101.
    [186] Lin CY, Schek RM, Mistry AS, et al. Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng., 2005,11(9-10):1589-1598.
    [187] CHEN Liang, Yu You-Hai, MAO Hum-Ping. Chem. J.Chinese Universities [J], 2004,25(3):592-594.
    [188] CHEN Liang, Yu You-Hai, MAO Hum-Ping. Chem. J. Chinese Universities [J],2004,25(9):l768-l773.
    [189] GAO Jun-Bo, ZHANG Wan-Jin, u Ke. Chem. J. Chinese Universities [J],2000,21(2):3l5-320.
    [190] Conwell E, Duke C.B, Paton A. et a1. J. Chem. Pkys.[J], 1988,88: 3955- 3999
    [191] Honzl J, Tlustakova M. Tetrahedron[J],1969,25:3641-3644.
    [192] Pariente JL, Bordenave L, Bareille R, Baquey C, Le Guillou M. The biocompatibility of catheters and stents used in urology. Prog Urol, 1998,8(2):181-187.
    [193] Peibiao Zhang , Zhongkui Hong , Ting Yu ,et al .In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactideco-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide) Biomaterials 2009,30(1):58-70
    [194] Lihong Huang, Xiuli Zhuang, Jun Hu, Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications, Biomacromolecules 2008, 9:850–858.
    [195]中国卫生部.生物材料和医疗器材生物学评价技术要求.北京:人民卫生出版社, 1997.分类和生物学评价项目选择: 466-472.
    [196]华人民共和国国家标准.医疗器械生物学评价第5部分:体外细胞毒性实验[S]. GB/T 16886.5-1997(2003).
    [197]中华人民共和国国家标准.医疗器械生物学评价第11部分:全身毒性实验[S]. GB/T 16886.11-1997.
    [198]中国卫生部.生物材料和医疗器材生物学评价技术要求[P].北京:人民卫生出版社, 1997,附件六:热原实验. 508-511.
    [199] Hao W, Hu YY, Wei YY,et al. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Cells Tissues Organs 2008,187(2):89-102.
    [200] Zhang D, Chang J, Zeng Y. Fabrication of fibrous poly(butylenes succinate)/ wollastonite/ apatite composite scaffolds by electrospinning and biomimetic process. J Mater Sci Mater Med 2008,19(1): 443-449.
    [201] Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 2007,6(2):162-167.
    [202] Sachlos E, Gotora D, Czernuszka JT. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng 2006,12(9):2479-2487.
    [203] Li M, Mondrinos MJ, Chen X,et al. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A. 2006,79(4):963-973.
    [204] Manjubala I, Woesz A,Pilz C,et al. Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J Mater Sci Mater Med 2005,16(12):1111-1119.
    [205] Schek RM, Taboas JM, Hollister SJ,et al. Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofac Res 2005,8 (4):313- 319.
    [206] Shi DH, Cai DZ,Zhou CR,et al. Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering. Chin Med J (Engl) 2005,118(17):1436-1443.
    [207] Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Meth, 1983,65 (l-2):55-63.
    [208] Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun, 2002,292(1):1-7.
    [209]中国卫生部.生物材料和医疗器材生物学评价技术要求.北京:人民卫生出版社, 1997.附件四:全身急性毒性实验. 502-504.
    [210]中华人民共和国卫生部药典委员会编.中华人民共和国药典. 2000.
    [211] Sims CD, Butler PE, Cao YL, et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconsir Surg, 1998, 101(6): 1580-1587.
    [212] Richardson RT, Thompson B, Moulton S, et al. The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials. 2007;28(3):513-523.
    [213]徐振华,张永专,颜涛,等.羟基磷灰石生物陶瓷改性研究进展[J],生物骨科材料与临床研究, 2006,3(3):26-29.
    [214] Bigi A, Fini M, Bracci B, et al. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials. 2008;29(11):1730-1736.
    [215]张磊磊,贺军,李克智,等.碳/碳复合材料表面粗糙度对成骨细胞生长行为的影响[J].无机材料学报,2008,23(2):341-345.
    [216] Rich J, Jaakkola T, Tirri T,et al. In vitro evaluation of poly(epsilon- caprolactone-co-DL-lactide)/ bioactive glass composites. Biomaterials. 2002;23(10):2143-2150.
    [217] Wilund KR, Tomayko EJ, Evans EM,et al. Physical activity, coronary artery calcium, and bone mineral density in elderly men and women: a preliminary investigation. Metabolism. 2008;57(4):584-591.
    [218] Pietak AM, Reid JW, Stott MJ,et al. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28(28):4023-4032.
    [219]朱进才,任战平,李旭奎,等.电刺激活化牙槽骨成骨细胞增殖功能的实验研究[J],西安交通大学学报:医学版, 2004,24(4):300-301,305.
    [220] Tew GN, Pralle MU, Stupp SI. Supramolecular materials with electroactive chemical functions. Angew. Chem. Int. Ed. Engl. 2000; 39: 517-521.
    [221] Wiesmann H, Hartig M, Stratmann U,et al. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim Biophys Acta. 2001;1538(1):28-37.
    [222] Kim SS, Park MS, Jeon O, et a1. Poly(lactide-co-glycolide)/ hydroxyapatite composite scaffolds for bone tissue engineering. [J]. Biomaterials, 2006, 27:1399-1409.
    [223] Lihong Huang,Xiuli Zhuang,Jun Hu, et a1.Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. [J]. Biomacromolecules ,2008, 9:850–858.
    [224]乐安,杨刚,吴江,等.脉冲电刺激对内皮细胞形态和功能的影响[J],生物医学工程杂志, 2008,25(3):694-698.
    [225]司徒振强.细胞培养[M],第1版,西安:世界图书出版公司,1992,209- 210.
    [226] Philips JL.Effects of electromaganetic field exposure on gene transcription.J Cell Biochem,1993,51(4):381-386.
    [227]李昌敏,姜槐,付一提,等.脉冲磁场对细胞缝隙连接通讯功能影响的研究[J],中国生物医学工程学报, 2001,20(2):148-151.
    [228] Blank M,Goodman R.Do electromagnetic fields interact directly with DNA. Bioelectromagnetics,1997,18(2):111-115.
    [229] Teofilo JM, Brentegani LG, Lamano-Carvalho T L,et al.Bone healing in osteoporotic female rats following intra-alveolar grafting of bioactive glass,Archives of Oral Biology 2004 , 49:755-762.
    [230] Termine JD , Kleinm1an HK , Whit son SW , et al . Os2 teonectin , a bone2specific protein linking mineral to colla2 gen. Cell ,1981 ,26 :99 - 105.
    [231] Yoshikawa T, Ohgushi H, Nakajima H, et al. Transplantation, 2000, 69(1):128–34.
    [232] Tamura J, Shinzato S,et al.Bioactive bone cements containing nano-sizedtitania particles for use as bone substitutes , Biomaterials 2005, 26: 6496–6505.
    [233] Virk MS, Conduah A , Park S-H,et al.Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone ,2008 ,42: 921–931.
    [234] Kempen, DHR, Lichun Lu, Hefferan TE,et al.Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering.Biomaterials 2008,29 :3245–3252.
    [235] Ozeki N, Jethanandani P , Nakamur H.Modulation of satellite cell adhesion and motility following BMP2-induced differentiation to osteoblast lineage,Biochemical and Biophysical Research Communications 2007, 353 :54–59.
    [236] Jong D.S., Steegeng, Hendriks J.M.A.Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells Biochemical and Biophysical Research Communications 2004, 320: 100– 107.
    [237] López JM, Balemans W, Piters E. Genetic analysis and effect of triiodothyronine and prednisone trial on bone turnover in a patient with craniotubular hyperostosis, Bone 2008,43:405-409.
    [238] Aebischer P, Valentini RF, Dario P, Domenici C, Galletti PM. Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy. [J]Brain Res. 1987,43(6): 165-168.
    [239] Fine EG, Valentini RF, Bellamkonda R, Aebischer P. Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. [J] .Biomaterials. 1991,12: 775-780.
    [240] Kerns JM, Pavkovic IM, Fakhouri AJ, Wickersham KL, Freeman JA. An experimental implant for applying a DC electrical field to peripheral nerve. [J]. Neurosci. Meth. 1987,19: 217-223.
    [241] Jaffe LF, Poo MM. Neurites grow faster towards the cathode than the anode ina steady field. [J]. Exp. Zool. 1979,209: 115-128.
    [242] Giaever I, Keese CR. Monitoring Fibroblast Behavior in Tissue Culture with an Applied Electric Field. Proc.[J].Natl. Acad. Sci. USA 1984, 81: 3761-3764.
    [243]宋亚文,谢利民.电刺激促进骨折愈合的历史和现状[J],中国骨伤, 2003,16(12):764-766.
    [244]许竟斌,方振东,赵红军,等.自制锯齿波亚低音频脉冲电磁场仪治疗骨折及其病理探讨[J],中华骨科杂志,1988, 8 (2) : 821-825.
    [245]王炳南,金大地,区伯平,等便携式脉冲电磁场仪促进实验性长骨陈旧性骨折愈合的研究[J],第一军医大学学报, 1993, 13 (1) : 551-555.
    [246]魏天鸥等,脉冲电磁场促进骨折愈合的临床及实验观察[J],中国矫形外科杂志, 1997, 4 (3) : 2421-2425.
    [247] Basset CAL. Fundament and p ract ical aspects of thera2 peut ic uses of pulsed elect romagnet ic fields (PEM F s). [J]. Cirt Rew Biosned Eng, 1989, 17 (5) : 4511.
    [248] Sah inogh i T ,Bhat t B, Gullet t L , et al. T ransO rthop Res Soc, 1996, 21 (2) : 2041.
    [249] A aron RK, Ciombo r D, Jones AR. T rans o rthop Res Soc, 1997, 22 (4) : 5481
    [250]王立平,党耕町.骨连接素在骨愈合中作用的探讨.中华骨科杂志,1998,18 (8) :497.
    [251] Hirakawa K. Hirota. S. Lkeda T. et al. Localization of the mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization. J Bone Miner Res ,1994 ,9 :1551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700