用户名: 密码: 验证码:
PPF/CaSO_4/β-TCP复合材料的制备与降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题目的是研究一种新型的可生物降解骨移植材料,使材料实现原位成孔,并使材料整体的降解速度慢于材料的成孔速度。
     首先采用三步法合成了聚富马酸丙二醇酯(poly(propylene fumarate),PPF),并对其进行了表征。制备了CaSO4和β-TCP粉体,探索了CaSO4/β-TCP陶瓷小球的制备和烧成工艺,制取了力学性能较好的CaSO4/β-TCP陶瓷小球。以PPF为基体,N-乙烯吡咯烷酮(N-VP)为交联剂,过氧化苯甲酰(BP)为引发剂,N,N-二甲基对甲苯胺(DMT)作为促进剂,CaSO4/β-TCP陶瓷小球为无机填料,37℃下交联固化,制备了PPF/CaSO4/β-TCP复合材料。
     交联固化研究发现,不同组成的复合材料交联固化时的最高温度变化不大,从38~43℃,在人体组织的承受范围之内。聚合物分子量以及无机填料CaSO4/β-TCP的含量对交联固化温度的影响最为明显,且聚合物PPF分子量越大CaSO4/β-TCP含量越高,交联固化温度越高。材料的凝胶点在2~13min之间, PPF分子量对凝胶点的影响最大,增大PPF的分子量,会迅速达到凝胶点。增大引发剂的浓度也有同样的效果,但对凝胶点的影响要稍弱一些。降低N-VP/PPF比,增大BP/PPF比率,均会使材料的抗压强度和抗压模量增大。材料的抗压强度在3.94~61.87 MPa,抗压模量在94.24~1149.20 MPa。
     采用PBS缓冲盐作为降解液,选用长12mm,直径6mm的圆柱状试样,在37℃下研究了PPF/CaSO4/β-TCP复合材料体外降解时的性能。体外降解研究表明复合材料中CaSO4的摩尔分数越大,降解失重越快。交联剂(N-VP)的含量越低,分子量越高,材料的降解速率就越小。N-VP/ PPF和CaSO4/β-TCP越高,材料的抗压强度和抗压模量越低。6周后材料的抗压强度为3.12±1.99MPa~20.56±2.87MPa,抗压模量为57.05±38.34MPa~712.03±284.85MPa。
     选取性能较好的组成的材料植入日本大耳白兔胫骨,对材料的生物相容性进行了研究。研究发现,材料具有较好的原位成孔性能和良好的生物相容性,可作为小梁骨的替代材料,具有良好的应用前景。
The objective of the research presented here is to design a novel biodegradable material which can be used as bone substitute. This new material can form pores in situ, and may have a rate of degradation that acts slower than that of pores formation.
     Poly(propylene fumarate)(PPF) were synthesized by a three-step method, and characterized with 1H-NMR, FITR, and GPC. We fabricated CaSO4 powder by sintering CaSO4·2H2O, and preparedβ-TCP with chemical coprecipitation method, then we investigated on the preparation of porous spherical CaSO4/β-TCP granules. PPF can be crosslinked with a vinyl pyrroliidinone at 37℃. N-vinyl pyrrolidinone (N-VP) was used as a crosslinking monomer, benzoyl peroxide (BP) as a radical polymerization initiator and N, N-dimethyl-p-toluidine (DMT) as an accelerator. PPF/CaSO4/β-TCP composites were formed through the incorporation of porous spherical CaSO4/β-TCP granules as an osteoconductive agent.
     We examined the effects of PPF molecular weight, N-VP/PPF ratio, BP/PPF ratio, and CaSO4/β-TCP ratio on the crosslinking temperature, gel point, and the compressive strength and modulus. The maximum crosslinking temperature did not vary widely among formulations, with the absolute values falling between 38°and 43°C, which was acceptable for orthopedic application. The maximum crosslinking temperature was most affected by the PPF molecular weight and CaSO4/β-TCP content. The gel point was affected strongly by the PPF molecular weight, with a increase in PPF molecular weight more rapidly leading to a gel point. An increase in initiator concentration had the same effect to a lesser degree. The gel point time frame was varied from 2 to 13 min, allowing the composite to be tailored to specific applications. The compressive strength and compressive modulus values increased with decreasing N-VP/PPF and increasing BP/PPF ratio. For all formulations, the compressive strength values fell between 3.94 and 61.87 MPa, and the compressive modulus values fell between 94.24 and 1149.20 MPa.
     Through the in vitro biodegradation of PPF/CaSO4/β-TCP composites in PBS, we investigated the properties PPF/CaSO4/β-TCP. The effects of varying PPF molecular, PPF to N-VP,and CaSO4 toβ-TCP of porous spherical CaSO4/β-TCP granules on the weight loss, water content, swelling degree and the composite compressive strength and modulus are examined by using cylindrical specimens with lengths of 12mm and diameters of 6mm.The composite degradated faster with a high CaSO4/β-TCP, a high N-VP/PPF or a low PPF molecular. The compressive strength and modulus decreased with decreasing the N-VP/PPF and increasing the CaSO4/β-TCP. For all formulations, the compressive strength values fell between 3.12±1.99MPa and 20.56±2.87MPa, and the compressive modulus values fell between 57.05±38.34MPa and 712.03±284.85MPa throughout 6 week’s in vitro degradation.
     According to the in vitro biodegradation results, we selected three different formations, and implanted the samples into the tibias of fourteen healthy, Japan white rabbits. The in vivo degradation results demonstrate that PPF/CaSO4/β-TCP composites have a good ability of forming porous morphology in situ and biocompatibility, and can be used as a substitute of trabecular bone.
引文
[1]郑昌琼,冉均国,新型无机材料,北京:科学出版社,2003,530~607
    [2]崔福斋,冯庆玲,生物材料学,北京:科学出版社,1997,1~5
    [3]俞耀庭,张兴栋,生物医用材料,天津:天津大学出版社,2000,1~3
    [4] Charlene M, Flahiff Angela S, et al. Analysis of A Biodegradable Composite for Bone Healing. J. Biomed. Mater Res, 1996, 32: 419~424
    [5] 姚康德等.组织工程用生物材料与系统功能材料.1999,30(1):1~3
    [6]林思聪.高分子生物材料分子工程研究进展.高分子通报,1997,2:76~79
    [7] R B. Martin, M. W Chapman, R E. Holmes, Efects of Bone Ingrowth on the Coraline Hydroxyapatite Material, Biomaterials, 1989, 10: 481~488
    [8]傅杰等.新型生物可降解医用高分子材料—聚酸酯,功能高分子学报, 1998,11(2):302 ~308
    [9]Langer R, Vacanti J P, Tissue Eng., Science, 1993, 260: 920~926
    [10]Lewandrowski K U, Gresser J D, Wise D L, et al, Bioresorbable bone graft substitudes of different osteoconductivities: a histologic evalulation of osteointegration of poly(propylene glycol-fumaric acid)-based cement implants in rats, Biomaterials, 2000, 21: 757~764
    [11]Storey R F, Warren S C, Allison C J, et al, Synthesis of bioabsorbable networks from methacrylate-endcapped polyesters, Polymer, 1993, 34: 4365~4373
    [12]Burg K J L, Porter S, Kellam J F, Biomaterial developments for bone tissue engineering, [J]. Biomaterials, 2000, 21: 2347~2359
    [13]Hasirci V, Lewandrowski K, Gresser J D, et al, Versatility of biodegradable biopolymers: degradability and zn inxo application, J Biotech., 2001, 86: 135~150
    [14]Breitenbach A, Kissel T, Biodegradable comb polyesters: Part 1 Synthesis, characterization and structural analysis of poly(lactide) and poly(lactide-co-glycolide) grafted onto water-soluble poly(vinyl alcohol) as backbone, Polymer, 1998, 39: 3261~3271
    [15]Chen L J, Wang M, Production and evaluation of biodegradable composites based on PHB-PHV copolymer, Biomaterials, 2002, 23:2631~2639
    [16]Leroux L, Hatim Z, Freche M, et al, Effects of various adjuvants(lactic acid, glycerol and chitosan) on the injectability of a calcium phosphate cement, Bone, 1999, 25: 31~34
    [17]Thomson R C, Mikos A G, Beahm E, et al, Guided tissue fabrication from periosteum using performed biodegradable polymer scaffolds, Biomaterials, 1999, 20: 2007~2018
    [18]Ural E, Kesenci K, Fambri C, et al, Poly(D, L-lactide/ε-caprolactone) hydroxyapatite composites, [Biomaterials, 2000, 20: 2147~2154
    [19]Holy C E, Dang S M, Davies J E, et al, In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam, Biomaterials, 1999, 20: 1177~1185
    [20]Hu J, Schulze U, Pionteck J, Degradation of interpenetrating polymer networks based on PE and polymethacrylates by electron beam irradiation, Polymer, 1999, 40: 5279~5284
    [21]樊仕才,周燕莉等,聚甲基丙烯酸甲酯强化对骨质疏松椎弓根螺钉固定的生物力学作用,中华骨科杂志,2001,21(2):93~96
    [22]Khairoun J, F Driessens C M, Boltong M G, et al, Addition of cohesion promotors to calcium phosphate cements, Biomaterials, 1999, 20: 393~398
    [23]Wang Xiaohong, Ma Jianbao, Wang Yinong, et al, Structural characterization of phosphorylated chitosan and their application as effective additives of calcium phosphate cements, Biomaterials, 2001, 22: 2247~2255
    [24]何悦,张志愿,骨组织工程技术及其在颌骨修复重建中的应用,口腔材料器械杂志,2005,14(2):79~82
    [25]李小溪,闫玉华,可降解磷酸钙生物陶瓷的研究进展,现代技术陶瓷,2002, 23(2):24~27
    [26]Ozawa M, Tanaka K, Morikawa S, et al, Clinical study of the pure β-tricalcium phosphate—reports of 167 cases. J East Jpn Orthop Traumatol, 2000, 12: 409~13
    [27]Ozawa M,Experimental study on bone conductivity and absorbability of the pure β-TCP. J Jap Soc Biomat, 1995, 13: 17~25
    [28]Chazono M, Tanaka T, Komaki H, et al, Bone formation and bioresorption after implantation of injectable β-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res, 2004, 70A:542~9
    [29]Kondo N, Ogose A, Tokunaga K, et al, Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle, Biomaterials, 2005, 26:5600~8
    [30]Ogose A, Hotta T, Hatano H, et al, Histological examination of beta-tricalcium phosphate graft in human femur, J Biomed Mater Res (Appl Biomater), 2002, 63:601~4
    [31]Ogose A, Kondo N, Umezu H, et al, Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferions) in human bones, Biomaterials, 2006, 27:1542~9
    [32]Wang Xiaohong, Ma Jianbao, Wang Yinong, et al, Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements, , Biomaterials, 2002, 23: 4167~4176
    [33]宁志杰,奥斯汀-骨移植替代物,中国矫形外科杂志,2000,7(6):593~594
    [34]孙明林,胡蕴玉,骨形态发生蛋白载体材料的研究和应用现状,国外医学生物医学工程分册,2001,24(3):128~133
    [35]Randolph D A, Negri J L, Devine T R, et al, Controlled dissolution pellet containing calcium sulfate [P]. USP: 5614206, 1997 - 03 - 25
    [36]Sato S, Koshino T, Saito T, Osteogenic response of rabbit tibia to hydroxyapatite, Biomaterials, 1998, 19: 1895~1900
    [37]Nilsson M, Fernandez E, Sarda S, et al, Characterization of a novel calcium phosphate/sulphate bone cement, J Biomed Mater Res, 2002, 61: 600~606
    [38]Bohner M, New hydraulic cements based on a tricalcium phosphate/calcium sulfate dihydrate mictures [J]. Biomaterials, 2004, 25: 741~742
    [39]Kontrec J, Kralj D, Brecevic L, Transformation of anhydrous calcium sulpate into calcium sulphate dihydrate in aqueous solutions, Journal of Crytal Growth, 2002, 240: 203~211
    [40]He S., Timmer M.D., Yaszemski M.J., et al, Synthesis of biodegradable poly(propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products, Polymer, 2000, 42: 1251~1260
    [41]Sanderson JE, Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone. US Patent 4,722,948: 1988. p. 1~14
    [42]Gerhart TN, Hayes WC. Bioerodible implant composition. US Patent 4,843,112:1989. p. 1~16
    [43]Gresser JD, Hsu SH, Nagaoka H, et al, Analysis of a vinyl pyrrolidone/PPF resorbable bone cement. J Biomed Mater Res, 1995, 29:1241~7
    [44]Domb AJ. Poly(propylene glycol fumarate) composition for biomedical application. US Patent 4,888,413: 1989. p. 1~32
    [45]Szmeresanyi IV, Marcos L K, Greger K, et al, Investigation of maleate-fumarate isomerisation during esterification with various glycols. J Polym Sci, 1961, 53:240
    [46]Domb AJ, Laurencin CT, Israll O, et al, The formation of propylene fumarate oligomers for use in bioerodible bone cement composites. J Polym Sci Polym Chem A, 1990, 28:973 ~ 85
    [47]Yaszemski MJ, Mikos AJ, Payne RG, et al, Biodegradable polymer composites for temporary replacement of trabecular bone. In: Mikos AG, Murphy R, Bernstein H, Peppas NA, editors. The effect of polymer molecular weight on composite strength and modulus in biomaterials for drug and cell delivery, vol. 331, Pittsburgh: Materials Research Society, 1994. p. 251~ 6
    [48]Peter SJ, Yaszemski MJ, Suggs LJ, et al, Characterization of partially saturated poly(propylene fumarate) for orthopaedic applications, J Biomater Sci Polym Ed, 1997; 8(11):893 ~ 904
    [49]Shung AK, Timmer MD, Jo S, et al, Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst, J Biomate.Sci.Polymer Edn, 2002, 3(1):95 ~ 108
    [50]Peter SJ, Suggs LJ, Yaszemski MJ, et al, Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger, Journal of Biomaterials Scince-Polymer Edition, 1999:10 (3): 363 ~ 373
    [51]Merrill EW, Salzman EW, Polyethylene oxide as a biomaterial, Am Soc Artif Intern Org J 1982, 6: 60~4
    [52]Mody PC, Wilkes GL, Structure property relationships of a new series of segmented polyether/polyester copolymers, J Appl Polym Sci, 1981, 26: 2853~ 7
    [53]He SL, Michael J, Yaszemski MJ, et al, Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials, 2000, 21: 2389 ~ 2394
    [54]Fisher JP, Dean D, Mikos AG, Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylate fumarate) biomataerials, Biomaterials, 2002, 23: 4333 ~ 4343.
    [55]Peter SJ, Nolley JA, Widmer MS, et al, In vitro degradation of a poly(propylene fumarate)/ β-tricalcium phosphate composite orthopedic sca!old, Tissue Eng, 1997, 3: 207~15
    [56]Frazier DD, Lathi VK, Gerhart TN, et al, In vivo degradation of a poly(propylene fumarate) biodegradable, particulate composite bone cement, Mater Res Soc Symp Proc, 1995, 394: 15~9
    [57]Frazier DD, Lathi VK, Gerhart TN, et al, Ex vivo degradation of a poly(propylene glycol-fumarate) biodegradable particulate bone cement. J Biomed Mater Res, 1997, 35: 383~9
    [58]Kharas GB, Kamenetsky M, Simantirakis J, et al, Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites, J Appl Polym Sci, 1997, 66:1123~37
    [59]Jianguo Li, Hailhong Liao, Characterization of calcium phosphates precipitated from simulated body fluid of different buffering capacities, Biomaterials, 1997, 18: 743~747
    [60] Landi E, Tampieri A, Celotti G, et al, Densification behaviour and mechanisms of synthetic hydroxyapatites, Journal of the European Ceramic Society, 2000, 20: 2377~2387
    [61]Jayabalan M, Vinoy T, Rajesh PN, Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement, Biomaterials, 2001, 22:2749~2758
    [62]Gregiry B.Kharas, Marina Kamenetsky, James Simantirakis, et al, Synthesis and Characterization of Fumarate-Based Polyesters for Use in Bioresorbable Bone Cement, Composites, Journal of Applied Polymer Science, 1997, 6:1123~1137
    [63]Langstaff S, Sayer M, Smith T, et al, Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response, Biomaterials, 2001, 22: 135~150
    [64]Peter SJ, Kim P, Yasko AW, et al, Crosslinking characteristics of an injectable poly(propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res, 1999, 44(3): 314~321
    [65]Ayers R.A., Simske S.J., Nunes C.R, et al, Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans, J Oral Maxillofac Surg, 1998, 56: 1297~1302
    [66]L.L. Hench, Bioceramics, J Am Ceram Soc, 1998, 81:1705~1728
    [67]Timmer MD, Shin H, Horch RA, et al, In Vitro Cytotoxicity of Injectable and Biodegradable Poly(propylene fumarate)-Based Networks: Unreacted Macromers, Cross-Linked Networks, and Degradation Products, Biomacromolecules, 2003, 4: 1026~1033
    [68]Suggs LJ, Shive MS, Garcia CA, et al, In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels, J Biomed Mater Res, 1999, 46: 22~32
    [69]Shin Heungson, Temenoff JS, Mikos AG. In Vitro Cytotoxicity of Unsaturated Oligo[poly(ethylene glycol) fumarate] Macromers and Their Cross-Linked Hydrogels, Biomacromolecules, 2003, 4:552~560
    [70]Yaszemski MJ, Payne RG, Hayes WC, et al, In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials, 1996; 17: 2127~2130
    [71]Wolfe MS, Dean D, Chen JE, et al, In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/ β-tricalcium phosphate scaffolds, J Biomed Mater Res, 2002, 61: 159~164
    [72]Timmer MD, Ambrose CG, Mikos AG, In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials; 2003, 24:571~577
    [73]Hedberg EL, Shih CK, Lemoine JJ, et al, In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials, 2005, 26: 3215~3225
    [74]Frazier DD, Lathi VK, Gerhart TN, et al, In vivo degradation of a poly(propylene fumarate) biodegradable, particulate composite bone cement, Mater Res Soc Symp Proc, 1995, 394:15~19
    [75]Peter SJ, Miller ST, Guoming Zhu, et al, In vivo degradation of a poly(propylene fumarate)/β-tricalcium phosphate injectable composite scaffold, J Biomed Mater Res, 1998, 41: 1~7
    [76]Hedberg EL, Kroese-Deutman HC, Shih CK, et al, In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds, Biomaterials, 2005; 26: 4616~4623
    [77]Andreis M, Veksi Z, C and H NMR study of the polyesterification of maleic anhydride and 1,2-propylene glycol, Polymer, 1983, 24: 611~616
    [78]Silverstein R M, Bassler G C, Morrill T C, Spectrometric identification of organic compounds, New York: Wiley, 1991
    [79]Jayabalan, Vinoy Thomas, Sreelatha PK, Studies poly(propylene fumarate-co-ethylene glycol) based bone cements, Biomed Mater Eng 2000, 10: 57~71
    [80]Jayabalan M, Thomas V, Rajesh PN. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement, Biomaterials, 2001 22: 2749~57
    [81]王学强;聚乙烯基吡咯烷酮的制备及应用;精细石油化工进展,2000;1(3):7~10
    [82] Nilsson M, Fern!andez E, Sarda S, Lidgren L, Planell JA. Microstructure analysis of novel resorbable calcium phosphate/ sulphate bone cements. In: Brown S, Clarke I, Williams P, editors.Bioceramics, vol. 14. Switzerland: Trans Tech Publications, 2002.p. 365~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700